
P e r g a m o n
Computers Math. Applic. Vol. 30, No. 2, pp. 49-69, 1995

Copyright©1995 Elsevier Science Ltd
Printed in Great Britain. All rights reserved

0898-1221(95)00077-1 0898-1221/95 $9.50 + 0.00

Parallel iz ing Strassen's M e t h o d for Matr ix
Mult ip l icat ion on D i s t r i b u t e d - M e m o r y M I M D

Architectures

C . - C . CHOU, Y . - F . D E N G , * G . L I AND Y . W A N G
Center for Scientific Computing, The University at Stony Brook

Stony Brook, NY 11794-3600, U.S.A.

Ded ica t ed to Professor James G. G l i m m on the occasion of his 60 th b i r t h d a y

(Received and accepted October 1994)

A b s t r a c t - - W e present a parallel method for matrix multiplication on distributed-memory MIMD
architectures based on Strassen's method. Our timing tests, performed on a 56-node Intel Paragon,
demonstrate the realization of the potential of the Strassen's method with a complexity of 4.7M 2's°7
at the system level rather than the node level at which several earlier works have been focused. The
parallel efficiency is nearly perfect when the processor number is the power of 7. The parallelized
Strassen's method seems always faster than the traditional matrix multiplication methods whose
complexity is 2M 3 coupled with the BMR method and the Ring method at the system level. The
speed gain depends on matrix order M: 20% for M ~ 1000 and more than 100% for M ~ 5000.

K e y w o r d s - - M a t r i x multiplication, Parallel computation, Strassen's method.

1 . I N T R O D U C T I O N

As the hea r t of m a n y l inear a lgebra a lgor i thms, m a t r i x mul t ip l i ca t ion (MM) has been m a d e more

and more efficient dur ing the pas t decades. The complex i ty of M M for a m a t r i x of o rde r M has

d r o p p e d [1,2] f rom O (M 3) for t he t r ad i t i ona l m e t h o d (referred to as the T - m e t h o d , hereaf te r) ,

to O (M 2"s°7) for S t rassen ' s m e t h o d [3] (referred to as the S-method , hereaf ter) , to O (M z376) for

t he W i n o g r a d m e t h o d (a.k.a. , C o p p e r s m i t h - W i n o g r a d me thod) [4,5]. Th is complex i ty r educ t ion

gives rise to m a n y efficient a lgor i thms in o ther a reas of l inear a lgebra: inver t ing a ma t r ix , solving

a sy s t em of l inear equat ions , compu t ing the eigenvalues of a m a t r i x [6], and ca lcu la t ing the

d e t e r m i n a n t of a ma t r ix , etc.

Of course, the full po ten t i a l of these efficient me thods can be real ized only on large mat r ices ,

which require large machines such as para l le l computers . Thus , des igning efficient para l le l al-

g o r i t h m s for these m e t h o d s becomes essential . The para l le l i za t ion of the genera l l inear a lgebra

rou t ines on d i s t r i b u t e d - m e m o r y M I M D archi tec tures has achieved reasonable success [7]. But ,

due to t he compl ica t ion of these ded ica ted MM methods , the progress has been re la t ive ly slower.

In fact, M a n b e r [8] in 1989 c la imed t h a t S -me thod canno t be eas i ly para l le l ized. In add i t ion , the

W i n o g r a d m e t h o d has not been paral le l ized so far. Indeed, the a t t e m p t s for the pa ra l l e l i za t ion

This project was initiated after a fruitful conversation of Y.-F.D. with S.-T. Yau of Harvard University, in the
summer of 1993 in Hong Kong. Y.-F.D. thanks D. Scott and W.-L. Wang of Intel Supercomputer Systems Division
for discussions on local Strassen implementation, and D. Trystram who brought their unpublished work to our
attention, and C.-C.C. thanks S. Huss-Lederman on their BMR implementation on Intel Delta machine. All
four of us are supported by the Army Research Office, Grant DAAL03-92-G-0185 and through the Mathematical
Sciences Institute of Cornell University under subcontract to the University at Stony Brook, A l to contract number
DAAL03-91-C-0027, and the National Science Foundation, Grant DMS-9201581.
*Author to whom all correspondence should be sent. Email address: Yuefan.Deng©stmysb. edu

49
C~HA)0-2-E

50 C.-C. CHou et al.

Table 1. The methods used in our test and the naming convention.

Local\Global S-Method BMR Ring
Low-level coding SL BL RL
High-level coding SH BH RH

of the S-method have been mainly focused on shared-memory machines, such as Bailey's work [9]
done on the Cray-2 and Cray Y-MP with no more than 8 processors, and the data-parallel SIMD
architectures, such as work [10] done on the MasPar MP-1. Some distributed-memory MIMD
system vendors, such as Intel for its Paragon [11], supply node-level library routines that use the

S-method. There is, thus far, no reported work 1 on parallelizing the S-method on message-passing
parallel systems at the system level. However, there are many efforts and resulting routines for
parallelizing the T-method. The report, PUMMA: Parallel Universal Matrix Multiplication Algo-
rithms [12], documented three methods including the block scattered decomposition, a variation
of the Broadcast-Multiply-Roll (BMR) method [13,14]. A Ring method, another variation of the

BMR method, is also used to parallelize the T-method.
In this paper, we introduce a method to parallelize the S-method. For a comparison, we

study six different implementations obtained by mixing three global methods (the S-method,
BMR method, and the Ring method at the system level) and two implementations locally at the
node level by using the T-method (one implementation uses the routine sgemm [15] coded in
i860 assembler by Intel and the other is a home-grown routine for matrix multiplication coded

in Fortran.) The assembler-coded methods are denoted as L-method while the Fortran-coded
methods are denoted as H-method. Thus, these six methods are named as SH (global S-method
and local H-method), SL (global S-method and local L-method), BH, BL, RH, and RL. By
this set of six numerical experiments with various matrix orders and machine sizes, we focus on
demonstrating the superiority of S-method at the system level.

