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Abstract 

Security was not considered when current wireless sensor nodes were designed. As a result providing high level of security on 
current WSNs platforms is unattainable, especially against attacks based on key resolving and node compromise. In this paper we 
scrutinize the security holes in current WSNs platforms, and compare the main approaches to implementing the cryptographic 
primitives used to provide security services for these platforms, in terms of security, energy, and time efficiency. To secure these 
holes and provide more efficiency we propose a custom hardware platform for WSNs. The choice of cryptographic primitives for 
our suggested platform is based on their compatibility with the constrained nature of WSNs and their security status. We also 
discuss the most efficient configurations and implementation methodologies of these primitives, and review their specialized 
implementations for WSNs in recent literature. Based on that, we provide a hardware implementation of a crypto-processor 
using Very high speed integrated circuit Hardware Description Language (VHDL). Experimental results using synthesis for 
Spartan-6 low-power FPGA shows that the proposed protocol outperforms related work in terms of computation time and energy 
consumption. 

Keywords: Wireless Sensor Networks; Security Trusted Platform; Advanced Encryption Standard; Elliptic Curve Cryptography; Secure Hashing 
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1. Introduction

The future of wireless sensor networks (WSNs) is promising; they are being deployed in many real-world 
applications, in the context of Ubiquitous Computing, Pervasive Computing, and Ambient Intelligence. It is 
expected that new WSNs applications will have greater share of the embedded systems market, with a growth rate of 
up to 50% per year [1]. These types of applications force the need of securing WSNs, which is very difficult to 
realize, due to scarceness of energy, constrained nature of the sensor platforms, openness of wireless 
communication, and the intensive mathematical computations of cryptographic primitives. Because of these unique 
challenges, the security of these networks became a very hot research field. 
 Many researchers proposed mechanisms to provide security for WSNs in literature. Regardless of the efficiency of 
these mechanisms, they will not provide sufficient security if they are implemented on top of unsecure platforms. 
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The current WSNs nodes are being made using “off the shelf” components designed for other environments. Secure 
design for unique WSNs environment was not considered when they were manufactured.  
Generally, three types of cryptographic primitives are used to provide security services, public key primitives, 
private key primitives, and hashing functions. Efficient implementations of these primitives for WSNs have been 
addressed by many researchers in the literature. These implementations can be done either in software or hardware. 
In this paper we review both approaches and discuss their security and efficiency. We also propose a custom 
hardware platform that guarantees maximum security and energy efficiency. Being closed and fully separated from 
operating system helps to avoid the threats and security holes in the operating system security. In addition, 
implementing it in hardware is more secure and energy efficient. The choice of cryptographic primitives for our 
suggested platform is based on their compatibility with the constrained nature of WSNs and their security status. 
The work in this paper can be seen as an initial step in redesigning the wireless sensor node from scratch with 
security as a main design goal. 
The rest of the paper is organized as follows; in Section 2, we review previous approaches to WSNs security, their 
advantages, disadvantages, and security holes. Our proposed custom hardware platform for WSNs is presented in 
Section 3. In Section 4, we overview the most appropriate cryptographic primitives for WSNs, discuss their security 
status, and review their specialized implementations for WSNs in recent literature. Experimental energy and time 
results for implementing the best architectures for the selected primitives in hardware are provided in section 5.  
Finally, the conclusion and directions of our future work are presented in Section 6. 

2. Approaches to WSNs Security 

To implement cryptographic algorithms researchers followed two approaches, software implementations, and 
hardware implementations. The main advantage of software implementations is their flexibility, because changing 
them doesn’t require any modification in the hardware architecture of wireless sensor nodes. However, these 
implementations have large processing overhead on weak WSNs processors. Table 1 shows the energy consumption 
and execution time of public key software implementations on Mica2 wireless node [2]. The relatively high 
processing time could result in missing some events or not reporting them in timely manner. It also affects the 
execution of other programs running on the node, and most importantly it consumes a large amount of energy.  

