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A real-time process algebra, called ACSR, has been developed to
facilitate the specification and analysis of real-time systems. ACSR sup-
ports synchronous timed actions and asynchronous instantaneous events.
Timed actions are used to represent the usage of resources and to model
the passage of time. Events are used to capture synchronization between
processes. To be able to specify real-time systems accurately, ACSR
supports a notion of priority that can be used to arbitrate among timed
actions competing for the use of resources and among events that are
ready for synchronization. In addition to operators common to process
algebra, ACSR includes the scope operator, which can be used to model
timeouts and interrupts. Equivalence between ACSR terms is based on
the notion of strong bisimulation. This paper briefly describes the syntax
and semantics of ACSR and then presents a set of algebraic laws that can
be used to prove equivalence of ACSR processes. The contribution of this
paper is the soundness and completeness proofs of this set of laws. The
completeness proof is for finite-state ACSR processes, which are defined
to be processes without free variables under parallel operator or scope
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1. INTRODUCTION

Process algebras, such as CCS (Milner, 1989), CSP (Hoare, 1985), Acceptance
Trees (Hennessy, 1988), and ACP (Bergstra and Klop, 1985), have been developed
to describe and analyze communicating, concurrently executing systems. They are
based on the premise that the two essential notions in understanding complex
dynamic systems are concurrency and communication. Process algebras without the
notion of time are being used widely in specifying and verifying concurrent systems.
To expand their usefulness to real-time systems, several real-time process algebras
have been developed by adding the notion of time and including a set of timing
operators; e.g., Baeten and Bergstra (1991, 1992), Davies and Schneider (1995),
Hennessy and Regan (1990, 1995), Moller and Tofts (1990), Nicollin and Sifakis
(1994), Reed and Roscoe (1987), and Yi (1991).

The most salient aspect of process algebras is that they support the modular
specification and verification of a system. This is due to the algebraic laws that form
a compositional proof system, and thus, it is possible to verify the whole system by
reasoning about its parts. The reasoning on processes expressed by process algebras
is usually based on the notion of bisimulation. One advantage of using bisimulation
is that bisimulation can be characterized by a set of axioms (i.e., equational laws).
Applying such a set of axioms, one can show that two processes are equal up to
bisimulation. Milner (1984) provides the complete axiomatization of bisimulation
for regular CCS processes. Since then, the complete axiomatizations of bisimulation
for subsets of timed process algebras have been presented and have shown that
bisimulations which deal with timed behaviors are as mathematically tractable as
the standard untimed ones; e.g., Klusener (1991), Moller and Tofts (1990), and Yi
(1991).

Algebra of Communicating Shared Resource (ACSR), introduced by Lee et al.
(1994), is a timed process algebra which can be regarded as an extension of CCS.
ACSR supports the notions of resources, priorities, interrupt, timeout, and process
structure. The notion of real time in ACSR is quantative and discrete and is accom-
modated using the concept of timed actions. The execution of a timed action takes
one time unit and consumes a set of resources defined in the timed action during
that one time unit period. The execution of a timed action is subject to the
availability of resources it uses. The contention for resources is arbitrated according
to the priorities of competing actions. To ensure the uniform progression of time,
processes execute timed actions synchronously.
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Similar to CCS, the execution of an event is instantaneous and never consumes
any resource. The notion of communication is modeled using events through the
execution of complementary events, which are then converted into an internal
event. As with timed actions, priorities are also used to arbitrate the choice of
several events that are possible at the same time. Although the concurrency model
of CCS-like process algebras is based on interleaving semantics, ACSR includes
interleaving semantics for events as well as lock-step parallelism for timed actions.
This is because we assume that events occur instantaneously, whereas the execution
of a timed action takes one time unit and consumes a set of resources during that
time. Therefore, the ACSR axioms for bisimulation deal with both interleaving
behavior of instantaneous events as well as lock-step parallelism of timed actions.

The main purpose of this paper is to show the complete axiomatization of a sub-
set of ACSR processes. Since a process expressed by ACSR can be of infinite states,
completeness does not hold in general. However, a complete axiomatization can be
obtained by restricting the syntax to ensure finite state processes. The complete
axiomatization has been studied by Milner (1984, 1989a) for a subset of CCS pro-
cesses called ``finite state agents,'' which are processes coded without the parallel
operator. Since the restriction operator becomes unnecessary without the parallel
operator, it has been omitted as well. Although the main idea of our proof is essen-
tially similar to that of Milner's proof of completeness for an axiom system, it is
possible to generate infinite state processes in ACSR even without the parallel
operator, in contrast to CCS. For example, the use of the recursion operator com-
bined with real-time operators such as timeout and interrupt can result in an
infinite state process. Thus, we consider a subset of ACSR processes that do not
recur through the parallel or real-time operators and prove that our axiomatization
is complete for this subset. Since CCS is a subset of ACSR, our result can also be
applied to CCS with the restriction and parallel operators, and thus extends the
completeness result of CCS (Milner, 1989a).

Our soundness proof differs from Milner's proof (Milner, 1989), which uses the
definition of bisimulation in the case analysis of possible behaviors. Our proof is
based on the set of derivations of a process: whenever two processes have the same
derivation set, the two processes are bisimilar. Our soundness proof seems to be
clear and compact.

ACSR is an extension of another real-time process algebra, called CCSR (Gerber
and Lee, 1994), which shares many aspects of ACSR. In particular, CCSR was the
first process algebra to support the notions of both resources and priorities. CCSR,
however, lacks instantaneous synchronization since all actions take exactly one
time unit. Lee et al. (1994) extended CCSR by introducing the notion of instan-
taneous events and synchronization, and also developed a set of laws complete for
finite processes. This paper extends the set of laws to finite state processes. We note
that there are other process algebras that support the notion of priorities, including
Baeten et al. (1987), Camilleri and Winskel (1991), and Cleaveland and Hennessy
(1990). Their approaches are overviewed and compared by Gerber and Lee (1994).

The rest of the paper is organized as follows. In Section 2, we briefly introduce
the computation model. In Section 3, we present the syntax of the algebra and
describe the operational semantics. Section 4 defines the notion of equivalence and
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describes a set of equational laws that can be used to show the equivalence of two
terms through syntactic manipulation. Section 5 contains a proof of soundness of
the ACSR laws, followed in Section 6 by a proof of completeness for a syntacti-
cally characterized subset of the finite state processes. We conclude in Section 7 by
discussing possible extensions of this work.

2. THE COMPUTATION MODEL

In our algebra there are two types of actions: those which consume time, and
those which are instantaneous. The time-consuming actions represent the progress
of one time unit of a global clock. These actions may also represent the consump-
tion of resources, e.g., CPUs in the system configuration. On the other hand, the
instantaneous actions (or events) provide a basic mechanism for synchronization
and communication between concurrent processes.

Timed Actions. We consider a system to be composed of a finite set of serially
reusable resources, denoted by R. An action that consumes one ``tick'' of time is
drawn from the domain P(R_N), with the restriction that each resource is
represented at most once. As an example, the singleton action, [(r, p)], denotes the
use of some resource r # R running at the priority level p. The action < represents
idling for one time unit, since no resuable resource is consumed.

We use DR to denote the domain of timed actions, and we let A, B, C range
over DR . We define \(A) to be the set of resources used by the action A; e.g.,
\([(r1 , p1), (r2 , p2)])=[r1 , r2]. We also use ?r(A) to denote the priority level of
the action A in the resource r; e.g., ?r1

([(r1 , p1), (r2 , p2)])=p1 . By convention, if r
is not in \(A), then ?r(A)=0.

Instantaneous Events. We call instantaneous actions events, which provide the
basic synchronization in our process algebra. An event is denoted by a pair (a, p),
where a is the label of the event, and p is its priority. Labels are drawn from the
set L _ L� _ [{], where if a is a given label, we say that a� is its inverse label; i.e.,
a�� =a. As in CCS, the special identity label, {, arises when two events with inverse
labels are executed in parallel.

We use DE to denote the domain of events and let e, f, and g range over DE . We
use l(e) and ?(e) to represent the label and priority, respectively, of the event e.

Finally, the entire domain of actions is D=DR _ DE , and we let : and ; range
over D.