In Section 2, we describe and analyze the performance of the BMR and Ring methods. In
Section 3, we introduce our method--the parallel Strassen's method--and describe its imple-
mentation. In Section 4, we analyze the performance of the six different methods implemented.
Finally, the conclusions and some future generalizations of our method are given in Section 5.

2. B M R A N D R I N G M E T H O D S A N D PARALLEL E F F I C I E N C Y

Many have proposed to merge the local S-method with simpler global methods like BMR or
Ring method. The advantage of this idea lies in its ease of implementation, while the shortcomings
are that:

(1) small node memory limits the strength of the S-method (which is useful only for a large
matrix), and

(2) these parallel algorithms do not scale; i.e., the parallel efficiency drops as the number of
processors increases.

Now, let us study the parallel efficiency of these two global methods (B- and R-) coupled with
S-method as the "core" algorithm, locally on each node.

Let A and B be two M × M square matrices whose product is another matrix C, and P be
the number of processors used to perform the MM. In this section, we briefly describe how to
parallelize the T-method and analyze the performance.

2 .1 . T h e B M R M e t h o d

The B M R m e t h o d has been discussed extens ive ly in other publications. (See, for example , [13].)
In this section, we concentrate on analyzing its efficiency.

1We thank D. ~k-ystram who gave us their preprint that has the methods of fast matrix multiplication on MIMD
machines. But, our methods are different.

Parallelizing Strassen's Method 51

On one processor, the time is

TI(M) = (2M 3 - M 2) t omp 2M3t omp,

where tcomp is the time for one floating-point number operation which may be addition or mul-
tiplication. This formula can be written in a general form as

T1 (M) ~ oLMB$comp, (1)

where ~ = 2 and ~ = 3 for the T-method.

On P processors, each being given a submatrix of order m = M/vZ-P, the time is split into
three portions:

(1) the time to broadcast a submatrix to processors in a row [16],

TB = m2tcomm "~- (Y/-~ - 2)ts tar t ,

where tcomm is the time to transfer one floating-point number and tstar t is the star t up time
to initiate a pipeline for data transfer, and

(2) the time to perform submatrix multiplication,

and

(3) the time to roll up submatrices

The total t ime is

TM = o~mfltcomp,

T R ~-~ TT~2tcomm ,

T p (M) = v ~ (T B + TM + Tn)

where v ~ appears because the "broadcast-multiply-roll" must be repeated v ~ times to complete
one MM.

The parallel efficiency is

E p (M) = 1

Asymptotically, for large matrices on large parallel systems, the parallel efficiency approaches

1
Ep(M --+ oo) --+ p(3-~)12"

If the "core" algorithm is the T-method, then ~ = 3 and we get

E p (M --. co) 1,

which means an efficient parallel algorithm can be derived this way.

But, if the "core" algorithm is the S-method, then ~ = 2.807 and we get

1
Ep(M ----+ oo) --, p(3-2.807)/2 < 1.

If we choose P = 49 (as we explain later), then Ep = 69%. It means the maximum parallel
efficiency for BMR method coupled to S-method is 69% for up to 49 processors.

52 C.-C. CHOU et al.

2.2. The Ring Method

We suppose M is divisible by P, and thus we partition m = M / P rows of matrices A and B
to each processor, initially. (Note, the divisibility condition can be relaxed with small loss of
efficiency and the requirement of square matrix can be removed without any loss of performance.)
The natural way to distribute the data is to give the first m rows of A and B to processor 1, the

second m rows of A and B to processor 2 , . . . , and the last m rows of A and B to processor P.
Each processor then slices the two sets of rows, one from A and the other from B, into P blocks
of m x m submatrices. Symbolically,

A = | a21 a22 " ' " a2p B = b21

\ U p 1 aP2 " '" -aPP \-Dp1

:::
bp2 "" b p p /

This distribution scheme determines that processor 1 is responsible for producing the first m

rows of the resulting matr ix C, processors 2 for the second, . . . , and the last processor for the
last rows. At step I, all P processors start multiplying the diagonal submatrices of A with their
own parti t ion of submatrices of B. At the end of this step, processor 1 has created one te rm for
each submatr ix in the first m rows, ~11b11, a l i b i 2 , . . . , ~11blP. I t is similar for the other P - 1
processors. At step II, all processors shift their submatrices left by one submatrix. (For example,

processor 1 moves the submatr ix ~12 to the position of ~11, processor 2 moves the submatr ix a23 to
the position of a22, and so on.) Of course, this shift is done only within individual processors and
there is no need for interprocessor communication. However, at the same step, all P processors
must roll up the entire submatrices of B to one row higher in the matr ix diagram (e.g., to move

submatrices b21, b22,... ,D2p, t o the positions of submatrices b11, b12,... ,b lp , respectively.) The
processor 1 will roll "up" its submatrices to processor P. We repeat steps I and II until all rows

of matr ix B reach all processors in the fashion of ring and all submatrices in A become diagonal
submatrices once.

Now, we study its efficiency. Similarly, on one processor the t ime is

TI(M) ..~ aM~tcomp, (2)

where a = 2 and/3 = 3 for the T-method.

On P processors, the t ime consists of two parts: Troll, t ime required to move rows of submatrices
from one processor to another, and Tcomp, t ime needed to perform submatr ix multiplications.
Thus,

M 2
Troll = (P - 1)--p--tcomm ~ M2tcomm

and using equation (1), we get

Tcomp "~ P 2 a ~comp-

Therefore, the total t ime is

Tp(M) = Troll + Tcomp ~ M2tcomm + P2a tcomp.

The parallel efficiency becomes

E p (M) - Sp (M) _ 1
p p3-B + (p / a u ~ - 2) (tcomra/ tcomp) "

If we fix P and increase M,
1

E p (M ---* oo) ~ p3-'---'~"

(3)

Parallelizing Strassen's Method 53

For the T-method where/3 = 3, then

1
E p (M) = 1 + (P / 2 M) (tcomm/tcomp) - - + 1

as long as m ---- M / P is kept large enough. Therefore, the Ring method, if used for realistic
problems in which m is always large, is well parallelized, but rooted in the T-method with an
O (M 3) complexity.