 
Table 1: Energy and time results of public key software implementations 

Operation Key 
generation 

ECDSA  
signature 

ECDSA  
 verification 

D-H  
key exchange 

El-Gamal  
encryption 

El-Gamal  
decryption 

Time (s) 6.74 6.88 24.17 17.28 24.07 17.87 
Energy (mJ) 101.1 103.2 362.6 259.2 361.1 268.1 

 
Software implementations are not only less efficient in terms of energy and time, but also they are less secure. As 
Fig. 1(a) illustrates, the security of software implementations is dependent on the security of the operating system 
and the underlying wireless node hardware platform, both of them were not designed to be secure. 
Because software implementations are run on top of the operating system and share memory space with other 
running programs, they are vulnerable in terms of ease of modification and compromising keys. A clear example of 
such attacks in literature is the Cache-Collision Timing Attacks [3] on software implementations of Advanced 
Encryption Standard (AES) algorithm. This attack is based on exploiting characteristics of AES table lookups. It 
requires direct observation of memory before and after encryption by running the attacking process and AES 
algorithm on the same operating system. 
Compared to software implementations of encryption algorithms, hardware implementations are not only much 
faster, but they also consume less energy up to a factor of 10-3 [2].  Some researchers tried to use “off the shelf” 
hardware components to provide encryption for WSNs. like the use of Chipcon CC2420 transceiver chip in [4]. This 
chip includes  hardware implementation of The AES algorithm, and the use of commodity Trusted Platform Module 
(TPM) chip for RSA public key encryption in [5]. In both cases, the communication between the security chip and 
other wireless node hardware components (i.e. the data bus between the TRM chip, controller and external memory) 
is done in plaintext. Spying on this communication will reveal valuable data such as the encryption keys. 

Other attacks on hardware like cold boot attack [6] can also be used to get the content of the memory and resolve 
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the encryption keys, because the keys are stored in plaintext. Software attacks through operating system are possible 
as well, because the keys are accessible by the operating system in plaintext. Fig. 1 (b) illustrates the security view 
of these implementations.  

 

 
Fig. 1. (a) Software cryptography over unsecure platform and OS; (b) Hardware cryptography over unsecure platform and OS 

3. A Custom Hardware Platform for WSNs. 

In order to guarantee maximum security and energy efficiency for WSNs, we suggest a custom hardware platform 
that provides hardware-based key generation, storage, and encryption without any involvement from the operating 
system. Being closed and fully separated from operating system helps to avoid the threats and security holes in the 
operating system security. In addition, implementing it using hardware is more secure and energy efficient.  
Our suggested hardware secure platform for WSNs is shown in Fig. 2. The only part of data that can be in plaintext 
is the data need to be processed inside the main processor, part of the internal memory, and the input data from 
sensors through the analog to digital converter (ADC). Pushing the ADC inside the processor chip enhances 
security, but this could be impractical. The confidentiality of input data from sensors is not important, because it is 
already accessible for everyone in the environment in the analog form. All the other data outside the scope of the 
main processor chip is encrypted, this include the external memory, transceiver, communication between WSN 
components on board, and the traffic in the wireless medium.  
 

 
Fig. 2: Custom secure hardware platform for WSN 

 
The overhead of decrypting data for aggregation and then encrypting it again has been addressed by researchers. 
Some of them suggested schemes based on homomorphic encryption, in which the encrypted data can be aggregated 
without the need of decryption, like the concealed data aggregation scheme in [7]. However, homomorphic 
encryption is malleable by design, and it’s not suited for secure data transmission [8]. Our suggested scheme is more 
efficient in this matter, because it essentially minimizes the overhead of encryption by the use of efficient hardware 
implementations. This will make it more feasible to decrypt the data, aggregate it, and then encrypt it again. Sending 
all copies of encrypted data without aggregation is still a valid option. A comprehensive study of the packet size, the 
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trade-off between the cost of decryption/encryption verses cost of transmitting data without aggregation has to be 
done to specify the threshold upon which we can decide if it is feasible to aggregate or not. 
 

 
Fig. 3: Security View of Proposed Scheme. 

 
The security view of our scheme is shown in Fig. 3. Our scheme can be seen as the first step to redesign hardware 
and software components of the WSNs from scratch with the security as main design goal. The additional design job 
and additional hardware for security platform will increase in manufacturing cost. We argue that a standardized 
robust design that is reliable enough to be used in a mass production manner is capable of reducing this cost.  