The executions of a process are defined by a timed labelled transition system
(timed LTS). A timed LTS M is defined as (P, D, � ) , where (1) P is a set of
ACSR processes, ranged over by P, Q; (2) D is a set of actions, and (3) � is a
labeled transition relation such that P w�: Q if the process P may perform an
instantaneous event or timed action : and then it behaves as Q.

For example, a process P1 may have the following behavior:

P1 w�
:1 P2 w�

:2 P3 w�
:3 } } } .
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That is, P1 first executes :1 and evolves into P2 , which executes :2 , etc. It takes no
time to execute an instantaneous event. But in the case of a timed action, the action
is executed for exactly one unit of time, during which P consumes the resources
specified in the action, and then P evolves to Q.

3. THE SYNTAX AND OPERATIONAL SEMANTICS

The following grammar describes the syntax of processes:

P ::=NIL | A:P | e.P | P+P | P&P |

P qb
t (P, P, P) | [P]I | P"F | rec X.P | X

Table 1 shows the unprioritized operational semantics of ACSR defined as a struc-
tured transition system.

NIL is a process that executes no action (i.e., it is initially deadlocked). Since
NIL executes no action, it has no transition rule.

TABLE 1

Unprioritized Transition Relation �
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There are two prefix operators, corresponding to the two types of actions. Rule
ActT is for a time-consuming action, and rule ActI is for an instantaneous action.
For example, the process [(r1 , p1), (r2 , p2)]:P simultaneously uses resources r1 and
r2 for one time unit, and then executes P. Alternatively, the process (a, p).P
executes the event ``(a, p)'' and proceeds to P. There are times when we do not want
to distinguish between timed and untimed prefixes; in those cases we will use
juxtaposition with a generic action. For example, :P stands for ::P if : # DR and
for :.P if : # DE .

The Choice operator P+Q allows either of the processes to be chosen to execute,
subject to the constraints of the environment. Rule ChoiceL and ChoiceR are for the
choice operator and identical for both timed actions and instantaneous events (and
hence we use ``:'' as the label).

The operator P&Q is the parallel composition of P and Q. The first rule, ParT,
is for two time-consuming transitions. Note that timed transitions are truly syn-
chronous, in that the resulting process advances only if both of the constituents
take a step. The condition \(A1) & \(A2)=< mandates that each resource be truly
sequential, and that only one process may use a given resource during any time
step. The next rules, ParCom, ParIL, and ParIR, are for event transitions. As
opposed to timed actions, events may occur asynchronously (as in CCS and related
interleaving models). The two rules ParIL and ParIR show that events may be
arbitrarily interleaved. The rule ParCom is for two synchronizing processes; that is,
P executes an event with the label a, while Q executes an event with the inverse
label a� . Note that when the two events synchronize, their resulting priority is the
sum of their constituent priorities. This definition of ParCom helps to ensure that
the parallel composition is associative and also that the relative priority ordering
among events with the same labels remains consistent even after communication
takes places.

The Scope construct P qb
t (Q, R, S) binds the process P by a temporal scope

(Lee and Gehlot, 1985), and incorporates both the features of timeouts and inter-
rupts. We call t the time bound, where t # N+ _ [�] (i.e., t is either a non-negative
integer or infinity). P executes for a maximum of t time units. The first two rules,
ScopeCT and ScopeCI, show that as long as t>0 and P fails to execute an event
labelled with b� , the executions of P continue. The scope may be exited in a number
of ways. First, by the rule ScopeE, if P successfully terminates within time t by
executing an event labeled with b� , then control proceeds to the ``success-handler'' Q
(here, b may be any label other than {). Second, by the rule ScopeT, if P fails to
terminate within time t, then control proceeds to the ``timeout exception-handler''
R. Last, by the ScopeI, at any time while P is executing it may be interrupted by
S's execution of a timed action or instantaneous event, and the scope is then
departed.

The Close operator, [P]I , produces a process P that monopolizes the resources
in I�R. While Restriction assigns dedicated channels to processes, the Close
operator assigns dedicated resources. Rules CloseI and CloseT describe the
behaviors of the close operator. When a process P is embedded in a closed context
such as [P]I , we ensure that there is no further sharing of the resources in I.
Assume that P executes a time-consuming action A. If A utilizes less than the full
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resource set I, the action is augmented with (r, 0) pairs for each unused resource
r # I&\(A). The way to interpret Close is as follows. A process may idle in two
ways��it may release its resources during the idle time (represented by <), or it
may hold them. Close ensures that the resources are held. (Instantaneous events are
not affected.)

The Restriction operator, PF, limits the behavior of P: events with labels
in F are permitted to execute only if they synchronize and become the internal
event {. The Restriction operator defines a subset of instantaneous events that are
excluded from the behavior of the system as shown in ResI and ResT. This is done
by establishing a set of labels, F ({ � F ), and deriving only those behaviors that do
not involve events with those labels. Time-consuming actions, on the other hand,
remain unaffected.

The process rec X.P denotes standard recursion, allowing the specification of
infinite behaviors. The term X, without a ``rec'' binding, is a free variable that
belongs to the infinite set FV. Rule Rec shows that the operator rec X.P denotes
recursion, allowing the specification of infinite behaviors. In rule Rec, P[ rec X.P�X]
is the standard notation for substitution of rec X.P for each free occurrence of X
in P.

The semantics is defined in two steps. First, we develop the unconstrained
transition system, where a transition is denoted as P w�: P$. Within ``�'' no priority
arbitration is made between actions; rather, we subsequently refine ``�''
to define our prioritized transition system, ``�? .'' The bisimulation introduced
later is based on the prioritized transition system, and called prioritized strong
bisimulation.

3.1. Preemption and Prioritized Transitions

The prioritized transition system is based on the notion of preemption, which
incorporates our treatment of synchronization, resource-sharing, and priority. The
definition of preemption is based on priorites assigned to events and resources. We
define a binary relation O such that for two actions : and ;, :O; iff : is
preempted by ;. That means if a process P can execute either : or ; at a time, P
will never execute :, because the priority of ; is higher than that of :.

Definition 3.1 (Preemption Relation). For two actions, :, ;, we say that ;
preempts : (:O;), if one of the following cases hold:

(1) Both : and ; are timed actions in DR , where

(i) \(;)�\(:),

(ii) \r.?r(:)�?r(;), and

(iii) _r.?r(:)<?r(;)

(2) Both : and ; are events in DE , where ?(:)<?(;) 7 l(:)=l(;)

(3) : # DR and ; # DE , with l(;)={ and ?(;)>0.
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Case (1) shows that the two timed actions, : and ;, compete for common
resources, and in fact, the preempted action : may use a superset of ;'s resources.
However, ; uses all the resources at least the same priority level as : (recall that
?r(B) is, by convention, 0 when r is not in B). Thus, for any resource r in
\(:)&\(;), the priority of r in : must be zero in order that ; may preempt :. Also,
; uses at least one resource at a higher level. For instance, [(r1 , 2), (r2 , 0)]O
[(r1 , 7)] but [(r1 , 2), (r2 , 1)]O� [(r1 , 7)].

Case (2) shows that an event may be preempted by another event sharing the
same label, but with a higher priority. For example, ({, 1)O ({, 2), (a, 2)O (a, 5),
and (a, 1)O� (b, 2) if a{b.

Finally, case (3) shows the single case in which an event and a timed action are
comparable under ``O .'' That is, if n>0 in an event ({, n), we let the event preempt
any timed action. For instance, [(r1 , 2), (r2 , 5)]O ({, 2), but [(r1 , 2), (r2 , 5)]O� ({, 0).

We define the prioritized transition system ``�? ,'' which simply refines ``�'' to
account for preemption.

Definition 3.2. The labelled transition system ``�?'' is defined as follows:
P w�: P$ if and only if

(a) P w�: P$ is an unprioritized transition, and

(b) There is no unprioritized transition P w�; P" such that :O;.

3.2. Preemptive Static Priority Scheduler

To illustrate the expressiveness of ACSR, we describe a set of periodic tasks
which are to execute on a single processor. The deadline of a task defines the latest
time by which the execution of the task must finish and is assumed to equal to
its period. To resolve contention over the processor, we use a rate-monotonic
scheduler, which assigns to each task a static priority that is inversely proportional
to its period; that is, a task with a shorter period is assigned a higher priority than
a task with a longer period. To make the example more readable, we augment the
ACSR syntax with a definition operator as well as indexed processes and events.
We use X =def P to refer to the process expression P by the process name X. We use
subscripts to define indexed processes and events, e.g., P1 and (a2 , p).