For the S-method where 13 = 2.807 and if, again, we choose P = 49, E p (M ~ co) --~ 0.47. I t
means tha t the best parallel efficiency is only 47%, which is low. If we increase P, E p becomes

even lower. For additional comparison, if we combine the Ring method with the Winograd

method in which/3 = 2.376, we get E p (M ---* co) --* 0.09, and the situation is much worse.

In summary, we have the following observations:

(1) the S-method is superior to the T-method in performance, for large matrices at node-level,

(2) as a parallel method, the BMR method is alway superior to the Ring method,

(3) coupling global BMR method or global Ring method with the local T-method can produce
parallel-efficient algorithms, but overall performance is low due to low node performance

using the T-method, and

(4) coupling global BMR method or global Ring method with the local S-method cannot pro-
duce parallel-efficient algorithms.

Approaches (3) and (4) are not desirable.
Obviously, the ideal combination is a global S-method coupled with a local S-method. For ease

of comparison, we design a scheme to use S-method at the system level and the T-method (for

practical reason, one can easily use the S-method as well, the difference is small) at the node

level.

3. S T R A S S E N ' S M E T H O D

We first briefly describe the conventional S-method in Section 3.1 and then introduce our par-
allelization of the S-method in Section 3.2. Finally, in Section 3.3, we discuss the implementat ion

of our method.

3.1. Ser ia l

Let A and B be matrices of order M = m2 k+l and let C be their product

A = A21 A22 ' B21 B22 ' C21 C22 '

where Aik, Bik, Cik are submatrices of order M1 = m2 k. The pat tern goes as follows:

$1 = All + A22, P1 = $1S2, T1 = P1 + P4,

$2 = Bl l + B22, P2 = $ 3 B l l , T2 = P7 - P5,
S3 = A21 + A22, P3 = A11S4, T3 = P1 + P3,
$4 = B12 - B22, P4 = A22S5, T4 = P6 - P2,

S5 = B21 - B l l , P5 = SsB22, Cl l = T1 + T2,
$6 = All + A12, Pe = STSs, C12 = P3 + Ps,
ST = A21 - Al l , P7 = $9S10, C21 = P2 + P4,
Ss = Bl l + B12, C22 = T3 + T4.
$9 = A12 - A22,
Slo = B21 + B22,

We have 18 matr ix additions and subtractions and 7 MMs in the above formulae. (For a
comparison, the T-method requires 8 MMs.) Obviously, the main cost is not due to the matr ix

54 C.-C. CHOU et al,

addition. I t is the MM which is expensive. The multiplications of these submatrices of order M1
can then be done by the above method recursively. This procedure of MM is called Strassen's
method, and it requires [3] Tstrassen = a M ~ arithmetic operations to multiply a pair of square
matrices of order M where c~ -- 4.7 and ~ -- log s 7 = 2.807, asymptotically.

3.2 . Parallel

First, we decompose the matrix .4 into 2 x 2 blocks of submatrices .40 where i, j -- i, 2. Second,

we further decompose these four submatrices into four 2 × 2 (i.e., 4 × 4) blocks of submatrices

ao V(i , j) < 4. We have

/ a l l a12 a13 a14

(~11 A22A12)=|~1 ~2~ ~ 3 ~24|. A
k A21 | a31 a32 a33 a34

I

\ a41 a42 a43 a44]
!

Similarly, we perform the same decomposition on matrix B and get

/bl l b12 bl3 ~14~
(~11 BI2~ /b21 b22 b23 524 /

B = ~, B21 B22] = | 531 b32 b33 b 3 4 / "
\b41 b42 b43 b44]

Now, we use the S-method to multiply the matrices A and B,

expressions,

P 1 =

P 2 =

P3=
P 4 =

P s =
P6=

PT=

~-AII q- A22) ~-Bll -{- B22),

(~1 +]~) ~1,
~ (~1~ - ~2~) ,

22~ (~ 1 - ~1),
(~1, +]12) ~ ,
(-A21 - Al l) (-Bll -~- B12),

- +

and get the following seven MM

(4)

Similarly, each of the remaining six MM expressions Pi for i -- 2, 3 , . . . , 7 can also be expanded
into six groups of MMs in terms of ~ and b.

P21 = (a31 -~-as3 -~-a42 "4-a44) (bl l -~-b22),

2Obviously, this procedure can be recursive]y applied to obtain 73 = 343 MMs after decomposing A and B into
8 x 8 submatrices.

PII : (all -~- a33 -~- a22 -[-a'44)(bll -[- b33 -}- b22 --~- b44) ,

P12 --~ (a21 -~- a43 "~- a22 -[-a44)(bll -~ b33) ,

P14 = (a22 -t- a44) (b21 + b43 - bll - b33),

Px5 = (an +~33 +n12 +~34) (b22 +b44),

P16 = (~21 +~43 -~11 -~s3) (~11 +~33 +~12 + ~34),

P,7 = (~12 +~34 - n22 - ~44) (~2~ +~43 +~2~ + ~44) •

Next, we apply the S-method to these seven MMs of the submatrices A and B so tha t we
obtain 49 MM expressions on submatrices ~ and b. Taking P1 as an example, we can expand the
one MM on A and B into seven MMs on ~ and b as follows: 2

Parallelizing Strassen's Method 55

P22 -- (a41 4- a43 -[- a42 'Jr a44) 511,

P23 = (~31 + ~33)(512 - 5 2 2) ,

/°24 : (a42 -~- a44) (b21 - b l l) ,

P2~ = (~31 + ~33 + ~32 + ~34) 522,

P2~ = (~,1 + n4~ - ~31 - ~33) (511 + 512),

P2~ = (n32 + ~3, - ~42 - ~ ,4) (521 + 522) ;