4. Cryptographic Primitives review 

The selection of cryptographic primitives for our proposed hardware platform should comply with WSNs 
constraints. The implementation of these primitives should be optimized for energy per encryption, static power 
consumption, and hardware area. Speed and throughput were the optimization goals for many literature 
implementations, but they are not considerable for WSNs because of their sparse and loose real-time 
communication. In this section, we will discuss the most efficient configurations and implementation methods of 
these primitives, their security status, and review their specialized implementations for WSNs in recent literature. 

4.1.  Symmetric primitives 

Many symmetric algorithms exist in literature, the most efficient and secure ones are the AES finalists selected in 
second AES conference [9] to replace Data Encryption Standard (DES). The security and efficiency of AES 
finalists’ algorithms has been intensively scrutinized by large number of cryptanalytic experts. In the third AES 
conference rijindael algorithm won the competition and was announced by National Institute of Standards and 
Technology (NIST) as AES algorithm. 
Many hardware architectures for AES were proposed in the literature. Loop-unrolled architectures are the fastest, 
pipelined architectures are the best in terms of high throughput. However, the energy and area requirements of these 
architectures exceed the limitations of WSNs. The best choice for small area and energy constrained 
implementations are iterated architectures. 
Two main variations between iterated architectures exist in the literature. The first one is the data-path width; 8-bit, 
32-bit, and 128-bit architectures were proposed. Following the rule of thumb, higher data-path width architectures 
will have larger area and power requirements but smaller latencies. The authors in [10] provided energy per 
encryption comparison between the three data-path width choices, implemented on UMC 0.25 micrometer 1.8v 
hardware. As Table 2 shows, although 128-bit data path has the largest area and power usage; it has the smallest 
energy consumption per encryption. 32-bit architecture has medium area and power consumption, but it’s the worst 
in terms of energy per encryption. 
 

Table 2:  Different data-path size comparison form [10]. 
 

Data-path 
width 

Area 
(gates) 

Power 
(mW) 

Clock  
cycles 

Throughput 
(Mbps) 

Energy/Enc. 
(nJ) 

8-bit 4023 1.06 160 8.1 169.6 
32-bit 7732 3.73 54 23.7 200.5 

128-bit 15980 11.61 11 116.4 127.7 
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Although 128-bit architecture has the least energy consumption per encryption; we consider the 8-bit architecture to 
be a better choice, because it’s the best in terms of area and power. As a result, it will be the best choice in terms of 
static energy consumption (energy consumed while the hardware is idle).  
The second variant between iterated architectures is the number of S-boxes used and their architecture. The 8-bit 
data-path design in Table 2 uses 2 S-boxes; and it completes one encryption in 160 cycles. The authors of [11] 
implement another 8-bit data-path architecture with one S-box. Their design has area size of 3400 gates, but it takes 
1016 clock cycles to perform one encryption. Because of that the energy per encryption for his design will be higher 
than the design with 2 S-boxes in [10]. Larger number of S-boxes is used with higher data-path widths. However, 
this will lead to an increase the area and energy, and that is not efficient for constrained WSNs.  

4.2. Hashing Functions 

Most of WSNs security protocols use encryption algorithms with cipher block chaining CBC-MAC mode to 
produce the message authentication code. This method does not require implementing a separate MAC algorithm 
but it is not secure for variable-length messages [12]. Because of that we have chosen to use a standard hashing 
algorithm to produce the MAC. Another advantage is that the hashing algorithm can be run in parallel with the 
encryption algorithm which saves computation time and energy. The two most commonly used cryptographic hash 
functions in literature are MD5 and SHA-1. However, MD5 was recently broken with an attack against it used to 
break SSL in 2008 [13]. Some theoretical weaknesses in SHA-1 were discovered in [14] [15], and two successful 
attacks were reported in 2005. As a result, it was decided that it will not be used by USA government agencies after 
2010. New security systems will be using more advanced hashing functions, such as SHA-2, or techniques that do 
not require collision resistance, such as randomized hashing [16]. NIST started a new competition to design a 
replacement for SHA-2 to ensure the long-term robustness of hash functions. The new algorithm will be given the 
name SHA-3, and it will become a FIPS standard in 2012.  
Compared to 128-bit MD5 and 160-bit SHA-1, SHA-2 has larger message digests; i.e. 256, 384, and 512-bit. This 
will increase the energy consumed for transmitting the message digest, in addition to the increase due to additional 
hardware area of implementation. There are no specialized implementations SHA-2 for WSNs in literature at this 
time; most of its current implementations are optimized for speed and throughput. 