Figure 1 shows the ACSR specification of such a system. The system consists of
a dispatcher, Dispatch, and three tasks, T1 , T2 , and T3 . The dispatcher instantiates
the tasks at the beginning of their periods. Each task, Ti , is characterized by two
constants: the computation time, ci , and the period, pi , where ci�pi . We assume
task Ti has a longer period than task Ti+1 , i.e., p1�p2�p3 . Consequently, task Ti

is assigned the priority i, for i=1, 2, 3. Furthermore, to simplify the presentation,
we use the following assumptions about the system: tasks become ready at the
beginning of their periods, and they can be preempted instantly with no preemption
overhead.

The dispatcher periodically instantiates a task Ti using a process Di as follows:
Di first signals the task Ti to start by sending the event si . It then idles for the
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FIG. 1. Prioritized multitask system.

duration of the task's period pi before sending si again. Once signaled to start, each
task Ti tries to compute for ci time units using the cpu resource. This is described
by the processes Ci, j which keep track of how much computation time is used.
When a task Ti does not have access to the cpu resource, it idles by executing the
process < : Ci, j . This means that Ti is preempted. When it finishes its computation,
Ti idles waiting for the next periodic instantion; this is described by process Ci, ci .
On the other hand, if Ti does not finish its computation within its period pi , it will
not be able to synchronize with the dispatcher which tries to send the starting event
si . Such a missed synchronization leads the process Di of the dispatcher to
deadlock. This in turn leads the whole system to deadlock.

We note that because ACSR associates priorities with actions, it is straight-
forward to change the rate-monotonic scheduler to another scheduler by modifying
action priorities.

Let S be a system after each task Ti has synchronized on the event si :

S=D1, 0&D2, 0&D3, 0 &C1, 0&C2, 0&C3, 0 .

By applying the rules of the operational semantics, we see that there are three
unprioritized transitions that the system S can take:
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(1) S www�[(cpu, 1)] D1, 1&D2, 1&D3, 1&C1, 1&C2, 0&C3, 0

(2) S www�[(cpu, 2)] D1, 1&D2, 1&D3, 1&C1, 0&C2, 1&C3, 0

(3) S www�[(cpu, 3)] D1, 1&D2, 1&D3, 1&C1, 0&C2, 0&C3, 1 .

Only transition (3) remains admitted by the prioritized transition system. This
allows T3 to execute while T1 and T2 idle.

4. PRIORITIZED STRONG EQUIVALENCE AND LAWS

Equivalence between two ACSR processes is based on the concept of strong
bisimulation (Park, 1981), which compares the computation trees of the two
processes.

Definition 4.1. For a given transition system `` � '', any binary relation r is a
strong bisimulation if, for (P, Q) # r and : # D,

1. if P �: P$ then, for some Q$, Q �: Q$ and (P$, Q$) # r, and

2. if Q �: Q$ then, for some P$, P �: P$ and (P$, Q$) # r.

In other words, if P (or Q) can take a step on :, then Q (or P) must also be able
to take a step on : with both of the next states also bisimilar. There are some very
obvious bisimulation relations; e.g., < (which certainly adheres to the above rules)
or syntactic identity. However, using the theory found in Milner (1980, 1983, 1989)
it is straightforward to show that there exists a largest such bisimulation over `` � ,''
which we denote as ``t.'' This relation is an equivalence relation, and is a con-
gruence with respect to the operators (Gerber, 1991). Similarly, ``t?'' is the largest
strong bisimulation over ``�? ,'' and we call it prioritized strong equivalence.

Lemma 4.1. t? is a congruence with the ACSR operators.

Proof. The proof is very similar to that found in (Garber, 1991). K

Table 2 presents a set of equivalence-preserving laws for ACSR, A. In the sequel,
wherever we use the equality symbol ``='' in showing that two processes are equiv-
alent, it means that we have used the laws A along with the standard laws for sub-
stitution to construct the proof. The bisimilarity of the processes follows from the
soundness of the laws.

Note the use of the summation symbol � in Par(3). The interpretation is as
follows: Let I be an index set representing processes, such that for each i # I, there
is some corresponding process Pi . If I=[i1 , ..., in], because of Choice (3) and
Choice (4) we are able to neglect parentheses and use the notation

:
i # I

Pi =def Pi1+ } } } +Pin

where �i # < Pi =def NIL.
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TABLE 2

The Set of ACSR Laws, A
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5. SOUNDNESS OF THE LAWS

In order to prove soundness of the ACSR laws, we make use of two functions:

T(P)=[(:, P$) | P w�: P$] and T?(P)=[(:, P$) | P w�: ? P$].

Traditionally, researchers in process algebra have proved the soundness of
algebraic axioms by using the bisimulation definition as described by Milner
(1989): one must first pick up a possible derivation of a process and show that such
a derivation can be found in the other process. Unlike the Milner's method based
on the bisimulation definition, our soundness proof in this section is based on two
functions, T and T? , such that given an ACSR process P, T (P) (T?(P)) is a set
of pairs (a, P$) , where P w�a P$ (P w�a ? P$). Furthermore, these are complete sets
of derivations of a process. The main use of these functions is as follows: given two
ACSR finite processes P and Q, if T (P) is the same as T (Q), then T?(P) is the
same as T?(Q), and hence, P and Q are prioritized bisimilar. Hence, the soundness of
an axiom P=Q can be proved by showing that T (P)=T (Q) or, if T (P){T (Q)
then showing that T?(P)=T?(Q). This approach simplifies the soundness proof,
and seems to increase the degree of understandability for the intuitive meaning of
the soundness proof. Now we need the following lemmas.

Lemma 5.1. For any two ACSR terms, P and Q, the followings hold: (1)
T(P)=T(Q) implies T?(P)=T?(Q), and (2) T?(P)=T?(Q) implies Pt? Q

Proof. It follows from the definition of the prioritized transition system that
T?(P) can be calculated from T(P):

T?(P)=[(:, P$) # T(P) | _3 (;, Q) # T(P).:O;].

Thus, T(P)=T(Q) implies T?(P)=T?(Q).
From the definition of T? we have:

if T?(P)=T?(Q) then {\:: P w�: P$ O Q w�: P$ and
\:: Q w�: Q$ O P w�: Q$.

Since the identity is a bisimulation, we conclude that Pt?Q. K

The lemma above plays an important role in proving the soundness of the laws.
It may be shown that all the laws, except Choice (5), that are sound for
unprioritized strong equivalence are also sound for prioritized equivalence. Hence
all soundness proofs, except for Choice (5), use T.

Lemma 5.2. If R is a relation such that all the pairs (P, Q) # R are such that

\(:, P$) # T?(P): _Q$: (:, Q$) # T?(Q) 7 (P$, Q$) # R

and

\(:, Q$) # T?(Q): _P$: (:, P$) # T?(P) 7 (P$, Q$) # R

then the relation R is a strong bisimulation.
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Proof. Follows directly from the definitions of the strong bisimulation and of
the functions T and T? . K

Milner (1989) proved the soundness of CCS axioms using the bisimulation defini-
tion: one must first pick up a possible derivation of a process and show that such
a deriviation can be found in the other process. That is, Milner's proof is based on
case analysis of every individual derivation. Contrary to Milner's method based on
the bisimulation definition, our proof is based on the complete set of derivations of
a process: when two sets are the same, the processes are bisimilar. Having the
simple fact that T(P)=T(Q) implies P and Q are bisimilar, our soundness proof
seems clear and short.

In order to prove most of the laws, we apply the appropriate formula to calculate
either T or T? for the processes in both sides and verify that the resulting sets are
equal or related in a way that satisfies Lemma 5.2. For instance, since T(P+Q)
=[(:, P$) | P + Q w�: P$] is the same as the set of [[(:, P$) | P w�: P$] _

[[(:, P$) | Q w�: P$], T(P+Q) is the set T(P) _ T(Q). Since _ is a com-
mutative set operator, we have T(P+Q)=T(P) _ T(Q)=T(Q) _ T(P). Hence,
by definition of T, we conclude T(P+Q)=T(Q+P).

