
Journal of Computational and Applied Mathematics 229 (2009) 208–221

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Spectral approximation of solutions to the chemical master equation
Stefan Engblom ∗
Division of Scientific Computing, Department of Information Technology, Uppsala University, SE-75105 Uppsala, Sweden

a r t i c l e i n f o

Article history:
Received 20 February 2008
Received in revised form 8 September 2008

MSC:
65C20
60H35
41A10
41A63

Keywords:
Spectral-Galerkin method
Discrete approximation
Unbounded domain
Charlier’s polynomial
Master equation

a b s t r a c t

The master equation of chemical reactions is an accurate stochastic description of general
systems in chemistry. For D reacting species this is a differential-difference equation in D
dimensions, exactly soluble for very simple systems only.
We propose and analyze a novel solution strategy in the form of a Galerkin spectral

method with a favorable choice of basis functions. A spectral approximation theory in the
corresponding spaces is developed and the issue of stability is discussed.
The convergence properties of the method are demonstrated by the numerical solution

of two model problems with known solutions and a third problem for which no solution is
known. It is shown that the method is effective and accurate, providing a viable alternative
to other solution methods when the dimensionality is not too high.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The Markov property of stochastic processes plays an important role in many descriptions of real-world phenomena.
For a physical system observed at discrete times t1 < t2 < · · · tn it states that the probability for the observation (yn, tn)
conditioned on the system’s history satisfies

Pr (yn, tn|y1, t1; . . . ; yn−1, tn−1) = Pr (yn, tn|yn−1, tn−1) , (1.1)

i.e. that the future evolution depends on the present state only. Although (1.1) is not always fulfilled exactly, it is frequently
a very accurate and useful approximation. In particular, the Markov assumption is accurate when the discrete time chosen
is sufficiently coarse in comparison with the often very short auto-correlation time of the system. Systems satisfying (1.1)
can be described using only the initial probability Pr(y1, t1) and the transition probability function Pr(ys, s|yt , t) [2].
Themaster equation is a consequence of the Markov property for a discrete state space in continuous time. In particular,

if a chemical system of D reacting species is described by counting the number of molecules of each kind, then the master
equation accurately governs the dynamics of the probability distribution for the system. In fact, one can show that the
chemical master equation is exact under the conditions that the system is well-stirred and in thermal equilibrium [18].
The resulting description is a differential-difference equation inD dimensions and therefore suffers from thewell-known

‘‘curse of dimensionality’’; — each species adds one dimension to the problem leading to a computational complexity that
grows exponentially. Only a few examples are analytically solvable, and effective numerical methods for solving the master
equation are of both practical and theoretical interest.
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A common deterministic model is the reaction-rate equations. This is a set of D ordinary differential equations (ODEs)
approximating the expected values of the concentrations of the species in the system. There are, however, many systems
for which the reaction-rate equations fail to reproduce actual behavior [26]. For instance, biological systems inside living
cells frequently consist of fewer than 102 molecules of some of the species [19] and stochastic effects are therefore more
pronounced. Additionally, such systems are often driven towards critical points for various biological reasons. Close to such
points, small random fluctuations in one variablemay slowly ‘‘leak’’ probabilitymass in a direction that on a longer timescale
drastically affects the rest of the system.
There are several stochastic simulation techniques that offer the ability to exactly follow sample trajectories of themaster

equation. Gillespie’s Stochastic Simulation Algorithm (SSA) [16] is perhaps the most well-known of these methods. Although
SSA is quite effective for many systems, models in molecular biology are often very stiff, and explicit simulation techniques
should not be applied directly [5,9,20].
Wemention also that there are analytical techniques for solving themaster equation. Under certain assumptions a priori,

theΩ-expansion [23, Ch. X] yields an asymptotic expansion of the solution in inverse powers of the sizeΩ of the system.
Another analytical approach is the Poisson representation [15, Ch. 7.7], where the solution is written as a superposition of
uncorrelated Poisson distributions.
Recent numerical considerations for the master equation include the numerical solution of the Fokker–Planck equation

[14] and the adaption of the Sparse grids technique [21]. When viewed as a master equation for fairly general continuous
stochastic processes [15, Ch. 7.2], numerical solution of the Fokker–Planck equation is an interesting subject in itself. As a
continuous approximation to the master equation, however, it is difficult to say how good the approximation will be [23,
Ch. VIII]. The sparse grids technique directly aims to reduce the computational complexity of high dimensional smooth
problems. Its application to the master equation is quite recent and would appear promising.
In the present paper we will provide the foundation for a spectral method that applies directly to the master equation.

For this purpose, theoretical considerations, including approximation properties and stability are developed here. For
implementation issues, efficiency concerns and experiments on representative models, see [13]. Both papers are adapted
from the earlier work [12].
The proposed spectralmethod is unusual in that the basis functions are orthogonalwith respect to a discretemeasure. This

suits the discrete character of the solution and avoids the need for continuous approximations to the master operator. The
method’s efficiency thus depends on the spectral representation of smooth solutions over discrete sets, where ‘‘smooth’’ has
to be defined in this new context. This does not completely remove the dimensional curse, but the spectral representation is
more efficient than any direct representation. We note that our proposed scheme is reminiscent of an approach considered
earlier in [7], and will further comment on this point in Section 4.
The rest of the paper is organized as follows. Section 2 is devoted to a theoretical study of the master equation and the

suggested numerical solutionmethod.We define themaster equation and briefly touch upon some of its properties. Suitable
approximation spaces are developed and analyzed in some detail and the stability of the resulting scheme is discussed.
Section 3 is devoted to convergence experiments and investigates the performance of the method when applied to three
different models. We conclude the paper by summarizing the various merits of the method.