4.3. Asymmetric primitives 

Many security mechanisms proposed for WSNs in literature avoided asymmetric primitives, because of their high 
energy and time costs, especially for software implementations. The notion of infeasibility of these primitives has 
been changed partially due to the development of new asymmetric algorithms that are more efficient than RSA [17]. 
For example, the Rabin signature algorithm [18] is very similar to RSA; its main advantage is the speed of its 
encryption and signature verification operations. A disadvantaged is the signature size, a single signature requires 
512 bits. NTRU [19] is much faster, for both encrypting and for verification operations than RSA. On the other 
hand, it also shares Rabin's scheme weakness; its signature requires 1169 bits.  
The implementation in [5] is the first recognized hardware platform that is used to provide asymmetric encryption 
for WSNs. It was based on a commodity Trusted Platform Module (TPM) chip that extends the capability of a 
standard node. Although this implementation can perform 2048 bit RSA encryption in 500ms with 11mJ of energy; 
it has many shortcomings. Firstly, RSA has a large key size; this will result in large hardware area and energy 
consumption for the implementation. Secondly, transmitting a large key on the wireless medium is so expensive in 
terms. Thirdly, storing the keys on an EEPROM makes it easy to compromise the node by resolving the keys. 
The Elliptic Curve Cryptography (ECC) [20] seems to be the most suitable asymmetric cryptographic primitive for 
WSN. The per-bit security for ECC is much more than other asymmetric algorithms. For example, the security of a 
160-bit key for ECC is equivalent to 1024 bit key of RSA [21]. This relatively small key size result in smaller 
hardware area, shorter running time, and most importantly it saves energy needed to transmit the key in wireless 
medium. The energy cost of transmitting one bit is equivalent to the energy consumed in more than thousand CPU 
cycles of a standard WSN node processor [22].  
 ECC is based on algebraic concepts related with elliptic curves over Galois Fields. These fields can be binary fields 
GF(2n) or prime fields GF(P). For low energy hardware implementations binary fields are more attractive, since the 
operations engaged are only shifts and bitwise addition modulo 2. On the other hand, implementing arithmetic in 
prime fields is less efficient due to carry propagation. The use of redundant addition can overcome this issue [23]. 
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Choosing the domain parameters of the elliptic curve is another matter of efficiency. The NIST and Securities 
Exchanges Guarantee Corporation (SEGC) proposed recommended curves and domain parameters in [21] [24]. 
Choosing a curve within a field size that is larger than 160 bits is recommended for both prime and binary fields. In 
July 2009, a 112-bit  prime field ECC case was broken using a cluster of over 200 PlayStation 3 game consoles 
within 3.5 months [25]. Before that, a 109-bit key binary field case was broken in April 2004 using 2600 computers 
for 17 months [26]. The Certicom ECC challenge in [27] classified the curves in to two levels. Level 1 curves are 
considered feasible to break, and could be solved within a few months. Level II curves are considered 
computationally infeasible. Table 3 show the curve field sizes, their symmetric equivalent strength, and level 
classification. 
 

Table 3: Security status of curves in GF(P) and GF(2n). 
 

Prime Fields GF(112) GF(128) GF(160) GF(192) GF(224) GF(256) 
Strength 56 64 80 96 112 128 
Level I I II II II II 
Broken In 2009 No No No No No 
Binary Fields GF(109) GF(131) GF(163) GF(193) GF(233) GF(239) 
Strength 47 64 80 96 112 128 
Level I I II II II II 
Broken In 2009 No No No No No 

 
 The main ECC primitive operation is the scalar point multiplication. It consists of a series of point additions and 
doublings. Point addition and doubling consists of a series of modular addition, multiplication, squaring, and 
inversion operations according to a specific coordinate system. Many projective coordinate systems were proposed 
in the literature to avoid the high cost of modular inversion that is repeated in each point addition and doubling in 
the affine coordinate system. This is accomplished by projecting the ECC points to another coordinates that replaces 
modular inversion with modular multiplications. Many new curve representations associated with coordinate 
systems are being proposed. Montgomery coordinates is the most efficient so far [28]. Table 4 shows some common 
coordinate systems and their costs in terms of number of inversions I, multiplications M, and squaring S. 
 