Since the behavior of a process must be derived from the rules of the operational
semantics, for any process P the set T(P) is the union of all the sets that can be
derived from each rule of the operational semantics that applies. From this we can
derive the following sets of equations (the operational rule applied to calculate each
term is shown in brackets):

T(NIL)=<

T(:P)=[(:, P)] [ActT and ActI]

T(P+Q)=T(P) _ T(Q) [ChoiceL and ChoiceR]

T(P&Q)=[(A _ B, P$&Q$) | (A, P$) # T(P) 7 (B, Q$) # T(Q)

7 \(A) & \(B)=<] [ParT]

_ [(e, P$&Q) | (e, P$) # T(P)] [ParIL]

_ [(e, P&Q$) | (e, Q$) # T(Q)] [ParIR]

_ [( ({, n+m), P$&Q$) | ( (a, n), P$) # T(P)

7 ( (a� , m), Q$) # T(Q)] [ParCom]

T(P qb
0 (Q, R, S))=T(R) [ScopeT]

T(P qb
t>0 (Q, R, S))=[(A, P$ qb

t&1 (Q, R, S)) | (A, P$) # T(P)] [ScopeCT]

_ [(e, P$ q t
b (Q, R, S)) | (e, P$) # T(P) 7 l(e){b� ]

[ScopeCI]

_ [( ({, n), Q) | ( (b� , n), P$) # T(P)] [ScopeE]

_ T(S) [ScopeI]
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T(P"F )=[(A, P $"F) | (A, P$) # T(P)] [ResT]

_ [( (a, n), P$"F) | ( (a, n) P$) # T(P) 7 a, a� � F]
[ResI]

T([P]I)=[(A _ B, [P$]I)

| (A, P$) # T(P) 7 B=[(r, 0) | r # I&\(A)]] [CloseT]

_ [(e, [P$]I) | (e, P$) # T(P)] [CloseI]

T(rec X.P)=[(:, P$) | (:, P$) # T(P[rec X.P�X])] [Rec]

=T(P[rec X.P�X]).

To save space, we show only those that are representative or non-trivial.

Choice (1). T(P+NIL)=T(P) _ T(NIL)=T(P) _ <=T(P).

Choice (5). T(:P+;Q)=[(:, P) , (;, Q)] and therefore we have T?(:P+;Q)
=[(;, Q)]=T?(;Q).

Par (3). Let us call

P= :
i # I

Ai :Pi

Q= :
i # J

ej .Qj

R= :
k # K

Bk :Rk

S= :
l # L

fl .Sl .

We can calculate

T(P+Q&R+S)=[(Ai _ Bk , Pi &Qk) | i # I 7 k # K 7 \(Ai) & \(Bk)=<]

_ [(ej , Qj & (R+S)) | j # J]

_ [( fl , (P+Q)&Sl ) | l # L]

_ [( ({, ?(ej)+?( fl)), Qj &Sl ) | j # J 7 l # L 7 l(ej)=l( fl)]

:

\(Ai) & \(Bk)=<
i # I, k # K,

(Ai _ Bk) : (Pi &Rk)

=T

+ :
j # J

ej .(Qj & (R+S))

+ :
l # L

fl .((P+Q)&Sl)

+ :

l(ej)=l( fl)
j # J, l # L,

({, ?(ej)+?( fl)).(Qj &Sl)
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Scope (1). This follows from the fact that A:P has a single transition that:

T(A:P qb
t>0 (Q, R, S))=[(A, P qb

t&1 (Q, R, S)] _ T(S)

=T(A:(P qb
t&1 (Q, R, S))+S).

Scope (5). We distinguish two different cases:

(i) When t=0

T(P1+P2 qb
0 (Q, R, S))=T(R) _ T(R)

=T(P1 qb
0 (Q, R, S)) _ T(P2 qb

0 (Q, R, S))

=T(P1 qb
0 (Q, R, S))+T(P2 qb

0 (Q, R, S)).

(ii) When t>0

T(P1+P2 qb
t (Q, R, S))

=[(A, P$ qb
t&1 (Q, R, S)) | (A, P$) # T(P1+P2)]

_ [(e, P$ qb
t (Q, R, S)) | (e, P$) # T(P1+P2) 7 l(e){b� ]

_ [( ({, n), Q) | ( (b� , n), P$) # T(P1+P2)]

_ T(S)

=[(A, P$ qb
t&1 (Q, R, S)) | (A, P$) # T(P1)]

_ [(A, P$ qb
t&1 (Q, R, S) | (A, P$) # T(P2)]

_ [(e, P$ qb
t (Q, R, S)) | (e, P$) # T(P1) 7 l(e){b� ]

_ [(e, P$ qb
t (Q, R, S)) | (e, P$) # T(P2) 7 l(e){b� ]

_ [( ({, n), Q) | ( (b� , n), P$) # T(P1)]

_ [( ({, n), Q) | ( (b� , n), P$) # T(P2)]

_ T(S)

=[(A, P$qb
t&1 (Q, R, S)) | (A, P$) # T(P1)]

_ [(e, P$) qb
t (Q, R, S)) | (e, P$) # T(P1) 7 l(e){b� ]

_ [( ({, n), Q) | ( (b� , n), P$) # T(P1)]

_ T(S)

_ [(A, P$ qb
t&1 (Q, R, S)) | (A, P$) # T(P2)]

_ [(e, P$ qb
t (Q, R, S)) | (e, P$) # T(P2) 7 l(e){b� ]

_ [( ({, n), Q) | ( (b� , n), P$) # T(P2)]

_ T(S)

=T(P1 qb
t (Q, R, S)) _ T(P2 qb

t (Q, R, S))

=T(P1 qb
t (Q, R, S)+P2 qb

t (Q, R, S)).
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Res (2).

T((P+Q)"F )=[(A, P$"F) | (A, P$) # T(P+Q)]

_ [( (a, n), P$"F) | ( (a, n), P$) # T(P+Q) 7 a, a� � F]

=[(A, P$"F) | (A, P$) # T(P)]

_ [(A, P$"F) | (A, P$) # T(Q)]

_ [( (a, n), P$"F) | [(a, n), P$) # T(P) 7 a, a� � F]

_ [( (a, n), P$"F) | ( (a, n), P$) # T(Q) 7a, a� � F]

=T(P"F ) _ T(Q"F )=T(P"F+Q"F ).

Res (6).

T(P"E"F )=[(A, P$"F) | (A, P$) # T(P"E)]

_ [( (a, n), P$"F) | ( (a, n), P$) # T(P"E) 7 a, a� � F]

=[(A, P""E"F) | (A, P") # T(P)]

_ [( (a, n), P""E 'F) | ( (a, n), P") # T(P) 7 a, a� � E 7 a, a� � F]

=[(A, P""E"F) | (A, P") # T(P)]

_ [( (a, n), P""E"F) | ( (a, n), P") # T(P) 7 a, a� � E _ F].

However,

T(P"(E _ F ))=[(A, P$"E _ F) | (A, P$) # T(P)]

_ [( (a, n), P$"E _ F) | ( (a, n), P$) # T(P) 7 a, a� � E _ F].

It follows from Lemma 5.2 that the relation [(X"E"F, X"E _ F ) | X, Y # ACSR
7 E, F�L] is a bisimulation.

Close (5).

T([[P]I]J)

=[(A$ _ A3 , [P$]J) | (A$, P$) # T([P]I) 7A3=[(r, 0) | r # J&\(A$)]]

_ [(e, [P$]J) | (e, P$) # T([P]I)]

=[( (A" _ A2) _ A3 , [[P"]I]J) | (A", P") # T(P) 7 A2

=[(r, 0) | r # I&\(A")] 7 A3=[(r, 0) | r # J&\(A" _ A2)]]

_ [(e, [[P"]I]J) | (e, P") # T(P)]

=[(A" _ B, [[P"]I]J) | (A", P") # T(P) 7 B

=[(r, 0) | r # (I _ J )&\(A")]]

_ [(e, [[P"]I]J) | (e, P") # T(P)].
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However,

T([P]I _ J)

=[(A" _ B, [P"]I _ J) | (A", P") # T(P) 7 B=[(r, 0) | r # (I _ J)&\(A")]]

_ [(e, [P"I _ J) | (e, P") # T(P)].

It follows from Lemma 5.2 that the relation [([[X]I]J , [X]I _ J) | X # ACSR 7 I,
J�R] is a bisimulation.

Close (7).