2. Concepts and analysis

Since the spatial domain of the master equation is the set of non-negative integers and since no boundary conditions
need to be imposed, a spectral method seems to be a favorable numerical tool. Spectral representations of stochastic
processes have been used frequently in the context of Stochastic differential equations (SDEs) [25,30,31], but applying spectral
methods directly to the master equation is a recent contribution. Most SDEs in applications are derived by adding noise to
a deterministic description as a model of incomplete or inexact data and are expressed in observable variables. By contrast,
the master equation directly governs the probability density function of the process and is a consequence of the Markov
assumption only.
We now proceed by a discussion of the properties of the master equation. A construction of the approximation spaces

then follows where ‘‘smoothness’’ of discrete functions will be defined and where care will be taken to ensure convergence
in a relevant norm. We conclude by discussing the issue of stability.

2.1. The master equation

We shall consider the dynamics of a chemical system of D different species under R prescribed reactions. Let p(x, t) be
the probability distribution of the states x ∈ ZD

+
= {0, 1, 2, . . .}D at time t . That is, p simply describes the probability that a

certain number of molecules is present at each time.
The reactions are specified as transitions between the states in ZD

+
according to the reaction propensities wr : ZD+ → R+.

These define the transition probability per unit of time for moving from the state x to x− Nr ;

x
wr (x)
−−→ x− Nr , (2.1)

where Nr ∈ ZD is the transition step and is the rth column in the stoichiometric matrix N.
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Themaster equation [15,23] is then given by

∂p(x, t)
∂t

=

R∑
r=1

x+N−r ≥0

wr(x+ Nr)p(x+ Nr , t)−
R∑
r=1

x−N+r ≥0

wr(x)p(x, t)

=: Mp, (2.2)

where the transition steps are decomposed into positive and negative parts as Nr = N+r + N−r and where the sums include
feasible reactions only.
It is often preferable to work with the adjoint operatorM∗ [23, Ch. V.9]. If (p, q) is a pair of not necessarily normalized

or positive functions defined over ZD
+
, then provided both sides make sense (see [10] for a proof and an application to the

moment problem),

∑
x≥0

q(x)Mp(x) =
∑
x≥0

R∑
r=1

[q(x− Nr)− q(x)]wr(x)p(x). (2.3)

It follows that the adjoint operator is given by

M∗q =
R∑
r=1

wr(x)[q(x− Nr)− q(x)]. (2.4)

Note that both x andNr in (2.3) and (2.4) are D-dimensional vectors and that the sum in (2.3) runs over x ∈ ZD
+
. Other names

for (2.2) and (2.4) include the forward/backward Kolmogorov equations [4, Ch. 2.3] and forward/backward master equations
[17, Ch. 5.1.D].
Now let (λ, q) be an eigenpair ofM∗ normalized so that the largest value of q is positive and real. Then we see from (2.4)

that Rλ ≤ 0 so that all eigenvalues ofM share this property. Moreover, q ≡ 1 is an eigenvector corresponding to λ = 0, a
fact that has the natural interpretation that the probability mass of any solution p is conserved by the master equation. We
shall need the following related stability result.

Theorem 2.1. Any solution to the master equation is non-increasing in the l1-sequence norm. That is,∑
x≥0

|p(x, t)| ≤
∑
x≥0
|p(x, 0)| (2.5)

for any t ≥ 0.

Note that p(x, 0) in Theorem 2.1 is an arbitrary l1-measurable function defined on ZD
+
, and not necessarily a probability.

The statement follows from the fact that the semigroup corresponding toM is contractive (see [8, Ch. 1]), but in order to be
self-contained we offer the following simple argument.

Proof. It is easier to prove this result by considering the adjoint equation under the dual norm of l1, which is the l∞-norm.
This argument uses the equality (q(·, 0), p(·, t)) = (q(·, t), p(·, 0)) for the two solutions. From the relation ∂q/∂t = M∗q
and the definition (2.4) we see that the largest positive value of q cannot increase and that the most negative value cannot
decrease (this observation is due to van Kampen, see the ‘‘remarkable exercise’’ in [23, Ch. V.9]). Consequently, ‖q‖l∞ cannot
increase. In Section 2.5 a second and more direct proof of this result is obtained. �

Remark. It follows from Theorem 2.1 that for any p ≥ 1, the lp-norm of the solution stays bounded. However, for p > 1 it
is frequently the case that the norm grows slowly in time.

Wenow cite the following important resultwhich follows frommore careful considerations of the structure of themaster
operator.

Theorem 2.2. Let p(x, 0) be an l1-measurable discrete function defined on a bounded subset S ⊂ ZD
+
and assume that the

master operator is restricted to functions on this domain. If M is neither decomposable nor a splitting (see below), then the
master equation (2.2) admits a unique steady-state solution as t →∞. Moreover, if p(x, 0) is a discrete probability density, then
so is the steady-state solution.

For a proof and an insightful discussion we refer the reader to [23, Ch. V.3]. A decomposable linear operator can be cast in
the form (by relabeling the states)

M =

[
M11 0
0 M22

]
, (2.6)
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while a splitting operator can be written as

M =

[
M11 M12 0
0 M22 0
0 M32 M33

]
. (2.7)

Exclusion of these cases essentially forcesM to define a fully interacting system, one not allowed to consist of several isolated
subsystems.
As indicated, Theorem 2.2 is only valid when the number of states is finite. Indeed, there are many examples of master

equations on unbounded domains for which no steady-state solution exists (e.g. the standard Poisson process on the form
∅ → X where X-molecules simply arrive indefinitely). For chemicalmaster equations governing closed systems, however,
each species must have sufficiently strong ‘‘sinks’’ to match the inflow from the ‘‘sources’’. We therefore expect reasoning
based on assuming the existence of a steady-state solution to be valid for all physically realizable systems.
As a concluding model problem in one dimension we consider the linear birth–death process [2]

∅
k
−→ X

X
µx
−→ ∅

}
, (2.8)

where uppercase letters are used to denotemolecule names, while lowercases are used for counting the number ofmolecules
of the corresponding species. In (2.8), X-molecules are created at a constant rate and simultaneously destroyed at a rate
proportional to the total number of molecules. The master equation for this system can be written in terms of the forward-
and backward difference operator∆q(x) = q(x+ 1)− q(x) and ∇q(x) = q(x)− q(x− 1),

