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A b s t r a c t - - W e  present a parallel method for matrix multiplication on distributed-memory MIMD 
architectures based on Strassen's method. Our timing tests, performed on a 56-node Intel Paragon, 
demonstrate the realization of the potential of the Strassen's method with a complexity of 4.7M 2's°7 
at the system level rather than the node level at which several earlier works have been focused. The 
parallel efficiency is nearly perfect when the processor number is the power of 7. The parallelized 
Strassen's method seems always faster than the traditional matrix multiplication methods whose 
complexity is 2M 3 coupled with the BMR method and the Ring method at the system level. The 
speed gain depends on matrix order M: 20% for M ~ 1000 and more than 100% for M ~ 5000. 

K e y w o r d s - - M a t r i x  multiplication, Parallel computation, Strassen's method. 

1 .  I N T R O D U C T I O N  

As the  hea r t  of  m a n y  l inear  a lgebra  a lgor i thms,  m a t r i x  mul t ip l i ca t ion  (MM) has  been  m a d e  more  

and  more  efficient dur ing  the  pas t  decades.  The  complex i ty  of M M  for a m a t r i x  of  o rde r  M has  

d r o p p e d  [1,2] f rom O ( M  3) for t he  t r ad i t i ona l  m e t h o d  (referred to  as the  T - m e t h o d ,  hereaf te r ) ,  

to  O ( M  2"s°7) for S t rassen ' s  m e t h o d  [3] (referred to  as the  S-method ,  hereaf ter ) ,  to  O ( M  z376) for 

t he  W i n o g r a d  m e t h o d  (a.k.a. ,  C o p p e r s m i t h - W i n o g r a d  me thod)  [4,5]. Th is  complex i ty  r educ t ion  

gives rise to  m a n y  efficient a lgor i thms  in o ther  a reas  of l inear  a lgebra:  inver t ing  a ma t r ix ,  solving 

a sy s t em of l inear  equat ions ,  compu t ing  the  eigenvalues of a m a t r i x  [6], and  ca lcu la t ing  the  

d e t e r m i n a n t  of  a ma t r ix ,  etc.  

Of  course,  the  full po ten t i a l  of these  efficient me thods  can  be real ized only  on large mat r ices ,  

which require  large machines  such as para l le l  computers .  Thus ,  des igning efficient para l le l  al- 

g o r i t h m s  for these  m e t h o d s  becomes essential .  The  para l le l i za t ion  of the  genera l  l inear  a lgebra  

rou t ines  on d i s t r i b u t e d - m e m o r y  M I M D  archi tec tures  has  achieved reasonable  success [7]. But ,  

due  to  t he  compl ica t ion  of  these  ded ica ted  MM methods ,  the  progress  has  been re la t ive ly  slower. 

In  fact,  M a n b e r  [8] in 1989 c la imed t h a t  S -me thod  canno t  be eas i ly  para l le l ized.  In  add i t ion ,  the  

W i n o g r a d  m e t h o d  has  not  been paral le l ized so far. Indeed,  the  a t t e m p t s  for the  pa ra l l e l i za t ion  
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Table 1. The methods used in our test and the naming convention. 

Local\Global S-Method BMR Ring 
Low-level coding SL BL RL 
High-level coding SH BH RH 

of the S-method have been mainly focused on shared-memory machines, such as Bailey's work [9] 
done on the Cray-2 and Cray Y-MP with no more than 8 processors, and the data-parallel SIMD 
architectures, such as work [10] done on the MasPar MP-1. Some distributed-memory MIMD 
system vendors, such as Intel for its Paragon [11], supply node-level library routines that use the  

S-method. There is, thus far, no reported work 1 on parallelizing the S-method on message-passing 
parallel systems at the system level. However, there are many efforts and resulting routines for 
parallelizing the T-method. The report, PUMMA: Parallel Universal Matrix Multiplication Algo- 
rithms [12], documented three methods including the block scattered decomposition, a variation 
of the Broadcast-Multiply-Roll (BMR) method [13,14]. A Ring method, another variation of the  

BMR method, is also used to parallelize the T-method. 
In this paper, we introduce a method to parallelize the S-method. For a comparison, we 

study six different implementations obtained by mixing three global methods (the S-method, 
BMR method, and the Ring method at the system level) and two implementations locally at the 
node level by using the T-method (one implementation uses the routine sgemm [15] coded in 
i860 assembler by Intel and the other is a home-grown routine for matrix multiplication coded 

in Fortran.) The assembler-coded methods are denoted as L-method while the Fortran-coded 
methods are denoted as H-method. Thus, these six methods are named as SH (global S-method 
and local H-method), SL (global S-method and local L-method), BH, BL, RH, and RL. By 
this set of six numerical experiments with various matrix orders and machine sizes, we focus on 
demonstrating the superiority of S-method at the system level. 