T([P"E]I)

=[(A1 _ A2 , [P$]I) | (A1 , P$) # T(P"E) 7 A2=[(r, 0) | r # I&\(A1)]]

_ [( (a, n), [P$]I) | ( (a, n), P$) # T(P"E)]

=[(A1 _ A2 , [P""E]I) | (A1 , P") # T(P) 7A2=[(r, 0) | r # I&\(A1)]]

_ [( (a, n), [P""E]I) | ( (a, n), P") # T(P) 7 a, a� � E].

However,

T([P]I"E)

=[(A1 , P$"E) | (A1 , P$) # T([P]I)]

_ [( (a, n), P$"E) | ( (a, n), P$) # T([P]I) 7 a, a� � E]

=[(A1 _ A2 , [P"]I"E) | (A1 , P") # T(P) 7 A2=[(r, 0) | r # I&\(A1)]]

_ [( (a, n), [P"]I"E) | ( (a, n), P") # T(P) 7 a, a� � E].

It follows from Lemma 5.2 that the relation [([X"E]I , [X]I"E] | X # ACSR 7 I�
R7 E�L] is a bisimulation. K

Rec (1). From the operational semantics rule Rec we know that rec X.P w�: P$
iff P[rec X.P�X] w�: P$. Hence we have

(rec X.P)=[(:, P$) | (:, P$) # T(P[rec X.P�X])]

=T(P[rec X.P�X]). K

Rec (2). Let R =def rec X.Q; by Rec(1), R=Q[R�X]. We need to prove that
Pt? R, assuming that P=Q[P�X] and X is guarded in Q. We do this by making
use of Lemma 5.2 and proving that the relation R defined by

[(E[P�X], E[ R�X])] _ [(E, E)]
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(where E ranges over the set of ACSR processes) is a prioritized strong bisimula-
tion. The key to this proof is the fact that, when X is guarded in Q, the first step
of Q[P�X] does not depend on the value of P; more formally,

Q[P�X] w�: ? Q$[ P�X] if and only if Q w�: ? Q$

and

Q[R�X] w�: ? Q$[R�X] if and only if Q w�: ? Q$.

We proceed by induction on the structure of E.
If E is NIL, T(E[P�X])=<=(E[ R�X]).
If E is X, we obtain that E[ P�X]#P=Q[ P�X] and similarly E[ R�X]#R=

Q[R�X] and by Rec(1), we know that

T(E[P�X])=T(Q[ P�X]) and T(E[ R�X])=T(Q[R�X]).

Therefore

T(E[P�X])=T(Q[ P�X])=[(:, Q$[ P�X]) | Q w�: ? Q$]

and

T(E[R�X])=T(Q[R�X])=[(:, Q$[ R�X]) | Q w�: ? Q$].

If E is :F, then

T(E[P�X])=[(:, F[ P�X])]

and

T(E[R�X])=[(:, F[R�X])].

The other cases follow from the induction hypothesis and Lemma 4.1 that
prioritized strong bisimulation is a congruence. K

Rec (3). To simplify the presentation, let us define

fi (P) =def [P"Ei]Ui .

An immediate consequence of the laws Res (6), Close (5), and Close (7) is that the
functions fi are commutative and idempotent. This justifies the following notation.
Let I=[i1 , i2 , ..., in],

fI (P) =def fi1
fi2

} } } fin
(P).
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As expected,

f< (P) =def P.

It is also easy to see the following by using the laws Res (6), Close (5) and Close
(7),

fI ( fJ (P))=fI _ J (P).

Finally, we denote by |I| the cardinality of the finite set I.
The key to this proof resides in the fact that the behavior of any process must

be derived from the rules of the operational semantics. In the case of a term of the
form rec X.P, the only rule that applies is Rec and therefore any transition of
rec X.P must be obtained from unrolling the recursion. The proof proceeds by suc-
cessive unrollings of the recursion (i.e., applying Rec(1)) until no new behavior can
be derived.

Let us see how this works by following an example. Take the process

Q =def rec X.(P+[X]U+[X]V).

By unrolling the recursion we obtain

Q=P[Q�X]+[Q]U+[Q]V

=P[Q�X]+[rec X.(P+[X]U+[X]V)]U+[rec X.(P+[X]U+[X]V)]V

If we unroll the recursion of the second and third terms, and take advantage of the
idempotence and commutativity of the closure operator, we obtain

Q=P[Q�X]+[P[ Q�X]]U+[[Q]U]U+[[Q]V]U

+[P[Q�X]]V+[[Q]U]V+[[Q]V]V

=P[Q�X]+[P[ Q�X]]U+[P[Q�X]]V+[Q]U+[Q]U _ V+[Q]V

Again by unrolling the recursion of the last three terms we obtain:

Q=P[Q�X]+[P[ Q�X]]U+[P[Q�X]]V+[P[ Q�X]+[Q]U+[Q]V)]U

+[P[Q�X]+[Q]U+[Q]V)]U _ V+[P[Q�X]+[Q]U+[Q]V)]V

=P[Q�X]+[P[ Q�X]]U+[P[Q�X]]V+[P[ Q�X]]U+[[Q]U]U+[[Q]V)]U

+[P[Q�X]]U _ V+[[Q]U]V _ U+[[Q]V)]V _ U

+[P[Q�X]]V+[[Q]U]V+[[Q]V)]V

=P[Q�X]+[P[ Q�X]]U+[P[Q�X]]V+[P[ Q�X]]U _ V

+[Q]U+[Q]U _ V+[Q]V .
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From this point on, unrolling the recursion of the last three terms fails to produce
any new summand. It follows that the behavior of Q is captured by the first four
terms and therefore

Q=P[Q�X]+[P[ Q�X]]U+[P[ Q�X]]V+[P[ Q�X]]U _ V .

We first prove the following lemma, where X may or may not be unguarded in P:

Lemma 5.3. If Q=rec X.(P+�i # I fi (X )) then

Q= :
J�I

fJ (P[Q�X])+ :
J�I, J{<

fJ (Q).

Proof. We proceed by induction on the cardinality of I. When |I|=1 we obtain
the result by unrolling the recursion twice as follows:

Q=rec X.(P+fi1
(X ))

=P[Q�X]+fi1
(Q)

=P[Q�X]+fi1
(P[Q�X]+fi1

(Q))

=P[Q�X]+fi1
(P[Q�X])+fi1

fi1
(Q)

= :
J�[i1]

fJ (P[ Q�X])+ :
J�[i1], J{<

fJ (Q).

Now assume the result true for any set I such that |I|=n. Let I $=I _ [in+1] and
Q =def rec X.(P+�i # I $ fi (X )).

Let P$ =def (P+fin+1
(X )); by the induction hypothesis we have:

Q= :
J�I

fJ (P$[Q�X])+ :
J�I, J{<

fJ (Q)

= :
J�I

fJ (P[ Q�X]+fin+1
(Q))+ :

J�I, J{<

fJ (Q)

= :
J�I

fJ (P[ Q�X])+ :
J�I

fJ fin+1
(Q)+ :

J�I, J{<

fJ (Q).

We can combine the last two summations by observing that one ranges over the
subsets of I$ that do contain [in+1] (and therefore are not empty) while the other
ranges over the non-empty subsets of I$ that do not contain [in+1]. We obtain

Q= :
J�I

fJ (P[Q�X])+ :
J�I$, J{<

fJ (Q).
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By unrolling the recursion one more time we obtain

Q= :
J�I

fJ (P[ Q�X])+ :
J�I$, J{<

fJ \P[Q�X]+ :
i # I

fi (Q)+
= :

J�I

fJ (P[ Q�X])+ :
J�I$, J{<

fJ (P[ Q�X])+ :
J�I$, J{<

fJ \:
i # I

fi (Q)+ .

Notice that the first summation covers all the subsets of I$ that do not contain in+1

while the second covers, among others, all the subsets of I$ that do contain in+1 .
In the third summation, we apply the idempotence of fi to obtain the desired
result. K

Back to the proof of Rec(3); we define

Q =def rec X.\P+ :
i # I

fi (X )+
and we are about to prove the equation

Q=rec X.\ :
J�I

fI (P)+ .

From the above lemma, we have

Q= :
J�I

fJ (P[Q�X])+ :
J�I, J{<

fJ (Q).

Let

Q1 =def
:

J�I

fJ (P[Q�X])

and

Q2 =def
:

J�I, J{<

fJ (Q)= :
J�I, J{<

fJ \rec X.\P+ :
i�I

fi (X )++ .