P31 -- (a l l -}- a22) (513 - 533 -~- 524 - b44) ,

P32 : (a21 -1}- a22) (513 - 533),

P33 = ~11 (514 - 534 - 5~4 + 5 4 4) ,

/034 ---- a22 (523 -- b43 - b13 -{- b33) ,

P35 ---- (a l l - [-a12)(524 - b 4 4) ,

P3~ = (~21 - ~11) (513 - 533 + ~14 - 534),

P37 -- (a12 - a22) (523 - 543 -}- 524 - 544) ;

P41 -- (a33 -~- a44) (531 - 511 -~ b42 - b22) ,

P42 = (a43 -~- a44) (531 - b11) ,

P43 = ~33 (532 - 512 - 542 + 522)

P44 = ~44 (541 - 521 - 531 + 511),

P45 = (a33 +~34) (542 -- b22),

P4~ : (~43 - ~33) (531 - 511 + ~32 - 512),

P47 = (a34 -- a44) (541 -- 521 -}- ~ 2 -- 522) ;

P51 = (~11 + ~13 + ~22 + ~24) (533 + L 4) ,

Ps2 = (~m + ~23 + ~22 + a24) b33,

P~3 = (~11 + ~13)(534 - L 4) ,

P54 = (a22 + a'24) (543 - b33) ,

P55 : (a l l -{- a13 -~- a12 ~t_ ~14) 544,

P56 -- (a21 -{- a23 - a l1 - a13) (533 -}- b34) ,

P ~ = (~ - ~ + ~4~ - ~) (~ 1 ~ + ~ + ~ + ~ 4) ,

Po~ = (~4~ - ~ , + ~4~ - ~) (~ + ~) ,

/064 = (a42 -- a22) (b21 + b23 - b l l - b13) ,

P65 = (~31 - ~11 + ~32 - ~12) (522 + 524),

P86 = (~41 - ~21 - ~31 + ~11) (511 + 513 + 512 + b14),

P67 ---- (a32 - a 1 2 - a 4 2 -~- a22) (b21 -~- b23 -~- b22 -~- b24) ;

P71 = (a13 - a33 -}- a24 - a44) (b31 -{- b33 -}- b42 + b44),

1°72 = (a23 - a43 + a24 - a44) (b31 + b33),

PTs = (~13 - ~ 3) (b32 + b34 - b42 - b44),

56 c.-c. C~ou et al.

P74 = (a24 - a44) (b41 -~- b43 - b31 - b33),

P75 = (a13 - a33 -~ a14 - a34) (b42 -~- b44),

P76 = (~3 - ~43 - ~13 + ~33) (~31 + ~3s + ~ + ~ 4) ,

P77 : (a14 - a34 - a24 -~- a44) (b41 -]- b43 -~- b42 -~- b44).

Therefore, we have identified 7 x 7 = 49 MMs and naturally we will either use 7 or 49 processors
to perform the MMs. In either case, the MMs distributed to each processor can be performed by
the S-method, which leads to a perfect parallelization of the S-method.

After finishing these 49 MMs, we need to combine the resulting P/j V(i , j) _< 7 to form the final
product matrix

{__.11 512 ~13 C14 /
(On C12)= |_c21 ~22 ~2a ~24

C = ~kU21 U22 ~C31 C32 C33 C34 "
\ C41 C42 543 C44

First, we define some variables

5 / = ~ - 1 ' if i = 5 ;

t 1, otherwise.

-1 , if i = 2 ;
7 / = 1, otherwise.

$1 = {1,4,5,7}, S2 = {2,4}, $ 3 = {3,5}, and S 4 = {1,2,3,6}.

The 4 x 4 blocks of submatrices forming the product matrix C can be written as

~11 = ~ ~/ (P/1 + P/4 - P~5 + P/7) ,
iES1

C12 = E ~/ (t°/3 + P/5),
iESx

P/1 + P/4 - P/5 + PiT, ~13
iESs

-c14 = E P/3 + P/s;
iESs

C21 = E ~i (P/2 + P/4),
iEs1

i6 $1

P/2 + P/a, C23
46 $3

~24 = E P~I + P/3 - P~2 + P/6;
iESa

C31 = E Pi l + P/4 - Pi5 + PiT,
iES2

i6S2

e33 = E ^//(P/I + P/4 - P/5 + P/T),
iES4

C34 = E ^//(P,3 + P/51;
iEs4

Parallelizing Strassen's Method 57

~41 = ~ P~2 + Pi4,
iES2

~42 = ~ P~I + P~3 - P~2 + Pi6,
iES2

= Z (P,2 + P 4),
i6 $4

e44 = Z (P l + - + P 6).
i6S4

We have effectively parallelized the MMs. In fact, we can also group the matrix additions to

avoid repetitions in computing matrix sums and in communicating "raw" submatrices. This will

be discussed in the next section.

3.3. I m p l e m e n t a t i o n

O n 7 processors

If we use 7 processors, the implementation is easy. We need to distribute 8 submatrices to 7
processors and each processor will contain no more than three submatrices (the same memory
requirement as in the Ring method) so as to minimize the submatrix movement among processors.
There are several ways to do this efficiently, and Figure 1 illustrates one simple way for the
distribution.

On 49 processors

It is more complex to implement our method on 49 processors. In this case, we need to
distribute 32 submatrices to 49 processors with 3 submatrices each. We observe from equation (5)
and its expanded 49 MM expressions that submatrices P1, P6 and P7 have the same pat tern
(needing sums of two submatrices from A and two from B); P2 and P4 are similar; P3 and P5
are similar. Thus, we divide the 49 MMs into three groups, / '1 , /)6 and t°7 in Group 1; P2 and P4
in Group 2; P3 and P5 in Group 3. Figures 2-4 depict the submatrix distribution and the
multiplication processor for the three groups respectively. For Groups 1, 2, and 3, we need
16, 12, and 12 independent submatrices from ~ and b, respectively. The grouping has another
advantage; i.e., no communication occurs among all these groups; every 7 processors form a
cluster and there is no need for communication with any of the other 49 - 7 = 42 processors.
In addition, within each group, we perform additions before communication whenever possiAe.
The group size can be further reduced to localize the access of submatrices and therefore reduce
the communication.