In Section 2, we describe and analyze the performance of the BMR and Ring methods. In 
Section 3, we introduce our method--the parallel Strassen's method--and describe its imple- 
mentation. In Section 4, we analyze the performance of the six different methods implemented. 
Finally, the conclusions and some future generalizations of our method are given in Section 5. 

2. B M R  A N D  R I N G  M E T H O D S  A N D  PARALLEL E F F I C I E N C Y  

Many have proposed to merge the local S-method with simpler global methods like BMR or 
Ring method. The advantage of this idea lies in its ease of implementation, while the shortcomings 
are that: 

(1) small node memory limits the strength of the S-method (which is useful only for a large 
matrix), and 

(2) these parallel algorithms do not scale; i.e., the parallel efficiency drops as the number of 
processors increases. 

Now, let us study the parallel efficiency of these two global methods (B- and R-) coupled with 
S-method as the "core" algorithm, locally on each node. 

Let A and B be two M × M square matrices whose product is another matrix C, and P be 
the number of processors used to perform the MM. In this section, we briefly describe how to 
parallelize the T-method and analyze the performance. 

2 .1 .  T h e  B M R  M e t h o d  

The  B M R  m e t h o d  has been discussed extens ive ly  in other publications.  (See, for example ,  [13].) 
In this  section,  we concentrate  on analyzing its efficiency. 

1We thank D. ~k-ystram who gave us their preprint that has the methods of fast matrix multiplication on MIMD 
machines. But, our methods are different. 
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On one processor, the time is 

TI(M) = (2M 3 - M 2) t omp 2M3t omp, 

where tcomp is the time for one floating-point number operation which may be addition or mul- 
tiplication. This formula can be written in a general form as 

T1 (M) ~ oLMB$comp, (1) 

where ~ = 2 and ~ = 3 for the T-method. 

On P processors, each being given a submatrix of order m = M/vZ-P, the time is split into 
three portions: 

(1) the time to broadcast a submatrix to processors in a row [16], 

TB = m2tcomm "~- (Y/-~ - 2)ts tar t ,  

where  tcomm is the time to transfer one floating-point number and tstar t is the star t  up time 
to initiate a pipeline for data  transfer, and 

(2) the time to perform submatrix multiplication, 

and 

(3) the time to roll up submatrices 

The total t ime is 

TM = o~mfltcomp, 

T R ~-~ TT~2tcomm , 

T p ( M )  = v ~ ( T B  + TM + Tn)  

where v ~  appears because the "broadcast-multiply-roll" must be repeated v ~  times to complete 
one MM. 

The parallel efficiency is 

E p ( M )  = 1 

Asymptotically, for large matrices on large parallel systems, the parallel efficiency approaches 

1 
Ep(M --+ oo) --+ p(3-~)12" 

If the "core" algorithm is the T-method, then ~ = 3 and we get 

E p ( M  --. co) 1, 

which means an efficient parallel algorithm can be derived this way. 

But,  if the "core" algorithm is the S-method, then ~ = 2.807 and we get 

1 
Ep(M ----+ oo) --, p(3-2.807)/2 < 1. 

If we choose P = 49 (as we explain later), then Ep  = 69%. It means the maximum parallel 
efficiency for BMR method coupled to S-method is 69% for up to 49 processors. 
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2.2. The  Ring Method 

We suppose M is divisible by P,  and thus we partition m = M / P  rows of matrices A and B 
to each processor, initially. (Note, the divisibility condition can be relaxed with small loss of 
efficiency and the requirement of square matrix can be removed without any loss of performance.) 
The natural  way to distribute the data  is to give the first m rows of A and B to processor 1, the 

second m rows of A and B to processor 2 , . . . ,  and the last m rows of A and B to processor P.  
Each processor then slices the two sets of rows, one from A and the other from B, into P blocks 
of m x m submatrices. Symbolically, 

A = | a21 a22 " ' "  a2p B = b21 

\ U p 1  aP2  " '" -aPP \-Dp1 

::: 
bp2 "" b p p /  

This distribution scheme determines that  processor 1 is responsible for producing the first m 

rows of the resulting matr ix  C, processors 2 for the second, . . . ,  and the last processor for the 
last rows. At step I, all P processors start  multiplying the diagonal submatrices of A with their 
own parti t ion of submatrices of B. At the end of this step, processor 1 has created one te rm for 
each submatr ix  in the first m rows, ~11b11, a l i b i 2 , . . . ,  ~11blP. I t  is similar for the other P - 1 
processors. At step II, all processors shift their submatrices left by one submatrix. (For example, 

processor 1 moves the submatr ix  ~12 to the position of ~11, processor 2 moves the submatr ix  a23 to 
the position of a22, and so on.) Of course, this shift is done only within individual processors and 
there is no need for interprocessor communication. However, at the same step, all P processors 
must roll up the entire submatrices of B to one row higher in the matr ix  diagram (e.g., to move 

submatrices b21, b22,... ,D2p,  t o  the positions of submatrices b11, b12,... ,b lp ,  respectively.) The 
processor 1 will roll "up" its submatrices to processor P. We repeat  steps I and II  until all rows 

of matr ix  B reach all processors in the fashion of ring and all submatrices in A become diagonal 
submatrices once. 