Note that the behaviors induced by Q2 must be derived from unrolling the
recursion. By doing so we obtain

Q2= :
J�I, J{<

fJ (P[Q�X])+ :
J�I, J{<

fJ \ :
J�I

fI (Q)+
= :

J�I, J{<

fJ (P[Q�X])+Q2 .

Hence, we have the following:

T(Q2)=T \ :
J�I, J{<

fJ (P[Q�X])+_ T(Q2).
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It is easy to see that all behaviors of the process �J�I, J{< fJ (P[Q�X]) are included
in Q2 that is,

T \ :
J�I, J{<

fJ (P[ Q�X])+�T(Q2).

Since all transitions from Q2 must come from terms other than unguared variables,
we get the following:

T(Q2)�T \ :
J�I, J{<

fJ (P[Q�X])+ .

Therefore, we obtain that

Q2= :
J�I, J{<

fJ (P[ Q�X]).

However,

T \ :
J�I, J{<

fJ (P[Q�X])+�T \ :
J�I

fJ (P[Q�X])+ .

Hence, it is easy to see that all the behaviors that can be induced by unrolling Q2

are already included in Q1, and therefore Q2 can be ignored, resulting in

Q= :
J�I

fJ (P[Q�X])=\ :
J�I

fJ (P)+ [Q�X].

But since X is guarded in P, we can apply Rec(2) and obtain

Q=rec X. :
J�I

fJ (P).

6. COMPLETENESS FOR FINITE STATE PROCESSES

In this section, we prove that the ACSR laws are complete for some (large) sub-
set of the finite state processes. The section is divided as follows. First we refine the
definition of bisimulation to formally cope with free variables. We characterize
a subset of ACSR processes, which we call ``FS'' processes, for which we prove
completeness of the set of laws A. We then develop the four steps of the proof of
completeness, which are as follows. We prove that unguarded recursions can be
eliminated. In the absense of unguarded recursion, any FS process satisfies a certain
kind of equation set. If two processes are bisimilar, then they satisfy a common set
of equations. Finally, we prove that those sets of equations have a unique solution
up to bisimulation.

6.1. Refined Definition of Bisimulation

The presence of recursion will require us to have a formal treatment for free
variables. In particular, we need to extend the notion of bisimulation to take the
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presence of free variables into account. Milner (1989a) extends the notion of
bisimulation to encompass unguarded free variables. In our case, the presence of
the restriction and closure operators requires more discrimination. Consider, for
example, X E and [X]I ; even though the variable X is unguarded in both
cases, the two expressions are certainly not equivalent.

Let us define a relation � (without label) as the minimum relation that satisfies
the following rules:

&
X � [X"<]< P � [X"E]I

P&Q � [X"E]IP � [X"E]I

P+Q � [X"E]I Q � [X"E]I

P&Q � [X"E]IQ � [X"E]I

P+Q � [X"E]I P � [X"E]I

[P]J � [X"E]I _ JP � [X"E]I

P qb
t (Q, R, S) � [X"E]I

t>0
P � [X"E]I

P"F � [X"(E _ F )]IS � [X"E]I

P qb
t (Q, R, S) � [X"E]I

t>0
P � [X"E]I

rec Y.P � [X"E]I
X{Y

R � [X"E]I

P qb
0 (Q, R, S) � [X"E]I

Note that using the laws Res (5), Res (6), Res (7), Close (5), Close (6), and
Close (7), a variable X with any combinations of close operators and restriction
operators can be transformed into a standard form: [X"E]I . For instance, if
E1 _ E2=E and I1 _ I2=I, then the terms [X"E]I , ([X]I)"E, [X"E1 _ E2]I ,
[X"E]I1 _ I2

, and [[X"E1]I1
"E2]I2

can be considered the same. Hence, if
P � [X"E]I , P contains a free unguarded occurrence of a term which can be trans-
formed into [X"E]I .

Based on this, we can define the notion of bisimulation that we will be using
throughout this section.

Definition 6.1. A relation R�ACSR_ACSR is a bisimulation if for all : # D,
I�R, and E�L, whenever (P, Q) # R,

1. if P w�: ? P$ then, for some Q$, Q w�: ? Q$ and (P$, Q$) # R, and

2. if Q w�: ? Q$ then, for some P$, P w�: ? P$ and (P$, Q$) # R, and

3. P � [X"E]I iff Q � [X"E]I

If (P, Q) # R for some bisimulation R, then we say that P is bisimilar to Q, and
write Pt? Q.

It is straightforward to see that this refined definition corresponds to our pre-
vious definition in the absence of free variables. None of the laws deal explicitly
with free variables, and one can easily check that they remain sound under this new
definition.
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6.2. Characterization of FS Processes

It is well known that Turing machines can be coded in CCS, which is a subset
of ACSR. Since the semantics of ACSR coincides with that of CCS on their com-
mon syntax, we know that there is no finite set of laws that can be used to prove
the equivalence of any ACSR processes. Completeness has been proven in the past
for a subset of CCS processes called ``finite state agents.'' The definition that pre-
vious authors, such as (Milner, 1989a; Bolognesi and Smolka, 1987), have used for
finite state agents has been processes coded without the parallel operator, and since
the restriction operator becomes useless in this environment, it has been eliminated
as well. This simple solution does not work for ACSR because non-finite-state
processes can be generated even without the use of the parallel operator, as is
illustrated by the following example.

Example 6.1. Consider the process P =def rec X.(A:X qb
� (NIL, NIL, B:NIL)).

It has two possible transitions:

P w�B NIL

and

P w�A (rec X.A:X qb
� (NIL, NIL, B:NIL)) qb

� (NIL, NIL, B:NIL)

call this last process P$; it has three possible transitions,

P$ w�B NIL

P$ w�B NIL q b
� (NIL, NIL, B:NIL)

and

P$ w�A (rec X.(A:X qb
� (NIL, NIL, B:NIL))

qb
� (NIL, NIL, B:NIL) qb

� (NIL, NIL, B:NIL))

and so forth as shown in Fig. 2.
Eliminating the Scope operator altogether would eliminate too much expressive-

ness of the ACSR language and render the whole exercise futile. Therefore we
decided to extend the proof to the set of processes that do not have recursion

FIG. 2. An infinite state process
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through parallel nor scope. Unfortunately, this is very difficult to characterize syn-
tactically��for example, the process P=rec X.(A:X&NIL) is equivalent to NIL and
therefore does not have recursion through parallel. Nevertheless there are obvious
advantages to a syntactic characterization and therefore we limit our proof to pro-
cesses that have ``no free variable under parallel and no free variable in a process
under a scope operator.'' We say that such processes are ``FS.'' It seems that most
finite state processes either are FS or are provably equivalent to an FS process. The
only exceptions we have found so far are of the form rec X.(X qb

� (P, Q, R)).
We formally define FS processes by way of a recursive function fs over processes

(we assume the usual definition of the function fv(P) which yields the set of free
variables of a process P):

fs(NIL)=true

fs(X )=true

fs(A:P)=fs(P)

fs((a, n).P)=fs(P)

fs(P+Q)=fs(P) 7 fs(Q)

fs(P qb
t (Q, R, S))=( fv(P)=<) 7 fs(P) 7 fs(Q) 7 fs(R) 7 fs(S)

fs(P&Q)=( fv(P) _ fv(Q)=<) 7 fs(P) 7 fs(Q)

fs([P]I)=fs(P)

fs(P"F )=fs(P)

fs(rec X.P)=fs(P).

Definition 6.2 (FS Process). A process is said to be FS if fs(P)=true.

6.3. Elimination of Unguarded Variables

In this section we prove that any FS process is provably equivalent to a process
where all the recursions are guarded. We do this by defining a head normal form
where all the unguarded free variables are isolated as summands.

Definition 6.3 (Head Normal Form). A process P is in Head Normal Form or
``HNF'' if it has the form

:
i # I

[Xi"Ei]Ui+ :
j # J

aj Qj .

Note that we do not require that the Qj have any particular form.

Lemma 6.1. For any FS process P, there exists a process Q such that P=Q and
Q is in HNF.
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Proof. We proceed by induction on the structure of P. For the base cases, NIL
is in HNF, and X can be transformed into the HNF ``[X"<]< '' using Res (7) and
Close (6). Now, assume it is true for any term of depth �n. For a term of depth
n+1, we examine all the possible forms such a term can take:

Case 1 (Timed Action Prefix). P=A:P$ is in HNF.