∂p(x, t)
∂t

=Mp(x, t) = −k∇̄p(x, t)+ µ∆[xp(x, t)], (2.9)

where a bar over ∇ expresses the convention that p(−1, t) = 0. This problem can be solved completely if initial data is
given in the form of a Poissonian distribution of expectation a0,

p(x, 0) =
ax0
x!
e−a0 . (2.10)

In this case one easily verifies that the full dynamic solution is given by

p(x, t) =
a(t)x

x!
e−a(t), (2.11)

where a(t) = a0 exp(−µt)+ k/µ · (1− exp(−µt)). Independent of the initial data, p approaches a Poissonian distribution
with expectation k/µ.
This example is part of the motivation for the unusual choice of basis functions suggested in the next section.

Charlier’s polynomials are orthogonal with respect to the Poisson process and appear promising as a means of representing
solutions to the master equation. Approximation properties of this basis are investigated thoroughly in the next few
sections.

2.2. Functions on Z+

In the following sections we shall study the approximation of functions defined over the set of non-negative integers.
Suitable spaces of functions are introduced and investigated and a theory for approximation over these spaces is developed.
The corresponding results for continuous approximation are fairly well understood but the discrete version seems to have
been largely overlooked in the literature.
For clarity, we mention here that the theory will contain a certain parameter a and we make some efforts to obtain

uniform results. This extra degree of freedom can be used as a means of improving the efficiency of the resulting scheme. To
this end we shall only consider one-dimensional functions; the corresponding tensor basis is straightforward to develop.
For p ∈ {1, 2,∞}we will make use of the ordinary normed lp(Z+)-spaces,

lp(Z+) =
{
q : Z+ → R; ‖q‖lp(Z+) <∞

}
, (2.12)

‖q‖plp(Z+) ≡
∑
x≥0

|q(x)|p, (2.13)

where the usual sup-norm is to be understood when p = ∞. For p = 2 we additionally associate the discrete Euclidean
inner product,

(p, q) ≡
∑
x≥0

p(x)q(x). (2.14)

Define now the falling factorial power by xm = x!/(x − m)! =
∏m−1
i=0 (x − i). For reasons that will be clear later on (see

Lemma 2.4) we shall use the following hierarchy of discrete Sobolev-spaces:

hm(Z+) =
{
q : Z+ → R;

√

xk · q(x) ∈ l2(Z+) for 0 ≤ k ≤ m
}

(2.15)
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with the corresponding norm

‖q‖2hm(Z+) ≡
m∑
k=0

a−k‖
√

xk · q(x)‖2l2(Z+), (2.16)

and where the parameter a ∈ R+.
We also define an analogous set ofweighted Sobolev-spaceswithweightw(x) = ax/x!·e−a. Theweighted inner product is

(p, q)w ≡
∑
x≥0

p(x)q(x)w(x) (2.17)

with generated norm. This yields the weighted space l2w(Z+) and the definition of each weighted discrete Sobolev-space
hmw(Z+) follows as in (2.15) and (2.16). Since these spaces are less common in analysis, and in order to get some feeling for
them, we consider the following example: set p(x) =

√
(x− 2)! with p(0) = p(1) ≡ 0 and let a = 1. Clearly, p ∈ h0w , and

in fact ‖p‖2
h0w
= exp(−1). However, p 6∈ h1w by the divergence of the harmonic sum. As an easy generalization we note that

p(x)2 = (x−m− 2)! is in hmw but not in h
m+1
w .

We now further examine these spaces by proving the following two basic results concerning the forward- and backward
difference operator.

Proposition 2.3. The map∆ : hm+1w (Z+)→ hmw(Z+) is continuous uniformly w.r.t. to the parameter a.

In fact, the following stronger result will be convenient later on and additionally provides us with some insight:

Lemma 2.4. Define the norm

‖q‖2hmw,∆(Z+) ≡
m∑
k=0

‖∆kq‖2
l2w(Z+)

. (2.18)

Then the norms ‖ · ‖hmw,∆(Z+) and ‖ · ‖hmw(Z+) are uniformly equivalent. That is, there are positive constants C1 and C2 depending
only on m such that

C1‖q‖hmw(Z+) ≤ ‖q‖hmw,∆(Z+) ≤ C2‖q‖hmw(Z+) (2.19)

holds for any function q ∈ hmw(Z+).

Proof. Denote the forward shift operator by Eq(x) = q(x+ 1). We start by noting the useful relation

a−k‖
√

xkq‖2
l2w
= ‖Ekq‖2

l2w
.

Expanding Ek = (I +∆)k in binomial terms yields

‖Ekq‖2
l2w
=

∑
x≥0

(
k∑
j=0

(
k
j

)
∆jq(x)

)2
w(x)

≤

∑
x≥0

k∑
j=0

(
k
j

)2 k∑
j=0

(
∆jq(x)

)2
w(x) ≤ 4k‖q‖2

hkw,∆
.

Summing this for k = 0 . . .m gives the first boundwith (say) C−11 = 2
m+1. The second boundwith C2 = 2m+1 can be proved

in exactly the same way, expanding∆k = (E − I)k instead. �

The Sobolev-spaces generated by ∆ are sometimes more convenient to work with and are perhaps more natural
analogues to the standard continuous Sobolev-spaces. In Section 2.1 we defined the modified backward difference operator
∇̄p(x) ≡ p(x − 1) − p(x) with the exception of ∇̄p(0) ≡ −p(0). Interestingly, there is no uniform (w.r.t. a) analogue of
Proposition 2.3 for this operator. As a counter-example we note that the unit pulse at x = 0, i.e. p(x) = 1 if x = 0 and zero
otherwise, yields ‖∇̄p‖2

l2w
= (1 + a) exp(−a) whereas ‖p‖2hmw = exp(−a) for any m. Thus, any bound on ∇̄ (or ∇) must be

non-uniformwith respect to a. In spite of this we prove the following partial result in this direction which will be helpful in
order to bound a certain Sturm–Liouville operator to be introduced shortly.