4 . P E R F O R M A N C E C O M P A R I S O N

We have conducted timing tests for six methods, SL, SH, BL, BH, RL, and RH discussed
above, on a 56-node Paragon, a distributed-memory MIMD parallel computer. For each of these
six methods, we collect timing results for 1-, 7-, and 49-processors. The timing results are
tabulated in Tables 3-5.

In our tests, we first distribute the submatrix to all participating processors, and each processor
then performs its local matrix multiplication with the T-method. All three methods, SL, BL,
and RL, share one identical local routine supplied by the vendor (which is tailored to deliver
maximum flops from the i860 processor), while the other three methods, SH, BH, and RH, share
another identical local routine we created with Fortran. The entire test is done on single precision.

With these data from the three tables (Tables 3-5), we make three sets of plots: Figures 5-7.
These figures show the matrix order vs. performance time for processor numbers P -- 1, 7, 49 in
log-log plot.

Two points are very clear from examining the figures:

Parallelizing Strsssen’s Method 59

#3

Figure 2. A “map” for the data movements in computing Group 1 submatrices: &i, Psz, fii
V(i, j) 5 i. The first column shows the initial submatrix distribution to the processors marked as
#l, , #7. The second column shows the formation of the intermediate matrices Si Vi 5 8 except
for i = 6, which is done at the third step in which a communication is needed. The communications
and calculations are arranged so that only six steps are needed to compute the matrix products.
The short arrow with a label like #l show that the submatrix in the box pointed by the arrow is
from processor 1.

Parallelizing Strassen's Method 59

f
l - - ~ l
[_ _ 1 I

I " "] " l " I t " i_z_- J - -

/ I

[a:;i.--....-~[s, l - - ' - -
~ Z / [_

| r - - t r -

' I

1 I - - - -] / ! - - - -
~. l i l I / ! _ I - -

/

- - - i 8 2 / /

I [----

I I I _ ~,

, , - - i i s ! ~___1 i L _ _ ; i % 1_ >A3
l - - - - I #3 ---~+l-~ '

| , F ~ I i / I 1 I I - " I

K , I ~_!!_l [I L I L _ _

i i

i I :

- - - - - i f - - - -
! $ 4 / , I i , ~ _ !

L ~ A ~ l 1 i - - -
[_ _ 1 { _ _ _

, i i F T i -
I I - - L _ _ " - - l ' " L.D2
I - - - - I 1 - - - - ! I - - - -
t _ _ l t _ _ ~ t _ _

r - - - - - i I ̧- -
L I !

i I ..____.,.),
- - i I /.-:" ~
! ~ i i - - - - I

I

#4 , r b : > , : _ 7 . ~ _ _ - - ' ~__ L _ _ , - - , I

~---#~l--__--,,__,--7~j , ,
5 F ~ . / , 1 , [I / ' [- - - - B 5 t L P ~ " l 1 _ $4 - - L . I . - - / - - - L --i [

...... f r i , ~ , 1 ~"~ ' ~ l/ [r - - i ~ - -
• ~ : 3 t I ~ - - . , . - - , _ l I t,i>.. 1 I J I

~ ' t i ~ f - - - / I I i I I ~
6 ~ ," L__ > ~ , , J ~ . , , , ___ , - -<__ ,~L , ,_ , ,

F ~ , ' ' , , ~s---/ , - - , E s T] - ' ' L i ~ ,~L s L _ _ ~ ~ , . i

(:a=,] ;~-J--i

• - - [

/ r - - S T - -
.

i t _ _

r - - - I / I - I
I 7 [I

i~] / I I
• ' ° l i J I I

I - I ]
[_ _ 1 I

/
t I

Figure 2. A "map" for the da ta movements in computing Group 1 submatrices: Pli, P6i, PTi
V(i, j) ~ i. The first column shows the initial submatr ix distr ibution to the processors marked as
1 , . . . , #7 . The second column shows the formation of the intermediate matrices Si Vi < 8 except
for i = 6, which is done at the third step in which a communication is needed. The communicat ions
and calculations are arranged so that only six steps are needed to compute the matr ix products .
The shor t arrow with a label like # 1 show tha t the submatr ix in the box pointed by the arrow is
from processor 1.

60 C.-C. CHou et al.

1
/I + , , ~ - - - p ~ , , L I

' " "

. / i__1------71 ~3 J - - t . _ _ l / - ~ t _ _

~, ~-a.] t - - ' - / ' ' _ ~ :] / ' J / / :. I ! ~ ' z l I _ _ _ I : I

r - ~ , _ _] L .] + ,
+ / I': I l - # 2 t a , , + l ,

i - - i

- - L _ _ l

[- - - - 1
L _ _ I

3

I - - - - i--A----] I i
[. " - - - - ~ 1 x 'x2 I t _ _ l

: i / : ' _ +D-_-I
k I ~ L r - - - ' - - ~ 2 1

@ l__S_..2; I I i f - - I i I . _ _ l I I

I
f I I [I [~ + ~ I I
t I L L t _ t _ ~ . . t _ + - - - - ' I ~31 i ,

- -1 ~ +"r + I - - - - I F - ~ - q
L-~- - - -~ lW]- - ' t -___ , - -~__: ~__,--,-t ._D+ +3,

- ~] i / I I r - - - - I l - - - - i I I I - - - - I
I I [I [_ t I I [. . . . I

f l i r--~ [$2 ,_ t t _ _ ~ .J _ _ _

- - - i ~ I - - - #4 ~---~ s,j--~_

. . . . [

- - I - - ~ A , " ¸ I _ _ t

I I - - - -
. . . . l _ _ I . _ _

Parallelizing Strassen's Method 61

1

(i ~ ~ [i " - " - '~ [. .S 1 ~ " ~ 1 1 [, [____l

I u a , ~ I - - - - 7 / o 3 I - - - - " ~ L _ _ _ I t _ __ I ~ L _ _ r ~ - ~ . ~ I . i) 1 I

~ [- - h :~ l . . / I - - 1 / I - - I I - - ~ ~ . / / I - - i
' , , , t " - " ' t - ~ _ = L / t n ¢ i ~ . L ~ 2 _ i " : _ _ !