Now, we study its efficiency. Similarly, on one processor the t ime is 

TI(M) ..~ aM~tcomp, (2) 

where a = 2 and/3 = 3 for the T-method. 

On P processors, the t ime consists of two parts: Troll, t ime required to move rows of submatrices 
from one processor to another, and Tcomp, t ime needed to perform submatr ix  multiplications. 
Thus, 

M 2 
Troll = (P  - 1)--p--tcomm ~ M2tcomm 

and using equation (1), we get 

Tcomp "~ P 2 a  ~comp- 

Therefore, the total  t ime is 

Tp(M)  = Troll + Tcomp ~ M2tcomm + P2a tcomp. 

The parallel efficiency becomes 

E p ( M ) -  Sp (M)  _ 1 
p p3-B + ( p / a u ~ - 2 )  ( tcomra/ tcomp)  " 

If  we fix P and increase M,  
1 

E p ( M  ---* oo) ~ p3-'---'~" 

(3) 
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For the T-method  where/3 = 3, then 

1 
E p ( M )  = 1 + ( P / 2 M )  (tcomm/tcomp ) - - +  1 

as long as m ---- M / P  is kept large enough. Therefore, the Ring method, if used for realistic 
problems in which m is always large, is well parallelized, but rooted in the T-method  with an 
O ( M  3) complexity. 

For the S-method where 13 = 2.807 and if, again, we choose P = 49, E p ( M  ~ co) --~ 0.47. I t  
means tha t  the best parallel efficiency is only 47%, which is low. If  we increase P,  E p  becomes 

even lower. For additional comparison, if we combine the Ring method with the Winograd 

method in which/3 = 2.376, we get E p ( M  ---* co) --* 0.09, and the situation is much worse. 

In summary,  we have the following observations: 

(1) the S-method is superior to the T-method in performance, for large matrices at node-level, 

(2) as a parallel method,  the BMR method is alway superior to the Ring method, 

(3) coupling global BMR method or global Ring method with the local T-method  can produce 
parallel-efficient algorithms, but overall performance is low due to low node performance 

using the T-method,  and 

(4) coupling global BMR method or global Ring method with the local S-method cannot pro- 
duce parallel-efficient algorithms. 

Approaches (3) and (4) are not desirable. 
Obviously, the ideal combination is a global S-method coupled with a local S-method. For ease 

of comparison, we design a scheme to use S-method at the system level and the T-method  (for 

practical reason, one can easily use the S-method as well, the difference is small) at the node 

level. 

3.  S T R A S S E N ' S  M E T H O D  

We first briefly describe the conventional S-method in Section 3.1 and then introduce our par- 
allelization of the S-method in Section 3.2. Finally, in Section 3.3, we discuss the implementat ion 

of our method.  

3.1.  Ser ia l  

Let A and B be matrices of order M = m2 k+l and let C be their product  

A =  A21 A22 ' B21 B22 ' C21 C22 ' 

where Aik, Bik, Cik are submatrices of order M1 = m2 k. The pat tern  goes as follows: 

$1 = All  + A22, P1 = $1S2, T1 = P1 + P4, 

$2 = Bl l  + B22, P2 = $ 3 B l l ,  T2 = P7 - P5, 
S3 = A21 + A22, P3 = A11S4, T3 = P1 + P3, 
$4 = B12 - B22, P4 = A22S5, T4 = P6 - P2, 

S5 = B21 - B l l ,  P5 = SsB22, Cl l  = T1 + T2, 
$6 = All  + A12, Pe = STSs, C12 = P3 + Ps, 
ST = A21 - Al l ,  P7 = $9S10, C21 = P2 + P4, 
Ss = Bl l  + B12, C22 = T3 + T4. 
$9 = A12 - A22, 
Slo = B21 + B22, 

We have 18 matr ix  additions and subtractions and 7 MMs in the above formulae. (For a 
comparison, the T-method  requires 8 MMs.) Obviously, the main cost is not due to the matr ix  
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addition. I t  is the MM which is expensive. The multiplications of these submatrices of order M1 
can then be done by the above method recursively. This procedure of MM is called Strassen's 
method,  and it requires [3] Tstrassen = a M  ~ arithmetic operations to multiply a pair of square 
matrices of order M where c~ -- 4.7 and ~ -- log s 7 = 2.807, asymptotically. 