Proposition 2.5. The map F : hm+2w (Z+)→ hmw(Z+) defined by F(q) = x/a · ∇q is continuous. Furthermore, if a ≥ 1, then the
continuity is uniform with respect to this parameter.

Proof. Split the operator according to F(q) = x/a · q − x/a · E−1q, where E−1 is the backward shift operator (note
that the convention q(−1) = 0 is not needed here). By definition the former map is continuous between hm+2w and
hmw , although not necessarily uniformly so. Under the assumption a ≥ 1, we expand for some constants Ak and Bk,
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x2 = (x− k)(x− k− 1)+ Ak(x− k)+ Bk. Then

a−k‖
√

xk x/a · q‖2
l2w
= a−(k+2)‖

√
xk+2 + Akxk+1 + Bkxk · q‖2l2w ,

and the bound is uniform with respect to a. As for the operator x/a · E−1, we proceed similarly for k ≥ 1,

a−k‖
√

xk x/a · E−1q‖2
l2w
= a−(k+2)

∑
x≥0

(x+ 1)k(x+ 1)2q(x)2w(x+ 1)

= a−(k+1)
∑
x≥0

(
xk+1 + Akxk + Bkxk−1

)
q(x)2w(x).

A similar strategy for k = 0 establishes that in fact, x/a · E−1 : hm+1w (Z+) → hmw(Z+) is continuous (and uniformly so if
a ≥ 1). �

In contrast to Propositions 2.3 and 2.5, we note that by expanding∆m = (E − I)m into binomials and using the triangle
inequalityweget‖∆mp‖l2 ≤ 2

m
‖p‖l2 . Incidentally, this explainswhy theunweighted Sobolev-spaces h

m cannot be generated
by∆. A slight generalization of this fact will later be useful to bound the regularity of general master operators:

Proposition 2.6. The maps ∇̄ : hm(Z+)→ hm(Z+) and∆ : hm(Z+)→ hm(Z+) are continuous.
Proof. We only consider the result for∆ since the proof of the other case is similar. By writing∆ = E− I it suffices to prove
the boundedness of the forward shift operator E. Define q̄(x) = q(x) except for q̄(0) ≡ 0 and note that by inspection,

‖

√

xkEq‖l2 = ‖
√
(x− 1)kq̄‖l2 = ‖

√
xk − kxk−1q̄‖l2 ≤ ‖

√

xkq‖l2 ,

with the exception of the trivial case k = 0. �

2.3. Charlier approximation

We now let Can (x) denote the normalized nth degree Charlier polynomial [24] with parameter a > 0. These polynomials
form an orthonormal set of functions with respect to the l2w-product; (C

a
n , C

a
m)w = δnm. We write XN for the span of the

(Charlier-) polynomials of degree≤ N and define πN as the orthogonal projection onto XN associated with (·, ·)w .
The normalized Charlier polynomials satisfy the recurrence
Ca0 (x) ≡ 1,

Ca1 (x) ≡
a− x
√
a
,

Can+1(x) =
n+ a− x
√
a(n+ 1)

Can (x)−
√

n
n+ 1

Can−1(x). (2.20)

There is a also a Charlier difference equation,

SCan (x) := −w
−1(x)∇

[
w(x)∆Can (x)

]
=
n
a
Can (x), (2.21)

where the Sturm–Liouville operator S can be expanded as

Sp =
x
a
∇p−∆p. (2.22)

Interestingly, this is in fact the dual to the birth–death operator (2.9). Charlier’s polynomials are compatiblewith the forward
difference operator in the sense that

∆Can (x) = −
√
n/a · Can−1(x). (2.23)

As is well-known in Sturm–Liouville theory, the approximation properties of orthogonal functions depend crucially on
the regularity of the corresponding Sturm–Liouville operator. This is the motivation for our interest in Propositions 2.3 and
2.5 since they immediately yield (cf. the expanded form (2.22) of the operator S),

Lemma 2.7. The operator S : hm+2w (Z+)→ hmw(Z+) is continuous and thus bounded. If a ≥ 1 is assumed, then the continuity is
uniform with respect to this parameter.

Recall now the summation by parts formula in the following form:
N∑
x=0

p(x)∆q(x) = p(N)q(N + 1)− p(−1)q(0)−
N∑
x=0

∇p(x)q(x), (2.24)

where usually we will have that both boundary terms vanish. The following lemma relates the coefficients of an orthogonal
expansion in terms of Charlier polynomials with the Sturm–Liouville operator S.
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Lemma 2.8. Let p ∈ hmw(Z+). Then

(m even) (p, Can )w = (a/n)
m/2 (Sm/2p, Can)w , (2.25)

(m odd) (p, Can )w = −(a/n)
m/2 (∆S(m−1)/2p, Can−1)w . (2.26)

Proof. In view of (2.21) we get

(p, Can )w = −
a
n

(
p,∇

[
w∆Can

])
.

Summation by parts then yields in turn

=
a
n

(
∆p, w∆Can

)
= −

a
n

(
∇ [w∆p] , Can

)
=
a
n

(
Sp, Can

)
w
.

Ifm is even, repeating this procedure a total ofm/2 times concludes the proof of (2.25). For the odd case we continue from

(a/n)(m−1)/2
(
S(m−1)/2p, Can

)
w
= −(a/n)(m+1)/2

(
S(m−1)/2p,∇

[
w∆Can

])
= (a/n)(m+1)/2

(
∆S(m−1)/2p,∆Can

)
w
.