/ I

l"r A~ L_ _ I ! . ~:.L_.~2_2__J - -

L _ _ I

: _ _ l ~ L _ _ I

I h : / (1 I I I
L , , ~ t , l I L I I I

..........

. _ _ - -]

f - - - - t ~----1
L I ~.__1

I I

. _ _ I_ ._1

L___ t _ _ i

- - 1 - - - I

_ _] I

[-- -- '1 l-:~;---]

L.__l -_[II$4'

I [I
l 1 ,

#4 b~-~-~[-S-~
[-h -~] / / I - - 1
L_~2J ! I

~ - - - 1 i ~ I I ~ . 4 L ~ i I f I
i :1.11 j ~ ! ~ 9 1 I > i - ~ 5 1 / i i \ / . .

_ _ \t_.___, t : t _ _ l t _ _ i t _ _ l

I ~ 2 z I - - t _ _ l - - - - ~ ! ;~101 > : X~h,6 [_ _ 1 L _ _ l
i i - - - I - - [- - - I " #6 . _ _

L[--C---i _ / I l I I i=-I / I I

F ~ - - - - / / [- - I ~ t - - i
/ ~ 2 2 L _ _ I ~] _ . o e _ l t _ _ I

I i I I " i 1 1 I
L I t _ _ l L I L I

[- - - - r----1
[_ _ L _ _ l

I / L :

~ - ~ / / I i
L__ J ,,~'¢e'a., ~

Figure 4. Similar to Figure 2, but for Group 3 submatrices: P3i and Psi Vi < 7.

62 C.-C. Cttots e t al.

T

0.I

SL

~7 Z

2f~ " j / / /
.2 ,f

I

~ ~/ ,"

/"

/

Z !

/

I

200 500 1000 2000 5000

$tt

' P = l V P=7,: ,>=_4y
d P "FPP /

i / i i / / / / /

i / , f /
/ /

~.+" i,,,'
r J

i .t ./ I t~,

_.- -'$.'- - ..'"

200 500 1000 20IX) 5000 M

Figure 5. These two graphs show the time (in units of seconds) vs. the matr ix order on 1, 7, and
49 processors wi th the methods of SL and SH. The points (connected by the dotted lines) are the
collected data while the straight lines are the fitted results. The figures are a log-log plot.

Paxailelizing Strassen's Method

BL

63

!00
/

J
.;/;P /

"" ,,f,,/"
S ,*"

s . ; ~ e, °

L ~ "4 f . / ' ,,, 'j

BH

/
I

/
J

/
J

/

5oo0

/
/

/
/

f l

i 11

J ii" // /r
.,f

4 ,~"

f s ' ,"
f s , "

! 7 /
• J j s"

/ ".,~./ . ~" ,.,,"
II ~'* u j j j

t , ~ J j " ,, eS

t"
... ,t

/ ,t

,J i t "°
!000 2000 ~ M

Figure 6. These two graphs show the t ime (in units of seconds) vs. the matrix order on 1, 7, and
49 processors with the methods of BL and BH, The points (connected by the dotted lines) axe the
collected data while the straight lines are the fitted results. The figures axe a log-log plot.

64

T

C.-C. CHOU et al.

R L

!00

P-~.9 /
1

t"
,..>, / ,"

¢ , / '

i i ~,.f
.'~ ,d,

/ ÷" io . , / :S
/ / .;..'. / -:-:;-'.-" ,,. -.J/

l 2..." I "

." I¢" / /

500 I000 2000 5000 10(300

RH

P.=-A9/ /
/

/
/

/
/"

I•->P # .

F=- I P .#

, / i I I
/ / 1 / / / I

/
/ / ...r.

/ / . , . , . . . ; ,.,,',.

@./ ~ /

5O0 i000 2OOO 5000 !0000 M

Figure 7. These two graphs show the time (in units of seconds) vs, the matrix order on I, 7, and
49 processors with the methods of RL and RH. The points (connected by the dotted lines) axe the
collected data while the straight lines are the fitted results. The figures axe a log-log plot.

Parallelizing Strassen 's Method 65

Table 2. This table contains the six sets of coefficients a and f~ tha t appear in equation (5). Three
sets are for the Ring method using 1, 7, and 49 processors and the other three are for our method
using 1, 7, and 49 processors. The t iming model is T = a M f~, where a is in units of 10 -9 seconds
and j3 is dimensionless.

Processors

Method\Coeff

SL

SH

BL

BH

RL

RH

1 7 49

25.6 2.9815 9.80 2.8459 1.85 2.8146

146 2.8342 45.3 2.7323 7.10 2.7311

31.8 2.9502 13.1 2.8240 1.54 2.8644

60.3 2.9914 33.4 2.8253 2.05 2.9368

30.5 2.9565 25.6 2.7528 30.5 2.5685

60.1 2.9921 12.4 2.9465 2.19 2.9330

Table 3. This table shows the t ime (in units of seconds) spent on MM for several matr ix orders M
using P = 1, 7, 49 processors. Using methods of SH and SL.