3.2 .  Parallel 

First, we decompose the matrix .4 into 2 x 2 blocks of submatrices .40 where i, j -- i, 2. Second, 

we further decompose these four submatrices into four 2 × 2 (i.e., 4 × 4) blocks of submatrices 

ao V(i , j )  < 4. We have 

/ a l l  a12 a13 a14 

(~11 A22A12)=|~1 ~2~ ~ 3  ~24|. A 
k A21 | a31 a32 a33 a34 

I 

\ a41 a42 a43 a44 ] 
! 

Similarly, we perform the same decomposition on matrix B and get 

/bl l  b12 bl3 ~14~ 
(~11  BI2~  /b21 b22 b23 524 / 

B = ~, B21 B22 ] = | 531 b32 b33 b 3 4 / "  
\b41 b42 b43 b44] 

Now, we use the S-method to multiply the matrices A and B, 

expressions, 

P 1  = 

P 2 =  

P3= 
P 4 =  

P s =  
P6=  

PT= 

~-AII q- A22) ~-Bll -{- B22), 

(~1 + ]~) ~1, 
~ (~1~ - ~2~) ,  

22~ ( ~ 1  - ~1), 
(~1, + ]12) ~ ,  
(-A21 - Al l )  (-Bll -~- B12), 

- + 

and get the following seven MM 

(4) 

Similarly, each of the remaining six MM expressions Pi for i -- 2, 3 , . . . ,  7 can also be expanded 
into six groups of MMs in terms of ~ and b. 

P21 = (a31 -~-as3 -~-a42 "4-a44) (bl l  -~-b22), 

2Obviously, this procedure can be recursive]y applied to obtain 73 = 343 MMs after decomposing A and B into 
8 x 8 submatrices. 

PII : (all  -~- a33 -~- a22 -[-a'44)(bll -[- b33 -}- b22 --~- b44) , 

P12 --~ (a21 -~- a43 "~- a22 -[-a44)(bll -~ b33) , 

P14 = (a22 -t- a44) (b21 + b43 - bll - b33), 

Px5 = (an +~33 +n12 +~34) (b22 +b44), 

P16 = (~21 +~43 -~11 -~s3)  (~11 +~33 +~12 + ~34), 

P,7 = (~12 +~34 - n22 - ~44) (~2~ +~43 +~2~ + ~44) • 

Next, we apply the S-method to these seven MMs of the submatrices A and B so tha t  we 
obtain 49 MM expressions on submatrices ~ and b. Taking P1 as an example, we can expand the 
one MM on A and B into seven MMs on ~ and b as follows: 2 
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P22 -- (a41 4- a43 -[- a42 'Jr a44) 511, 

P23 = (~31 + ~33)(512 - 5 2 2 ) ,  

/°24 : (a42 -~- a44) (b21 - b l l ) ,  

P2~ = (~31 + ~33 + ~32 + ~34) 522, 

P2~ = (~,1 + n4~ - ~31 - ~33) (511 + 512),  

P2~ = (n32 + ~3,  - ~42 - ~ ,4)  (521 + 522) ; 

P31 -- ( a l l  -}- a22) (513 - 533 -~- 524 - b44) ,  

P32 : (a21 -1}- a22) (513 - 533),  

P33 = ~11 (514 - 534 - 5~4 + 5 4 4 ) ,  

/034 ---- a22 (523 -- b43 - b13 -{- b33) ,  

P35 ---- ( a l l  - [ -a12)(524 - b 4 4 ) ,  

P3~ = (~21 - ~11) (513 - 533 + ~14 - 534),  

P37 -- (a12 - a22) ( 523 - 543 -}- 524 - 544) ; 

P41 -- (a33 -~- a44) (531 - 511 -~ b42 - b22) ,  

P42 = (a43 -~- a44) (531 - b11) ,  

P43 = ~33 (532 - 512 - 542 + 522) 

P44 = ~44 (541 - 521 - 531 + 511),  

P45 = (a33 +~34) (542 -- b22),  

P4~ : (~43 - ~33) (531 - 511 + ~32 - 512),  

P47 = (a34 -- a44) (541 -- 521 -}- ~ 2  -- 522) ; 