Using (2.23) now produces (2.26). �

Theorem 2.9. For any nonnegative integer m, there exists a positive constant C depending only on m and a such that, for any
function p ∈ hmw(Z+), the following estimate holds

‖πN−1p− p‖l2w(Z+) ≤ C(a/N)
m/2
‖p‖hmw(Z+). (2.27)

If in addition, a ≥ 1 is assumed, then C depends only on m.

Proof. Expanding any function p ∈ l2w in terms of Charlier polynomials, we readily get

‖πN−1p− p‖2l2w =
∑
n≥N

p̄2n,

where, providedm is an even integer, we have by Lemma 2.8 that

p̄n = (p, Can )w = (a/n)
m/2 (Sm/2p, Can)w .

Hence,

‖πN−1p− p‖2l2w ≤ (a/N)
m
∑
n≥N

(
Sm/2p, Can

)2
w
≤ (a/N)m‖Sm/2p‖2

l2w
.

Lemma 2.7 thus concludes the even case. When m is an odd integer we proceed similarly, using instead the odd version of
Lemma 2.8. �

Theorem 2.9 is reminiscent of results for continuous approximations. See for example Theorem 12.1 in [3] (p. 289) for
approximating continuous functions over R+ by Laguerre polynomials. Worth noting with the continuous theory is the
technical need for an additional hierarchy of Sobolev-spaces (cf. equation 12.6 in [3], p. 288). This can be avoided completely
in the present case thanks to Lemma 2.4.
We are now in the position to consider approximation in stronger norms. The following lemma makes this possible

although we would like to point out that the given bound is very weak and can easily be improved upon. It seems, however,
that such improvements only complicate what follows.

Lemma 2.10. For a constant C depending only on m,

‖Can‖hmw(Z+) ≤ C max(1, n/a)
m/2. (2.28)

Proof. It is easier to prove this using the norm ‖ · ‖hmw,∆(Z+). From (2.23) we immediately get

‖∆kCan‖
2
l2w
=
nk

ak
≤
nk

ak
.

Summation yields ‖Can‖hmw,∆ ≤
√
mmax(1, n/a)m/2 and the bound follows. �

This ‘‘smoothness’’ of the basis polynomials yields the following generalization of Theorem 2.9:
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Theorem 2.11. For any nonnegative integers k and m, k ≤ m, there exists a positive constant C depending only on m and a such
that, for any function p ∈ hmw(Z+), the following estimate holds

‖πN−1p− p‖hkw(Z+) ≤ C(a/N)
m/2max(1,N/a)k/2‖p‖hmw(Z+). (2.29)

Again, C depends only on m if a ≥ 1 is assumed.

Proof. Again it is convenient to construct the proof in the uniformly equivalent norm‖·‖hmw,∆(Z+). The case k = 0 corresponds
to Theorem 2.9 and we proceed by induction, assuming that (2.29) holds for some k. Split the error according to

‖πN−1p− p‖hk+1w,∆
≤ ‖πN−1p− p‖l2w + ‖πN−1∆p−∆p‖hkw,∆ + ‖∆πN−1p− πN−1∆p‖hkw,∆

≤ C1(a/N)m/2‖p‖hmw,∆ + C2(a/N)
(m−1)/2−k/2

‖∆p‖hm−1w,∆
+ ‖∆πN−1p− πN−1∆p‖hkw,∆ , (2.30)

where Theorem 2.9 and the induction hypothesis have been used. Evidently, in this normwe have that ‖∆p‖hm−1w,∆
≤ ‖p‖hmw,∆ ,

and so we focus on the last term. Writing as before

p =
∑
n≥0

p̄nCan ,

we readily obtain

∆πN−1p =
N−1∑
n=0

p̄n∆Can and πN−1∆p =
N∑
n=0

p̄n∆Can .

The last term in (2.30) is therefore

‖p̄N∆CaN‖hkw,∆ ≤ |p̄N |‖C
a
N‖hk+1w,∆

≤ C3|(p, CaN)w|max(1,N/a)
(k+1)/2,

where Lemma 2.10 was used. By Lemma 2.8, Cauchy–Schwarz’s inequality, and Lemma 2.7 this becomes

≤ C4(a/N)m/2max(1,N/a)(k+1)/2‖p‖hmw,∆ ,

finishing the induction step. �

In otherwords, the cost formeasuring the error in the stronger norm ‖·‖hkw(Z+) is determined by the regularity of the basis,
a situation that again is encountered in many continuous settings (for the corresponding result for Laguerre polynomials,
see Theorem 12.3 in [3], p. 291).
We now take a look at approximation in the unweighted Sobolev-spaces hm(Z+). Define Charlier’s functions by Ĉan (x) :=

Can (x) ·w(x)
1/2 along with the space X̂N = {p(x) = q(x) ·w(x)1/2; q ∈ XN}. Evidently, these functions are orthonormal under

the usual l2-product (·, ·) and we use π̂N to denote the corresponding orthogonal projection on X̂N . The relation

π̂Np = w(x)1/2πN
(
p(x) · w(x)−1/2

)
(2.31)

is immediate and we make the crucial observation that the map p → w1/2p is an isomorphism between hmw and h
m. This

implies the following result.

Corollary 2.12. For any nonnegative integers k and m, k ≤ m, there exists a positive constant C depending only on m and a (or
only on m provided a ≥ 1 is given) such that, for any function p ∈ hm(Z+), the following estimate holds

‖π̂N−1p− p‖hk(Z+) ≤ C(a/N)
m/2max(1,N/a)k/2‖p‖hm(Z+). (2.32)

This result implies that an efficient spectral representation exists and that expanding a smooth solution in the space X̂N
drastically may reduce the number of degrees of freedom when compared to e.g. a direct representation. Corollary 2.12 is
again related to similar results for continuous approximation; see for example [27].
There are several reasons for preferring to seek approximations to solutions of themaster equation in the space X̂N rather

than in XN . First, any Galerkin formulation of themaster equation in the inner product (·, ·)w will at best lead to convergence
in the corresponding norm ‖ · ‖l2w . In contrast, a convergent Galerkin formulation in the l

2-product will of course imply the
existence of error estimates in the much stronger l2-norm. Second, solutions in XN are not probability distributions and
statistical functionals of interest, such as the mean and variance, can therefore not be computed.