Methods SL S H

M \ P 1 7 49 1 7 49

128 0.10 0.22 0.30 0.14 0.13 0.17

256 0.44 0.27 0.31 0.97 0.26 0.19

400 1.50 0.45 0.34 3.52 0.66 0.25

480 2.50 0.58 0.32 5.81 1.01 0.31

512 3.04 0.70 0.38 6.87 1.16 0.32

640 5.94 1.11 0.44 12.97 2.07 0.47

800 11.48 1.91 0.57 24.93 3.86 0.75

1024 24.14 3.60 0.82 48.83 7.37 1.27

1152 34.27 4.96 0.99 68.37 10.24 1.70

1280 47.10 6.74 1.27 91.90 13.69 2.20

1408 62.94 8.77 1.55 124.25 17.85 2.81

1600 12.61 2.07 26.01 4.02

1664 14.13 2.27 28.97 4.46

1792 17.44 2.74 35.29 5.41

1920 21.32 3.26 42.71 6.49

2048 25.84 3.84 50.52 7.62

2176 30.86 4.66 60.22 9.19

2304 36.39 5.37 70.52 10.71

2432 42.74 6.26 82.12 12.42

2560 49.69 7.22 94.52 14.27

2816 66.06 9.39 18.53

3072 11.89 24.11

3328 14.94 29.90

3584 18.40 36.35

3840 22.40 43.91

4096 27.08 51.86

4352 32.27 61.71

4608 37.97 72.22

4864 44.48 83.98

4992 47.90 90.26

5120 51.57 96.63

5632 68.50

Ckl4~ 30-2-F

66

(1)

(2)

C.-C. CHOU et al.

for small matr ices , there exist large "star t up" costs for d is t r ibut ing the submat r ices and

the t iming does not follow any pat tern , and

when the matr ices are sufficiently large (typical order: M >_ 1000 for 7 processors and

M _> 2000 for 49 processors), the t iming does follow

T (M) = a M ~. (5)

This suggests t ha t a f i t t ing of our sufficiently many da ta points for large matr ices to the above

form should cap ture the t iming behavior. The result ing lines in log-log plot are very s t ra ight and

the coefficients (a and/3) for these lines are t abu la ted in Table 2.

Table 4. This table shows the time (in units of seconds) spent on MM for several matrix orders M
using P = 1, 7,49 processors. Using methods of BH and BL.

Methods BL BH

M\P 1 7 49 1 7 49

245 0.41 0.59 1.43 0.91 0.68 1.28

294 0.63 0.61 1.44 1.55 0.78 1.30

343 0.97 0.66 1.46 2.46 0.93 1.31

392 1.42 0.80 1.47 3.43 1.06 1.33

490 2.71 0.99 1.50 6.82 1.82 1.48

539 3.58 1.12 1.56 9.12 2.14 1.54

637 5.86 1.45 1.60 14.62 3.38 1.73

784 10.85 2.27 1.72 26.63 4.87 1.94

1029 24.59 4.35 2.10 62.99 11.37 2.94

1274 46.44 7.65 2.60 117 .68 19.71 4.15

1421 65.06 10.47 3.04 162 .99 27.64 5.31

1617 14.86 3.72 39.48 7.15

1911 23.84 5.05 61.02 10.28

2156 33.57 6.62 83.97 13.62

2303 40.80 7.74 105.02 16.70

2450 48.56 8.89 127.22 19.90

2548 54.60 9.79 137.02 21.37

2695 64.31 11.34 165.58 25.57

2940 82.36 13.94 207.83 31.68

3185 104.89 17.45 275.72 41.66

3332 19.48 45.21

3577 23.79 57.56

3822 28.54 68.63

4067 34.21 81.62

4361 41.84 101.52

4606 48.88 117.60

4851 56.76 135.96

5096 65.22 154.64

5586 84.73 206.09

6370 124.64 302.55

6860 155.04 370.50

7350 190.46 474,96

7644 213.69 526.13

The six sets of coefficients, three for Ring me thod and three for our method , are t abu l a t ed in

Table 2. Using equat ion (5), we compute the t iming ratios of our m e t h o d to the Ring m e t h o d at

typical ma t r ix orders on 1, 7, and 49 processors. The results are t abu la ted in Table 6.

Paxallelizing Strassen's Method

Table 5. This table shows the time (in units of seconds) spent on MM for several matrix orders M
using P : 1, 7, 49 processors. Using methods of R!-I and RL.

Methods R L R H

M \ P 1 7 49 1 7 49

490 2.69 0.89 6.81 1.05 0.29

539 3.58 1.17 9.12 1.43 0.40

637 5.86 1.58 14.61 2.26 0.57

784 10.85 2.54 1.59 26.64 3.98 0.80

1029 24.57 5.10 2.94 62.96 9.39 1.86

1274 46.43 8.76 4.71 117.56 17.34 2.97

1421 65.03 12.13 5.31 162.80 24.13 4.29

1617 16.97 6.61 34.98 6.07

1911 26.89 9.97 57.50 9.71

2156 37.48 12.51 82.31 12.96

2303 45.50 15.33 101.04 16.47

2450 53.71 16.32 120.35 18.83

2548 60.30 18.05 134.39 20.93

2695 70.84 20.86 160.05 25.62

2940 90.11 24.42 204.83 31.66

3185 114.26 31.41 263.59 41.77

3332 129.31 33.97 299.12 46.49

3577 167.85 42.41 370.97 58.82

3822 48.45 70.51

4067 58.33 85.33

4361 69.03 104.79

4606 78.63 121.38

4851 89.23 142.79

5096 99.84 161.92

5586 125.75 213.22

6370 179.29 314.35

6860 216.01 388.25

7350 258.20 477.89

7644 287.19 534.55

8134 342.56 642.08

8918 436.38 844.08

10045 1203.98

10192 1249.38

67

Table 6. This table shows the t iming ratios of the three pairs of methods (SL, SH, BL, BH, RL,
RH) tested in our s tudy at typical matrix orders M on P : 7, 49 processors. The numbers in the
row for method SL axe the absolute t imes in units of seconds while the numbers in the remaining
five rows axe the t ime "in units of" the corresponding t imes taken by method SL.