P51 = (~11 + ~13 + ~22 + ~24) (533 + L 4 ) ,  

Ps2 = (~m + ~23 + ~22 + a24) b33, 

P~3 = (~11 + ~13)(534 - L 4 ) ,  

P54 = (a22 + a'24) (543 - b33) ,  

P55 : ( a l l  -{- a13 -~- a12 ~t_ ~14) 544, 

P56 -- (a21 -{- a23 - a l1  - a13) (533 -}- b34) ,  

P ~  = ( ~  - ~  + ~4~ - ~ ) ( ~ 1 ~  + ~ + ~ + ~ 4 ) ,  

Po~ = (~4~ - ~ ,  + ~4~ - ~ )  ( ~  + ~ ) ,  

/064 = (a42 -- a22) (b21 + b23 - b l l  - b13) ,  

P65 = (~31 - ~11 + ~32 - ~12) (522 + 524),  

P86 = (~41 - ~21 - ~31 + ~11) (511 + 513 + 512 + b14), 

P67 ---- (a32 - a 1 2  - a 4 2  -~- a22) (b21 -~- b23 -~- b22 -~- b24) ; 

P71 = (a13 - a33 -}- a24 - a44) (b31 -{- b33 -}- b42 + b44),  

1°72 = (a23 - a43 + a24 - a44) (b31 + b33),  

PTs = (~13 - ~ 3 )  ( b32 + b34 - b42 - b44),  



56 c.-c. C~ou et al. 

P74 = (a24 - a44) (b41 -~- b43 - b31 - b33), 

P75 = (a13 - a33 -~ a14 - a34) ( b42 -~- b44), 

P76 = (~3  - ~43 - ~13 + ~33) (~31 + ~3s + ~ + ~ 4 ) ,  

P77 : (a14 - a34 - a24 -~- a44) ( b41 -]- b43 -~- b42 -~- b44). 

Therefore, we have identified 7 x 7 = 49 MMs and naturally we will either use 7 or 49 processors 
to perform the MMs. In either case, the MMs distributed to each processor can be performed by 
the S-method, which leads to a perfect parallelization of the S-method. 

After finishing these 49 MMs, we need to combine the resulting P/j V( i , j )  _< 7 to form the final 
product matrix 

{__.11 512 ~13 C14 / 
(On C12)= |_c21 ~22 ~2a ~24 

C =  ~kU21 U22 ~C31 C32 C33 C34 " 
\ C41 C42 543 C44 

First, we define some variables 

5 / =  ~ - 1 '  if i = 5 ;  

t 1, otherwise. 

-1 ,  if i = 2 ;  
7 / =  1, otherwise. 

$1 = {1,4,5,7}, S2 = {2,4}, $ 3 =  {3,5}, and S 4 = {1,2,3,6}. 

The 4 x 4 blocks of submatrices forming the product matrix C can be written as 

~11 = ~ ~/ (P/1 + P/4 - P~5 + P/7) , 
iES1 

C12 = E ~/ (t°/3 + P/5), 
iESx 

P/1 + P/4 - P/5 + PiT, ~13 
iESs 

-c14 = E P/3 + P/s; 
iESs 

C21 = E ~i (P/2 + P/4), 
iEs1 

i6 $1 

P/2 + P/a, C23 
46 $3 

~24 = E P~I + P/3 - P~2 + P/6; 
iESa 

C31 = E Pi l  + P/4 - Pi5 + PiT, 
iES2 

i6S2 

e33 = E ^//(P/I + P/4 - P/5 + P/T), 
iES4 

C34 = E ^//(P,3 + P/51; 
iEs4 
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~41 = ~ P~2 + Pi4, 
iES2 

~42 = ~ P~I + P~3 - P~2 + Pi6, 
iES2 

= Z (P,2 + P 4), 
i6 $4 

e44 = Z (P l + - + P 6). 
i6S4 

We have effectively parallelized the MMs. In fact, we can also group the matrix additions to 

avoid repetitions in computing matrix sums and in communicating "raw" submatrices. This will 

be discussed in the next section. 

3.3. I m p l e m e n t a t i o n  

O n  7 processors  

If we use 7 processors, the implementation is easy. We need to distribute 8 submatrices to 7 
processors and each processor will contain no more than three submatrices (the same memory 
requirement as in the Ring method) so as to minimize the submatrix movement among processors. 
There are several ways to do this efficiently, and Figure 1 illustrates one simple way for the 
distribution. 