2.4. Conservation of probability

Unfortunately, the projection π̂N is not sufficiently conservative for our present purposes. The reason is that it does not
preserve the probability mass; in general we have that (1, π̂Np) 6= (1, p) = 1. For the projection to be conservative we need
to somehow enforce the preservation of total probability. We therefore consider the projection π̂0Np = pN which for some
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Lagrange multiplier λ satisfies

(q, pN − p)+ λ(f (q), 1) = 0
(1, pN − p) = 0

}
for ∀q ∈ X̂N , (2.33)

where f is a suitable nonzero linear function to be determined. To analyze this projection, we first note that, regardless of
the norm,

‖π̂0Np− p‖ ≤ ‖π̂
0
Np− π̂Np‖ + ‖π̂Np− p‖ (2.34)

and that as consequences of (2.33),

π̂0Np− π̂Np =
N∑
n=0

(p̃n − p̄n)Ĉan = −λ
N∑
n=0

(f (Ĉan ), 1)Ĉ
a
n , (2.35)

(1, π̂Np− p) = −(1, π̂0Np− π̂Np) = λ
N∑
n=0

(f (Ĉan ), 1)(Ĉ
a
n , 1), (2.36)

where p̃n and p̄n are the coefficients produced by π̂0N and π̂N , respectively. The l
2-deviation between π̂0N and the orthogonal

projection π̂N is therefore generally given by

‖π̂0Np− π̂Np‖
2
l2 = λ

2
N∑
n=0

(f (Ĉan ), 1)
2. (2.37)

For the traditional Lagrangian choice f (q) = q, (2.35) and (2.36) can be combined into

‖π̂0Np− π̂Np‖
2
l2 =

(1, π̂Np− p)2

N∑
n=0
(Ĉan , 1)2

. (2.38)

However, this projection is a somewhat inconvenient choice in a Galerkin formulation of the time-dependent master
equation. Modifying all frequencies Ĉan is more complicated to implement and does not yield a much smaller error than
modifying the lowest frequency Ĉa0 alone. This corresponds to the choice f (q) = π̂0q and satisfies (from (2.35) and (2.36))

‖π̂0Np− π̂Np‖
2
l2 =

(1, π̂Np− p)2

(Ĉa0 , 1)2
. (2.39)

Although the error (2.39) is slightly larger than (2.38), it is found experimentally that Ĉa0 carries more mass than the rest
of the modes. Consequently, the sum in the denominator of (2.38) is replaced by the largest term so that in practice the
difference is not critical. Remarkably then, using the ‘‘tau-method’’ [22], or what amounts to the same thing, making the
choice f (q) = (ĈaN , q)Ĉ

a
N , cannot be recommended. The corresponding deviation has the same appearance as (2.39), but

with the denominator replaced by (ĈaN , 1)
2. Since themass of ĈaN is smaller than that of Ĉ

a
0 , this method performsworse than

the suggested projection.
Another feature of the choice f (q) = π̂0q is that a reasonably sharp error estimate in the l1-norm is easily obtained. By

inspection Ĉa0 is positive everywhere so that (1, Ĉ
a
0 ) = ‖Ĉ

a
0‖l1 . Hence from (2.34)–(2.36),

‖π̂0Np− p‖l1 ≤ |(1, π̂Np− p)| + ‖π̂Np− p‖l1 ≤ 2‖π̂Np− p‖l1 . (2.40)

2.5. Stability

The Galerkin approximation to (2.2) that we shall now analyze reads as follows (compare (2.33)): find pN ∈ X̂N such that

(q, ∂pN/∂t)+ λ(π̂0q, 1) = (q,MpN)
(1, ∂pN/∂t) = 0

}
for ∀q ∈ X̂N . (2.41)

SinceM generally is unbounded, indefinite and non-symmetric with non-orthogonal eigenvectors, we cannot possibly hope
to capture any convergence properties of (2.41) by adhering to standard energy estimates. The partial results we present in
this section are instead based on observations due to van Kampen [23, Ch. V] and Theorem 2.1. We will attempt to make it
reasonable to believe that (2.41) is stable in the l1-norm so that convergence follows from the Lax–Richtmyer equivalence
theorem.
We first write (2.41) in the equivalent form

∂pN
∂t
= π̂0NMpN , (2.42)



S. Engblom / Journal of Computational and Applied Mathematics 229 (2009) 208–221 217

where the representation

pN(x, t) =
N∑
n=0

cn(t)Ĉan (x) (2.43)

is implicitly understood.
For a not necessarily positive or normalized pN , let UN(t) denote the sum of the positive elements,

UN(t) ≡
∑
x≥0

pN(x, t)+ =
∑
x∈ξ+(t)

pN(x, t), (2.44)

and similarly for VN(t), the sum of the negative elements. A crucial property of the master operator is that it preserves the
probability mass and, since π̂0N is used rather than π̂N , this property holds true for π̂

0
NM as well. Thus,

UN(t)+ VN(t) = constant. (2.45)

The time derivative of UN(t) exists between the events when pN(x, t) changes sign for some x. In such intervals we have
that

U ′N(t) =
∑
x∈ξ+(t)

π̂0NMpN =
∑
x∈ξ+(t)

MpN +
∑
x∈ξ+(t)

[
π̂0NMpN −MpN

]
=: AN(t)+ BN(t), (2.46)

where from (2.2),

AN(t) =
∑
x∈ξ+(t)