Processors P = 7 P ---- 49

Methods \M i000 2000 3000 4000 5000 6000

SL tl = 3.38 t2 = 24.31 t3 = 77.08 t4 = 25.44 t5 -- 47.68 t6 ---- 79.65

SH 2.11ti 1.95t2 1.87t3 1.92t4 1.88~5 1.86t6

BL 1.17ti 1.15t2 1.14t3 1.26t4 1.27ts 1.28ts

BH 2.96tl 2.92t2 2.89t3 3.05t4 3.14t$ 3.21ts

KL 1.37tl 1.29t2 1.24t3 2.14t4 2.03is 1.94t6

RH 2.53ti 2.72t2 2.83t3 3.16t4 3.25t5 3.32t6

68 C.-C. CHOU et al.

W i t h the coefficients in Table 6 and the equa t ion (5), we can compu te the exac t costs of

mul t ip ly ing cer ta in m a t r i x on P = 7, 49 processors by using any one of the six me thods . The

first hal f of the t ab le shows the costs of mul t ip ly ing mat r ices of orders M = 1000, 2000, 3000 on

P = 7 while the next half the costs on orders M = 4000, 5000, 6000 on P = 49. In the first row

(for m e t h o d SL), we list the exact t ime in uni ts of seconds, while in the r ema in ing five rows list

the t imes "in uni ts of" the t imes in the cor responding first row. F rom this table , we not ice (1)

SL m e t h o d is always 15-30% faster t han BL, bu t abou t 30% (for P = 7) and a b o u t 100% (for

P = 49) fas ter t h a n RL.

5. C O N C L U S I O N S

Our tes t s suggest t h a t a global para l le l iza t ion of the S -me thod is a lways more efficient t h a n

the o the r popu la r methods : B M R and the Ring methods . I t not only reduces the t o t a l number

of f loa t ing-poin t opera t ions , bu t also reduces the communica t ion . The shor tcomings for the

S -me thod are:

(1) the number of processors is "quant ized," which des t roys the f lexibi l i ty of using an a r b i t r a r y

number of processors ,

(2) the p a t t e r n of communica t ion is qui te random, which causes difficulty for imp lemen ta t ion ,

and

(3) the S -me thod has some problems in numer ica l s t ab i l i ty as recognized by o the r research-

ers [10].

This s t ab i l i ty p rob lem is not a serious p rob lem and the gain in speed in using the S -me thod indeed

just if ies i ts value in app l ica t ions where speed is impor t an t . We are in the process of reduc ing the

p rob lems in (1) and (2).

In the case of 49 processors , we have 32 submatr ices . If we crea te th ree s u b m a t r i x slots on

each processor , each s u b m a t r i x is r epea t ed ly d i s t r i bu t ed for 3 x 49/32 = 4.6 t imes. We are

developing a new scheme to d i s t r ibu te these submat r i ces based on the i r occurrence "frequency"

in the 49 formulae for Pij V(i, j) <_ 7. The more they appear , the more often we d i s t r i bu t e them.

This m a y ye t reduce the cost of moving submat r i ces around.

In addi t ion , we are app ly ing the ideas presented in this p a p e r to the W i n o g r a d me thod .

R E F E R E N C E S
1. G.H. Golub and C.F. Van Loan, Matrix Computations, 2 nd edition, John Hopkins University Press, Balti-

more, MD, (1989).
2. V. Pan, How can we speed up matrix multiplication?, SIAM Reviews 26, 393-415 (1984).
3. V. Strassen, Gaussian elimination is not optimal, Numer. Math. 13, 354-356 (1969).
4. D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, In Proceeding o / the

Nineteenth Annual A C M Symposium on Theory of Computing, pp. 1-6, (1987).
5. S. Winograd, Some remarks on fast multiplication of polynomials, In Complexity of Sequential and Parallel

Numerical Algorithms, (Edited by J. Traub), pp. 181-196, Academic Press, (1973).
6. S.-T. Yau and Y.Y. Lu, Reducing the symmetric matrix eigenvalue problem to matrix multiplications, SIAM

Journal on Scientific Computing 14, 121-144 (1993).
7. K.A. Gallivan, R.J. Plemmons and A.H. Sameh, Parallel algorithms for dense linear algebra computations,

SIAM Rev. 32, 54-135 (1990).
8. U. Manber, Introduction to Algorithms, Addison-Wesley, Reading, MA, (1989).
9. D. Bailey, Extra high speed matrix multiplication on the CRAY-2, SIAM J. Sei. Statist. Comput. 9,603-607

(1988).
10. P. Bjcrstad, F. Manne, T. Screvik and M. Vajter~ic, Efficient matrix multiplication on SIMD computers,

SIAM J. Anal. Appl. 13, 386-401 (1992).
11. D. Scott, Private communication, Supercomputer Systems Division of Intel Corporation, Beaverton, OR,

(March 1994).
12. J. Choi, J.J. Dongarra and D.W. Walker, PUMMA: Parallel Universal Matrix Multiplication Algorithms on

distributed memory concurrent computers, Technical Report TM-12252, Oak Ridge National Laboratory,
(August 1993).

13. G.C. Fox, A.I. Hey and S. Otto, Matrix algorithms on the hypercube I: Matrix multiplication, Parallel
Computing 4, 17 (1987).

Parallelizing Strassen's Method 69

14. S. Huss-Lederman, A. Tsao, E.M. Jacobson and G. Zhang, Matrix multiplication on Intel Touchstone Delta,
Technical Report: TR-93-101, SRC, (February 1994).

15. Kuck and Associates, CLASSPACK Basic Math Library User's Guide, Kuck & Associates, Champaign, IL,
(December 1992).

16. G.C. Fox, M.A. Johnson, G. Lyzenga, S.W. Otto, J. Salmon and D. Walker, Solving Problems on Concurrent
Processors, Vol. 1, General Techniques and Regular Problems, Prentice-Hall, Englewood Cliffs, N J, (1988).

17. N.J. Higham, Exploiting fast matrix multiplication within the level 3 BLAS, ACM Trans. Math Software
16, 112-115 (1990).