On 49 processors  

It is more complex to implement our method on 49 processors. In this case, we need to 
distribute 32 submatrices to 49 processors with 3 submatrices each. We observe from equation (5) 
and its expanded 49 MM expressions that  submatrices P1, P6 and P7 have the same pat tern 
(needing sums of two submatrices from A and two from B); P2 and P4 are similar; P3 and P5 
are similar. Thus, we divide the 49 MMs into three groups, / '1 , / )6 and t°7 in Group 1; P2 and P4 
in Group 2; P3 and P5 in Group 3. Figures 2-4 depict the submatrix distribution and the 
multiplication processor for the three groups respectively. For Groups 1, 2, and 3, we need 
16, 12, and 12 independent submatrices from ~ and b, respectively. The grouping has another 
advantage; i.e., no communication occurs among all these groups; every 7 processors form a 
cluster and there is no need for communication with any of the other 49 - 7 = 42 processors. 
In addition, within each group, we perform additions before communication whenever possiAe. 
The group size can be further reduced to localize the access of submatrices and therefore reduce 
the communication. 

4 .  P E R F O R M A N C E  C O M P A R I S O N  

We have conducted timing tests for six methods, SL, SH, BL, BH, RL, and RH discussed 
above, on a 56-node Paragon, a distributed-memory MIMD parallel computer. For each of these 
six methods, we collect timing results for 1-, 7-, and 49-processors. The timing results are 
tabulated in Tables 3-5. 

In our tests, we first distribute the submatrix to all participating processors, and each processor 
then performs its local matrix multiplication with the T-method. All three methods, SL, BL, 
and RL, share one identical local routine supplied by the vendor (which is tailored to deliver 
maximum flops from the i860 processor), while the other three methods, SH, BH, and RH, share 
another identical local routine we created with Fortran. The entire test is done on single precision. 

With these data  from the three tables (Tables 3-5), we make three sets of plots: Figures 5-7. 
These figures show the matrix order vs. performance time for processor numbers P -- 1, 7, 49 in 
log-log plot. 

Two points are very clear from examining the figures: 
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#3 

Figure 2. A “map” for the data movements in computing Group 1 submatrices: &i, Psz, fii 
V(i, j) 5 i. The first column shows the initial submatrix distribution to the processors marked as 
#l, , #7. The second column shows the formation of the intermediate matrices Si Vi 5 8 except 
for i = 6, which is done at the third step in which a communication is needed. The communications 
and calculations are arranged so that only six steps are needed to compute the matrix products. 
The short arrow with a label like #l show that the submatrix in the box pointed by the arrow is 
from processor 1. 
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Figure 2. A "map" for the da ta  movements in computing Group 1 submatrices:  Pli, P6i, PTi 
V(i, j )  ~ i. The first column shows the initial submatr ix  distr ibution to the processors marked as 
# 1 , . . . ,  #7 .  The second column shows the formation of the intermediate matrices Si Vi < 8 except 
for i = 6, which is done at the third step in which a communication is needed. The communicat ions  
and calculations are arranged so that  only six steps are needed to compute  the matr ix  products .  
The  shor t  arrow with a label like # 1  show tha t  the submatr ix  in the box pointed by the arrow is 
from processor 1. 
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Table 2. This  table contains the six sets of coefficients a and f~ tha t  appear  in equation (5). Three 
sets are for the Ring method using 1, 7, and 49 processors and the other  three are for our  method 
using 1, 7, and 49 processors. The t iming model is T = a M  f~, where a is in units  of 10 -9  seconds 
and j3 is dimensionless. 

Processors 

Method\Coeff  

SL 

SH 

BL 

BH 

RL 

RH 

1 7 49 

25.6 2.9815 9.80 2.8459 1.85 2.8146 

146 2.8342 45.3 2.7323 7.10 2.7311 

31.8 2.9502 13.1 2.8240 1.54 2.8644 

60.3 2.9914 33.4 2.8253 2.05 2.9368 

30.5 2.9565 25.6 2.7528 30.5 2.5685 

60.1 2.9921 12.4 2.9465 2.19 2.9330 

Table 3. This  table shows the t ime (in units  of seconds) spent  on MM for several matr ix  orders M 
using P = 1, 7, 49 processors. Using methods  of SH and SL. 