R∑
r=1

[
x ≥ −N−r

]
wr(x+ Nr)pN(x+ Nr , t)− wr(x)pN(x, t), (2.47)

and where the notation [f ], with f a logical expression, is used according to [f ] ≡ 1 if f and≡ 0 otherwise.
We always have that AN(t) ≤ 0. To see why, note that the sum over x ∈ ξ+(t) in (2.47) is built up by some of the positive

elements ofwrpN minus all of its positive elements.
In the analytical casewhen BN vanishes this constitutes a second proof of Theorem2.1, since ‖p‖l1 = U−V and, by (2.45),

−V ′ = U ′. When for some x, p(x, t) changes sign, then although the derivative does not exist, the l1-norm still depends
continuously on time and consequently it cannot increase.
For the numerical investigation to follow, we see that

d
dt
‖pN‖l1 = 2AN(t)+ 2BN(t), (2.48)

except for those points in timewhere a change of sign occurs.Wewould like to claim that for N sufficiently large, |AN | ≥ |BN |,
so that the l1-norm of the numerical solution does not increase.
Although perhaps not a general proof of the claim, themotivation is that π̂0NMpN approachesMpN when N grows so that

in principle BN can be made arbitrarily small. We are then clearly interested in the cases when AN is zero, since this could
induce a growth of the l1-norm. Three cases are trivial: either one of ξ+, ξ− := {x; pN(x, t) < 0} or ξ 0 := {x; pN(x, t) = 0} is
identical to Z+ so that pN is either positive, negative or zero. In all these cases BN vanishes as well since the mass-preserving
projection is used — hence the l1-norm must stay constant. Two cases force a closer examination of the master operator:
(i) ξ 0 is empty while ξ+ and ξ− are not, and, (ii) all the sets ξ+, ξ− and ξ 0 are non-empty.
Case (i) Relabel the states so that pN is divided into a positive and a negative part. Then we have

M =

[
M++ 0
0 M−−

]
, (2.49)

for otherwiseAN cannot be zero (the zero in the lower left corner stems fromusing−V ′ = U ′ andwriting down the analogues
of (2.46) and (2.47) for VN ). HenceM is decomposable (see (2.6)) and can be excluded from the present context since it does
not describe a fully interacting chemical system but rather contains two isolated systems. Again, these considerations are
formally only valid for a finite number of states (see the discussion in the end of Section 2.1).
Case (ii) Split the states of pN into a positive, an all-zero, and a negative part, respectively. Accordingly,

M =

[
M++ M+0 0
0 M00 0
0 M−0 M−−

]
. (2.50)

That is,M is a splitting (see (2.7)) and can be excluded from the discussion for the same reason as above.
In conclusion then, AN can only be zero when BN is simultaneously zero (indicating a constant l1-norm of pN ). If this is

not the case, then we have that AN < 0 and BN tends to zero with increasing N . To look at the possible dependence of the
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magnitudes of these two terms, we write out the derivative of the l1-norm explicitly (by expanding U ′N − V
′

N as in (2.46)),

d
dt
‖pN‖l1 =

∑
x≥0

sgn pN MpN︸ ︷︷ ︸
2AN

+

∑
x≥0

sgn pN
[
π̂0NMpN −MpN

]
︸ ︷︷ ︸

2BN

, (2.51)

where sgn q is zero for q = 0. It seems reasonable to believe that there are estimates of the form 2|AN | ≥ κ(M)‖MpN‖l1 and
2|BN | ≤ CN‖MpN‖l1 , where κ(M) is a constant depending on the structure of themaster operator andwhere CN tends to zero
whenN increases. Under these assumptions, the derivative of the l1-norm is≤ (CN−κ(M))‖MpN‖l1 which forN sufficiently
large is less than or equal to zero. This argument does not prove l1-stability unless the indicated estimates are first proved
but it does, however, shed some light on the expected stability properties of the Galerkin scheme (2.41). Also, the crucial
argument in this discussion is the relation (2.45) which indicates why a mass-preserving projection is a favorable choice.

3. Numerical experiments

In this section the feasibility of the proposedmethod is demonstrated by numerically solving three differentmodels. Two
systems with known solutions are used to illustrate the application of the theory and the numerical convergence. The third
model is two-dimensional without known solutions and models the reaction between two species.
The method was implemented using Gauss–Charlier quadratures [11];∑

x≥0

f (x)
ax

x!
e−a =

n∑
j=1

f (xj)wj + Rn, (3.1)

Rn = ann!
f (2n)(ξ)
(2n)!

, ξ ∈ (0,∞). (3.2)

The xj’s are the roots of Can (x) and the weights can be computed according to the formula

wj ≡ −
(an)−1/2

Can−1(xj) · d/dx Can (xj)
. (3.3)

In all experiments, the mass-preserving projection was used and the Matlab ODE-solver ode15s was employed for the
evolution in time of the Galerkin spectral coefficients.

3.1. Application of the theory in one dimension

In order to highlight the application of the theory developed in Sections 2.2 and 2.3we first consider two one-dimensional
models with known solutions. The first is the linear birth–death problem (2.8) with time-dependent solution given by (2.11)
and the second is the following set of reactions characterizing spontaneous bimolecular decay:

∅
k
−→ X

X + X
νx(x−1)
−−−−→ ∅

}
. (3.4)

The master equation for this model can be written compactly as

∂p(x, t)
∂t

= −k∇̄p(x, t)+ ν
[
∆2 + 2∆

]
[x(x− 1)p(x, t)], (3.5)

where again the bar over the backward difference operator ∇ expresses the convention that p(−1, t) = 0. The full time-
dependent solution to (3.5) is not known but the steady-state solution can be expressed in terms of the modified Bessel
function In [23, X.2]. Let a =

√
k/ν and define C =

√
2I1(2
√
2a). Then

p(x,∞) = C−1
ax

x!
Ix−1(2a) (3.6)

is the exact stationary solution to (3.5). The expectation value m and the variance v can now be determined from standard
asymptotics [1]:

m(∞) ∼

√
k
2ν
+
1
8
+ O

(
a−1

)
, (3.7)

v(∞) ∼
3
4

√
k
2ν
+
1
16
+ O

(
a−1

)
. (3.8)