Case 2 (Instantaneous Event Prefix). P=e.P$ is in HNF.

Case 3 (Choice). P+R with P and R in HNF (by the induction hypothesis)
has the form

:
i # I

[Xi"Ei]Ui
+ :

j # J

:j Qj+ :
i # I $

[Xi"Ei]Ui
+ :

j # J $

:jQj .

Using the laws Choice (3) and Choice (4) we can re-arrange the terms and obtain
the normal form:

:
i # I _ I $

[Xi"Ei]Ui
+ :

j # J _ J $

:jQj .

Case 4 (Parallel). By the induction hypothesis, and since P and Q are FS, P&Q
can be written (Note that neither P nor Q has any free variable)

\:
i # I

Ai :Pi+ :
j # J

ej .Qj+"\ :
k # K

Bk :Rk+ :
l # L

fl .Sl+ .

Using Par (3), we obtain

P&Q= :
i # I, k # K, \(Ai) & \(Bk)=<

(Ai _ Bk):(Pi &Rk)

+ :
j # J

ej .\Qj "\ :
k # K

Bk :Rk+ :
l # L

fl .Sl++
+ :

l # L

fl .\\:
i # I

Ai :Pi+ :
j # J

ej .Qj+"Sl+
+ :

j # J, l # L, l(ej)=l( fl)

({, ?(ej)+?( fl)).(Qj&Sl)

which is in HNF.

Case 5 (Scope). Let P=Q qb
t (R, S, T ), by induction hypothesis we can

assume that Q, R, S, and T are in HNF. Observe that if P can be transformed into
a sum of terms in HNF, it can further be transformed to be in HNF by using
Choice (3) and Choice (4).

We prove that P can be transformed into a sum of terms in HNF by examining
all the possible forms P can take.

When t=0, by Scope(4) we have P=S, which is in HNF.
Otherwise, since Q is FS and in HNF, we can distribute Scope over the summa-

tion by using Scope (5). To each summand, we can apply one of the three laws
Scope (1), Scope (2), and Scope (3).
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When Scope (1) applies, we obtain a term of the form A:(Q$ qb
t&1 (R, S, T ))+T,

with T already in HNF.
When Scope (2) applies, we obtain a term of the form (a, m).(Q$ qb

t (R, S, T ))
+T; again, T is already in HNF.

When Scope (3) applies, we obtain a term of the form: ({, m).Q$+T, with T
already in HNF.

Case 6 (Restriction). P=Q"F; by the induction hypothesis, we can assume
that Q is in HNF. If Q=NIL we obtain a HNF by Res (1). Otherwise, using
Res (2), we can distribute the restriction over every summand. Then, using Res (3)
for timed action and Res (4) or Res (5) for instantaneous events, the restriction
operator can be pushed down one level, or the summand becomes NIL. For free
variables, we have terms of the form [Xi"E]U"F, which can be transformed into
[Xi"E _ F]U by Close (7) and Res (6).

Case 7 (Close). P=[Q]I , by induction hypothesis, we can assume that Q is in
HNF. If Q=NIL we obtain a HNF by Close (1). Otherwise, using Close (2) we
can distribute the closure operator over every summand. Then, using Close (3) for
timed action and Close (4) for instantaneous events, the closure operator can be
pushed down one level. For free variables, we have terms of the form [[Xi"E]U]I

which can be transformed into [Xi"E]U _ I by Close (5).

Case 8 (Recursion). As we have done in the proof of Rec (3), we will use the
notation

fi (P) =def [P"Ei]Ui

and

fI (P) =def fi1
fi2

} } } fin
(P).

Let P=rec X.Q with Q in HNF. Therefore,

P=rec X.\:
i # I

fi (Xi)+ :
j # J

:j Pj+ .

Let I $=[i # I | Xi{X] and I"=I&I $; we have

P=rec X.\ :
i # I"

fi (X )+ :
i # I $

fi (Xi)+ :
j # J

:jPj+
By Rec (3) we obtain:

P=rec X.\ :
K�I"

fK \ :
i # I $

fi (Xi)+ :
j # J

:j Pj++
=rec X.\ :

K�I"

:
i # I $

fK fi (Xi)+ :
K�I"

:
j # J

fK (:j Pj)+ .
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Using Close (3), Close (4), Res (3), Res (4), and Res (5) we obtain

P=rec X.\ :
K�I"

:
i # I $

fK fi (Xi)+ :
K�I"

:
j # J, l(:) � Ek

;jK fK (Pj)+
where

;jK={:j

:j _ [(r, 0) | r # �k # KUk&\(:j)]
if :j # DE

if :j # DR
.

At this point, by applying Rec(1) and noticing that none of the Xi is X we obtain
the HNF:

P= :
K�I"

:
i # I $

fK fi (Xi)+ :
K�I"

:
j # J, l(:) � Ek

;jK fK (Pj[
rec X.P�X].

We are now ready to prove the following theorem.

Theorem 6.1. For every FS process P, there exists a process P$ such that P=P$
and all the recursions in P$ are guarded.

Proof. By induction on the depth of recursion. The base case is vacuously true.
Let us look at the outmost level of recursion of a process P, and assume it is of the
form rec X.Q. By Lemma 6.1, Q can be put in HNF, Q� , where, by induction
hypothesis, all the recursion are guarded. If X is unguarded in Q� then it is among
the Xi and it can be eliminated by applying Rec (3). K

6.4. Standard Set of Equations

In this section we prove that any guarded FS process provably satisfies a par-
ticular set of equations.

Let X� =[X1 , X2 , ... Xn] and W� =[W1 , W2 , ...] be disjoint sets of variables. Let
H� =[H1 , H2 , ... Hn] be terms with free variables in X� _ W� . We say that a process
P provably satisfies a set of equations S:X� =H� if there is a set of terms:
P� =[P1 , P2 , ... Pn] such that fv(P� )�W� and P� =H� [P� �X� ] and P=P1 .

A set of equations S is said to be standard if every equation is of the form

Xi= :
j # Ji

[Wj"Eij]Uij
+ :

k # Ki

:ik Xk .

Finally, a set of equations is said to be prioritized if it is standard and if, in any
given equation, there are no two summands :Xi and ;Xj such that :O;.

In this section, we will assume that the set of standard equations satisfied by a
process P is noted S:X� =H� , with X1 being the distinguished variable, and that
every equation has the form

Xi= :
j # Ji

[Wj"Eij]Uij
+ :

k # Ki

:ik Xk .
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Similarly, we will assume that the set of standard equations satisfied by a process
Q is noted T:Y� =G� , with Y1 being the distinguished variable, and that every equa-
tion has the form

Yi= :
l # Li

[Wl"Fil]Vil
+ :

m # Mi

;im Ym .

Furthermore, we will assume that the sets of variables W� , X� , and Y� are all disjoint.

Lemma 6.2. Every guarded FS process R with free variables in W� provably
satisfies a standard set of equations with free variables in W� .

Proof. By induction on the structure of R.

Case 1 (R=NIL). R satisfies the single equation X=NIL.

Case 2 (R=W ). By Res (7) and Close (6), R satisfies the single equation
X=[W"<]< .

Case 3 (R=:P). By the induction hypothesis, P provably satisfies S:X� =H� .
Therefore R provably satisfies the standard set [X=:X1] _ S with the new dis-
tinguished variable X.

Case 4 (R=P+Q). By induction hypothesis, P provably satisfies S:X� =H� and
Q provably satisfies T:Y� =G� . Since

H1+G1= :
j # J1

[Wj"E1j]U1j
+ :

k # K1

:1kXk+ :
l # L1

[Wl"F1l]V1l
+ :

m # M1

;1mYm ,

using the laws Choice(3) and Choice(4), we obtained the following equation:

Xn= :
j # J1 _ L1

[Wj"Enj]Unj
+ :

k # K1 _ M1

:nkXk .

Therefore R provably satisfies the set of equations [Xn=�j # J1 _ L1
[Wj"Enj]Unj

+
�k # K1 _ M1

:nk Xk] _ S _ T, with the new distinguished variable X.