Methods SL S H  

M \ P  1 7 49 1 7 49 

128 0.10 0.22 0.30 0.14 0.13 0.17 

256 0.44 0.27 0.31 0.97 0.26 0.19 

400 1.50 0.45 0.34 3.52 0.66 0.25 

480 2.50 0.58 0.32 5.81 1.01 0.31 

512 3.04 0.70 0.38 6.87 1.16 0.32 

640 5.94 1.11 0.44 12.97 2.07 0.47 

800 11.48 1.91 0.57 24.93 3.86 0.75 

1024 24.14 3.60 0.82 48.83 7.37 1.27 

1152 34.27 4.96 0.99 68.37 10.24 1.70 

1280 47.10 6.74 1.27 91.90 13.69 2.20 

1408 62.94 8.77 1.55 124.25 17.85 2.81 

1600 12.61 2.07 26.01 4.02 

1664 14.13 2.27 28.97 4.46 

1792 17.44 2.74 35.29 5.41 

1920 21.32 3.26 42.71 6.49 

2048 25.84 3.84 50.52 7.62 

2176 30.86 4.66 60.22 9.19 

2304 36.39 5.37 70.52 10.71 

2432 42.74 6.26 82.12 12.42 

2560 49.69 7.22 94.52 14.27 

2816 66.06 9.39 18.53 

3072 11.89 24.11 

3328 14.94 29.90 

3584 18.40 36.35 

3840 22.40 43.91 

4096 27.08 51.86 

4352 32.27 61.71 

4608 37.97 72.22 

4864 44.48 83.98 

4992 47.90 90.26 

5120 51.57 96.63 

5632 68.50 

Ckl4~ 30-2-F 



66 

(1) 

(2) 

C.-C. CHOU et al. 

for small  matr ices ,  there  exist large "star t  up" costs for d is t r ibut ing  the  submat r ices  and 

the  t iming  does not  follow any pat tern ,  and 

when the matr ices  are sufficiently large (typical order: M >_ 1000 for 7 processors and 

M _> 2000 for 49 processors), the  t iming  does follow 

T ( M )  = a M  ~. (5) 

This  suggests t ha t  a f i t t ing of our sufficiently many  da ta  points  for large matr ices  to the  above 

form should cap ture  the  t iming  behavior.  The  result ing lines in log-log plot are very  s t ra ight  and 

the  coefficients (a  and/3)  for these lines are t abu la ted  in Table  2. 

Table 4. This table shows the time (in units of seconds) spent on MM for several matrix orders M 
using P = 1, 7,49 processors. Using methods of BH and BL. 

Methods BL BH 

M\P 1 7 49 1 7 49 

245 0.41 0.59 1.43 0.91 0.68 1.28 

294 0.63 0.61 1.44 1.55 0.78 1.30 

343 0.97 0.66 1.46 2.46 0.93 1.31 

392 1.42 0.80 1.47 3.43 1.06 1.33 

490 2.71 0.99 1.50 6.82 1.82 1.48 

539 3.58 1.12 1.56 9.12 2.14 1.54 

637 5.86 1.45 1.60 14.62 3.38 1.73 

784 10.85 2.27 1.72 26.63 4.87 1.94 

1029 24.59 4.35 2.10 62.99 11.37 2.94 

1274 46.44 7.65 2.60 117 .68  19.71 4.15 

1421 65.06 10.47 3.04 162 .99  27.64 5.31 

1617 14.86 3.72 39.48 7.15 

1911 23.84 5.05 61.02 10.28 

2156 33.57 6.62 83.97 13.62 

2303 40.80 7.74 105.02 16.70 

2450 48.56 8.89 127.22 19.90 

2548 54.60 9.79 137.02 21.37 

2695 64.31 11.34 165.58 25.57 

2940 82.36 13.94 207.83 31.68 

3185 104.89 17.45 275.72 41.66 

3332 19.48 45.21 

3577 23.79 57.56 

3822 28.54 68.63 

4067 34.21 81.62 

4361 41.84 101.52 

4606 48.88 117.60 

4851 56.76 135.96 

5096 65.22 154.64 

5586 84.73 206.09 

6370 124.64 302.55 

6860 155.04 370.50 

7350 190.46 474,96 

7644 213.69 526.13 

The  six sets of coefficients, three  for Ring me thod  and three  for our method ,  are t abu l a t ed  in 

Table  2. Using equat ion  (5), we compute  the  t iming  ratios of  our m e t h o d  to the  Ring m e t h o d  at  

typical  ma t r ix  orders on 1, 7, and 49 processors. The  results are t abu la ted  in Table  6. 
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Table 5. This table shows the time (in units of seconds) spent on MM for several matrix orders M 
using P : 1, 7, 49 processors. Using methods of R!-I and RL. 