In order to apply the theory of Section 2.2 we first note that the master operator in (2.9) is bounded when regarded as an
operator hm+2 → hm. We already know from Proposition 2.6 how the backward- and forward differences behave and it is
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Fig. 3.1. Errors of the scheme applied to (2.8) (solid, time-average error) and (3.4) (dashed, error at steady-state) in different norms.

clear by definition that p→ xp is bounded as a map hm+2 → hm. The situation is similar in (3.5). Here the quadratic factor
x(x− 1) decreases the regularity by four degrees so that the master operator (3.5) is bounded as a map hm+4 → hm.
The analysis thus conducted is very general. Firstly, note that the reaction steps are always finite so that the master

equation can always be written as a linear combination of terms that are finite compositions of difference operators.
Secondly, atomic propensities that follow from combinatorial arguments are always low order polynomials, easily
bounded as shown above. More general non-atomic propensities are also common. For instance, when quasi steady-state
approximations are used for the derivation of a reduced model, the result is a set of rational functions involving roots of
polynomials. These expressions can generally be majorized by low order polynomials and the resulting master operator can
again be bounded as outlined above.
The parts of the analysis thatwe have to leave in amore incomplete state are the stability of the scheme and the regularity

of the solution. The stability was discussed in Section 2.5 and we will simply assume that the scheme is stable. Moreover,
regularity estimates are trivially available here sincewedoknow the exact solutions. In the general case, however, conditions
on the master operator in D dimensions for a certain degree of regularity of the solution seem very difficult to specify.
The numerical experiments were conducted as follows. We let the parameters be defined by [k, µ] = [1, 10−2] in (2.8)

and [k, ν] = [1, 5 × 10−5] in (3.4). This makes the expectation value in steady-state to be m = 100 very closely for both
models. For (2.8), we start at t = 0 with a Poisson distribution with mean 75 and evolve the system until time t = 104.
By comparing the solution thus obtained to the exact solution, the time-averaged error was determined. For the non-linear
problem (3.4), since the solution is known at steady-state only, a Poisson distribution of mean 100 was used as the initial
data. Again the system was evolved until t = 104 and the solution at this point was considered to be in steady-state. For
both problems, the parameter awas taken to be 100.
In Fig. 3.1, errors in various measures are shown and it is clear that the convergence is exponential in the order N of

the scheme. The slightly larger error for the non-linear problem (3.5) can be explained by the lesser regularity of both the
solution and the corresponding master operator.

3.2. A two-dimensional example

As one of the simplest possible examples involving a reaction between two species X and Y we consider the following
model:

∅
k
−→ X

X
µx
−→ ∅

∅
k
−→ Y

Y
µy
−→ ∅

X + Y
νxy
−→ ∅


. (3.9)

The parameters are [k, µ, ν] = [1, 2× 10−3, 10−3] so that the solution in steady-state is a symmetric distribution of mean
about 32 in both variables with a strong negative correlation. Since an increase in one of the variables implies a decrease in
the other by means of the bimolecular reaction, the negative correlation is expected from first principles.
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Fig. 3.2. Errors of the scheme applied to (3.9) in different norms versus the total number of degrees of freedom.

The master operator for this problem can be written in the notation used previously,

M = −k[∇̄x + ∇̄y] + µ[∆xx+∆yy] + ν[∆x +∆x∆y +∆y]xy. (3.10)

For this problemwe started the simulation with a two-dimensional Poisson distribution of mean 20 in both coordinates and
evolved the system until time t = 4000. The parameter a was taken to be 20 for this case and a very high order reference
solution was constructed using a more stringent error tolerance for the time-stepper. In Fig. 3.2 the time-averaged error is
displayed in different norms. The exponential convergence is clearly visible.
In order to fully conclude the feasibility of the proposed spectralmethodwewould have to construct in detail a tensorized

generalization of the spaces developed in Section 2.2. This is beyond the scope here but we offer a few hints as to how to
this can be achieved. Notice first that the argument in the proof of Proposition 2.6 holds with

√
xk E replaced with (say)√

xk1yk2 ExEy. One therefore obtains that for instance the mapping p→ ν∆x∆yxy p as found among the terms in (3.10) can
be bounded as a map between Sobolev-spaces of functions over Z2

+
. In this way, all master operators formed from atomic

propensities can readily be bounded in a tensor product version of the spaces developed in Section 2.2.
In addition, it seems very likely that there are highly general conditions for when the regularity of the solution remains

at least at the same degree as the initial data during any interval (finite or infinite) of integration. Under the assumption of
stability we then expect exponential convergence of the proposed scheme.

4. Conclusions

The master equation is a stochastic description of general discrete dynamical systems and is equivalent to the Markov
assumption. It applies in particular to chemical reactionswhere the system is described by counting the number ofmolecules
of each kind. Stochastic descriptions are preferred formany chemical systems of interest; examples can be found inside living
cells where the effects of stochasticity are important.
We have proposed a novel spectralmethod for themaster equation based on Charlier functions. Key features include high

accuracy even at a relatively low resolution per dimension and convergence in the full semi-infinite discrete state–space.
Stability and convergence is illustrated through numerical experiments suggesting that the scheme is effective when the
dimensionality of the problem is not too high. The curse of dimension is of course still an issue, but a spectral expansion is
a more efficient representation than is the full solution.
After this work was completed, the author became aware of a similar method for polyreaction kinetics devised by

Deuflhard and Wulkow [7,28,29]. Their original scheme uses the basis {C̃an (x)} := {C
a
n (x) · w(x)} and determines the

coefficients by taking the l2-product with {Can (x)} in a Petrov–Galerkin formulation. The setting is one-dimensional and
the model problem treated is reminiscent of the birth–death problem (2.8). However, when applied to the master equation
of dimensionality higher than one, their scheme does not seem to be stable with themethod of lines discretization. A related
recent work directly aimed at the master equation is found in [6].
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