Table 4: Elliptic curve coordinates systems comparison. 
 

Coordinate system Doubling (I + M + S ) Addition (I + M + S) 
Affine  1I + 2M + 2S 1I + 2M + 1S 
Standard Projective 7M + 3S 12M + 2S 
Jacobian  4M + 4S 12M + 4S 
López-Dahab 2M + 4S 4M+2S 
Montgomery  2M + 4S 4M + 1S 

 
Redundant Interleaved modular multiplications [29], Barrett multiplication [30], and Montgomery modular 
multiplication [31] with Carry Save Addition are the most efficient modular multiplication algorithms proposed in 
the literature. Redundant Interleaved multipliers are reported to have some advantage over Montgomery’s in area 
and speed. However, using one carry save adder with Montgomery algorithm makes it similar to Redundant 
Interleaved multipliers in area with small advantage over higher precision [32]. Barrett multiplication and 
Montgomery multiplication have similar area and timing results [33]. 
Some specialized ECC hardware implementations for WSNs have been proposed recently. In [34], an ECC 
processor is proposed in the 163-bit binary extension field. It uses Montgomery coordinators and Shamir’s trick [35] 
to resist simple power analysis attack. The authors of [36] proposed a processor with special high speed inverter in 
affine coordinates, and with 4-bit digit-serial multiplier in 191 bit binary extension field. The processor has 25k gate 
count, 0.16 mm2 chip area on 0.13μm CMOS technology and it can perform an ECC scalar multiplication in 342k 
cycles at 10MHz.  

5. Proposed crypto-processor 

The algorithms were coded in VHDL using the ModelSim digital simulation and functional verification tool. For the 
AES algorithm we have chosen the architecture proposed in [10] with an 8-bit data-path and two S-boxes. It takes 
160 cycles to complete one encryption using this architecture. For the SHA-256 algorithm, the architecture was 
designed following the FIPS standard [37]; and it takes 80 cycles to produce the hash code of a 256 input block. The 
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elliptic curve algorithm was implemented in the 163-bit binary extension field with redundant interleaved modular 
multiplier in the Montgomery coordinate system; 80 thousand cycles are needed to compute one elliptic-curve point 
multiplication. Another 8-kB dual port memory module was added to the design for secure key storage and data 
input/output. The crypto-processor design is shown in fig. 4. 

 
Fig. 4: crypto-processor design. 

 
The energy and time results for the crypto-processor architecture using synthesizes for the Spartan 6 FPGA is shown 
in Table 5. The design consumed 4828 slices, which is 53% of the device resources. This leaves a space to add other 
components to implement a complete and secure sensor node processing unit as the one in fig 2. 

 
Table 5: Implementation results 

 Frequency (MHz) Power (mw) Clock Cycles Time (μs) Energy  (nJ) 

ECC-163 

92.67 17 

80000 967.3 16445 

AES-128 160 1.727 34.64 

SHA-256 80 0.863 38.18 
 
Compared to related work our platform outperforms other designs in terms of the achieved level of security and 
security-related energy and time consumptions, which allows implementing highly secure wireless nodes without 
affecting the node life time of the wireless sensor network significantly. 

6. Conclusion and Future Work 

In this paper, we scrutinized the security holes in current WSNs platforms, and examined the current approaches to 
implementing the cryptographic primitives used to provide security services for these platforms. We also proposed a 
custom hardware platform for wireless sensor networks to fix these holes and provide more energy and time 
efficiency. We have chosen the most suitable cryptographic primitives for our platform based on their compatibility 
with constrained nature WSNs and their security status and reviewed their efficient configurations and specialized 
implementations for WSNs in the literature. In addition, we have implemented a crypto-processor that based on the 
most suitable architectures of these primitives provided energy area and time results. 
In the future we will continue our work to implement a complete and secure wireless sensor node. This includes 
building robust security protocols and services based on the proposed hardware platform that minimizes the amount 
of energy consumption due to security related communication and processing. 
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