Methods R L  R H  

M \ P  1 7 49 1 7 49 

490 2.69 0.89 6.81 1.05 0.29 

539 3.58 1.17 9.12 1.43 0.40 

637 5.86 1.58 14.61 2.26 0.57 

784 10.85 2.54 1.59 26.64 3.98 0.80 

1029 24.57 5.10 2.94 62.96 9.39 1.86 

1274 46.43 8.76 4.71 117.56 17.34 2.97 

1421 65.03 12.13 5.31 162.80 24.13 4.29 

1617 16.97 6.61 34.98 6.07 

1911 26.89 9.97 57.50 9.71 

2156 37.48 12.51 82.31 12.96 

2303 45.50 15.33 101.04 16.47 

2450 53.71 16.32 120.35 18.83 

2548 60.30 18.05 134.39 20.93 

2695 70.84 20.86 160.05 25.62 

2940 90.11 24.42 204.83 31.66 

3185 114.26 31.41 263.59 41.77 

3332 129.31 33.97 299.12 46.49 

3577 167.85 42.41 370.97 58.82 

3822 48.45 70.51 

4067 58.33 85.33 

4361 69.03 104.79 

4606 78.63 121.38 

4851 89.23 142.79 

5096 99.84 161.92 

5586 125.75 213.22 

6370 179.29 314.35 

6860 216.01 388.25 

7350 258.20 477.89 

7644 287.19 534.55 

8134 342.56 642.08 

8918 436.38 844.08 

10045 1203.98 

10192 1249.38 

67 

Table 6. This table shows the t iming ratios of the three pairs of methods (SL, SH, BL, BH, RL, 
RH) tested in our s tudy at typical matrix orders M on P : 7, 49 processors. The  numbers  in the  
row for method SL axe the  absolute t imes in units of seconds while the numbers  in the  remaining 
five rows axe the t ime "in units of" the corresponding t imes taken by method SL. 

Processors P = 7 P ---- 49 

Methods \M i000 2000 3000 4000 5000 6000 

SL tl = 3.38 t2 = 24.31 t3 = 77.08 t4 = 25.44 t5 -- 47.68 t6 ---- 79.65 

SH 2.11ti 1.95t2 1.87t3 1.92t4 1.88~5 1.86t6 

BL 1.17ti 1.15t2 1.14t3 1.26t4 1.27ts 1.28ts 

BH 2.96tl 2.92t2 2.89t3 3.05t4 3.14t$ 3.21ts 

KL 1.37tl 1.29t2 1.24t3 2.14t4 2.03is 1.94t6 

RH 2.53ti 2.72t2 2.83t3 3.16t4 3.25t5 3.32t6 
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W i t h  the  coefficients in Table 6 and the  equa t ion  (5), we can compu te  the  exac t  costs  of 

mul t ip ly ing  cer ta in  m a t r i x  on P = 7, 49 processors  by  using any one of  the  six me thods .  The  

first hal f  of  the  t ab le  shows the  costs  of  mul t ip ly ing  mat r ices  of orders  M = 1000, 2000, 3000 on 

P = 7 while the  next  half  the  costs  on orders  M = 4000, 5000, 6000 on P = 49. In  the  first  row 

(for m e t h o d  SL), we list the  exact  t ime  in uni ts  of seconds,  while in the  r ema in ing  five rows list 

the  t imes  "in uni ts  of" the  t imes  in the  cor responding  first row. F rom this  table ,  we not ice  (1) 

SL m e t h o d  is always 15-30% faster  t han  BL, bu t  abou t  30% (for P = 7) and  a b o u t  100% (for 

P = 49) fas ter  t h a n  RL. 

5. C O N C L U S I O N S  

Our  tes t s  suggest  t h a t  a global  para l le l iza t ion  of the  S -me thod  is a lways more  efficient t h a n  

the  o the r  popu la r  methods :  B M R  and the  Ring methods .  I t  not  only  reduces  the  t o t a l  number  

of f loa t ing-poin t  opera t ions ,  bu t  also reduces the  communica t ion .  The  shor tcomings  for the  

S -me thod  are: 

(1) the  number  of  processors  is "quant ized,"  which des t roys  the  f lexibi l i ty  of  using an  a r b i t r a r y  

number  of processors ,  

(2) the  p a t t e r n  of communica t ion  is qui te  random,  which causes difficulty for imp lemen ta t ion ,  

and  

(3) the  S -me thod  has some problems  in numer ica l  s t ab i l i ty  as recognized by  o the r  research-  

ers  [10]. 

This  s t ab i l i ty  p rob lem is not  a serious p rob lem and the  gain in speed  in using the  S -me thod  indeed 

just if ies  i ts value in app l ica t ions  where speed is impor t an t .  We are in the  process  of  reduc ing  the  

p rob lems  in (1) and  (2). 

In  the  case of 49 processors ,  we have 32 submatr ices .  If  we crea te  th ree  s u b m a t r i x  slots  on 

each processor ,  each s u b m a t r i x  is r epea t ed ly  d i s t r i bu t ed  for 3 x 49/32  = 4.6 t imes.  We are  

developing  a new scheme to d i s t r ibu te  these  submat r i ces  based on the i r  occurrence  "frequency" 

in the  49 formulae for Pij  V(i, j )  <_ 7. The  more  they  appear ,  the  more  often we d i s t r i bu t e  them.  

This  m a y  ye t  reduce the  cost  of moving submat r i ces  around.  

In addi t ion ,  we are app ly ing  the  ideas presented  in this  p a p e r  to  the  W i n o g r a d  me thod .  
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