Case 5 (R=P&Q). Note that since R is FS, neither P nor Q has any free
variable and therefore all the sets Ji and Li are empty. Therefore, we can assume
that the equations of S are written

Xi= :
k # K $i

Aik :Xk+ :
k # K"i

eik .Xk

and that the equations of T are written

Yi= :
m # M $i

Bim :Ym+ :
m # M"i

fim .Ym .

R satisfies the (non-standard) equation Z1, 1=H1&G1 . It follows from Par (3) that
this equation can be written
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Z1, 1= :
k # K$

1 , m # M$
1 , \(A1k) & \(B1m)=<

(A1k _ B1m):(Xk &Ym)

+ :
k # K"

1

e1k .(Xk&Y1)

+ :
m # M"

1

f1m .(X1&Ym)

+ :
k # K"

1 , m # M"
1 , l(e1k)=l( f1m)

({, ?(e1k)+?( f1m)).(Xk&Ym)

In the same fashion we can define a set of equations Zi, j=Hi&Gj and then apply
Par (3) to obtain a set of standard equations of the form

Zi, j= :
k # K$i , m # M$j , \(Aik) & \(Bjm)=<

(Aik _ Bjm):Zk, m

+ :
k # K"i

eik .Zk, j

+ :
m # M"j

fjm .Zi, m

+ :
k # K"i , m # M"j , l(eik)=l( fjm)

({, ?(eik)+?( fjm)).Zk, m

Case 6 (R=P qb
t (Q, S, T)). Let us denote by Y $1=G$1 and Y"1=G"1 the dis-

tinguished equations of the sets satisfied by S and T, respectively. R satisfies the
non-standard equation

Z1=H1 qb
t (G1 , G$1 , G"1).

If t=0, we can apply Scope (4) and obtain the standard equation Z1=G$1 . If t>0
and H1=NIL, we apply Scope (6) and obtain Z1=G"1 . Otherwise, using Scope (5),
we can distribute the scope operator over each summand of H1 and obtain an
equation of the following form (remember that Q is FS and therefore P does not
have any free variable):

Z1= :
j # J1

((:1jXj) qb
t (G1 , G$1 , G"1))

= :
j # J $

1

((A1j :Xj) qb
t (G1 , G$1 , G"1))+ :

j # J"
1

((e1j .Xj) qb
t (G1 , G$1 , G"1)).

We can now apply Scope (1), Scope (2), or Scope (3) to each summand and obtain
an equation of the form

Z1= :
j # J $

1

A1j :(Xj qb
t&1 (G1 , G$1 , G"1))+ :

j # J"
1, l(e1j){b�

e1j .(Xj qb
t (G1 , G$1 , G"1))

+ :
j # J"

1, l(e1j)=b�

({, ?(e1j)).G1+G"1 .
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G1 can be replaced by Y1 . We can also take fresh variables to define a new pair of
equation for each summand of H1 as follows,

Zt
j=Hj qb

t (G1 , G$1 , G"1)

Zt&1
j =Hj qb

t&1 (G1 , G$1 , G"1)

and we obtain the standard equation

Z1= :
j # J $

1

A1j :Zt&1
j + :

j # J"
1, l(e1j){b�

e1j .Zt
j+ :

j # J"
1, l(e1j)=b�

({, ?(e1j)).Y1+G"1.

The same process can be applied to standardize the newly defined equations. The
number of equations generated by this process is limited to the number of equations
in S times t, when t is finite, and to the exact number of equations in S when t=�.
Therefore the process always terminates and leads to a standard set of equations.

Case 7 (R=P"F ). R satisfies the non-standard equation Z1=H1"F. If we
expand H1 and apply Res(2)��or Res(1) if H1=NIL��we obtain

Z1= :
j # J1

([Wj"Ej]Uj)"F+ :
k # K1

(:1kXk)"F

= :
j # J1

[Wj"Ej]Uj"F+ :
k # K $

1

(A1k :Xk)"F+ :
k # K"

1

(e1k .Xk)"F.

By Close (7) and Res(7) we have [Wj"Ej]Uj"F=[Wj"Ej _ F]Uj . Applying Res(3),
Res(4) and Res(5) and introducing the new equations Zi=Hi"F gives a set of
standard equations of the form

Zi= :
j # Ji

[Wj"Ej _ F]Uj+ :
k # K $i

Aik :Zk+ :
k # K"i , l(eik), l(eik) � F

eik .Zk.

Case 8 (R=[P]V). R satisfies the non-standard equation Z1=[H1]V . If we
expand H1 and apply Close (2)��or Close (1) if H1=NIL��we obtain

Z1= :
j # J1

[[Wj"Ej]Uj]V+ :
k # K1

[:1kXk]V

= :
j # J1

[[Wj"Ej]Uj]V+ :
k # K $

1

[A1k :Xk]V+ :
k # K"

1

[e1k .Xk]V .

By Close (5) we have [[Wj"Ej]Uj]V=[Wj"Ej]Uj _ V . Applying Close (3) and
Close (4) and introducing the new equations Zi=[Hi]V gives a set of standard
equations of the form

Zi= :
j # Ji

[Wj"Ej]Uj _ V+ :
k # K $i

(Aik _ [(r, 0) | r # V&\(Aik)]):Zk+ :
k # K"i

eik .Zk .

Case 9 (R=rec W.P). Since W is guarded in P, it does not occur in H1 . Using
Rec(1), we can define a new set of equations by replacing every occurence of W
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by H1 . That is, Zi=Hi[
H1�W]. This clearly eliminates W, but generates terms of the

form [H1"Ej]Uj
. However, from cases 7 and 8 above, we know that these can be

standardized. K

Theorem 6.2. Every guarded FS process P with free variables W� provably satisfies
a prioritized set of equations S with free variables in W� .

Proof. From the above lemma, we know that the process P satisfies a standard
set of equations S. In addition, each equation can be prioritized by using the law
Choice (5). K

6.5. Common Set of Prioritized Standard Equations

In this section we prove that when two processes are bisimilar, they satisfy a
common set of prioritized equations.

Theorem 6.3. Let P and Q provably satisfy two standard sets of equations S and
T. If P and Q are bisimilar, then there exists a third standard set of equations S$
satisfied by both P and Q.

Proof. We assume that X� =[X1 , X2 , ... Xn], Y� =[Y1 , Y2 , ... Ym], and W� =
[W1 , W2 , ...] are disjoint sets of variables, that the given sets of equations are:

S:X� =H�

T:Y� =G� ,

and that there are terms P� =[P1 , P2 , ... Pn] and Q� =[Q1 , Q2 , ... Qm] such that
fv(P� ) _ fv(Q� )�W� , and P=P1 , and Q=Q1 , so that

Pu= :
j # Ju

[Wj"Euj]Uuj+ :
k # Ku

:ukPk u�n

Qv= :
l # Lv

[Wl"Fvl]Vvl+ :
k$ # Mv

;vk$Qk$ v�m.

Let us consider a relation R such that (i, j) # R iff Hi t? Gj . Clearly, (1, 1) # R.
Since Pu and Qv must have equal transitions and equal variables when (u, v) # R,
the following three statements are true:

1. �j # Ju [Wj"Euj]Uuj=�j # Lv [Wl"Fvl]Vvl ,

2. for each (u, v) # R, for each k # Ku , there exists k$ # Mv such that :uk=;vk$

and (k, k$) # R,

3. for each k$ # Mv , there exists k # Ku such that ;vk$=:uk and (k, k$) # R.

Let us now consider the set of equations Z� =F� , defined for all (u, v) # R by

Zu, v= :
j # Ju

[Wj"Ej]Uj+ :
(k, l, m) # Kuv

:uvk Zl, m .
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With

Kuv=[(k, l, m) | :k Xl is a summand of Hu and

:k Ym is a summand of Gv and

(l, m) # R].

Note that, since (u, v) # R, Hu t? Gv and therefore Ju=Lv .
Since P satisfies S, there is a set of expressions P1 , P2 , ... such that P1=P and

X� =H� [P� �X� ]. Now take the set of processes Ri, j=Pi . It is easy to see that the terms
Fi, j[

R� �Z� ] contains the same summands as Hi[
P� �X� ] with some possible duplications.

In particular, F1, 1[R� �Z� ]=P1=P. Hence P satisfies this new set of equations. A
similar reasoning can be applied to prove that Q satisfies this set of equations as
well. K

6.6. Unique Solution

We now have to prove that if two processes satisfy the same set of prioritized
equations, they are bisimilar. This is the objective of the following theorem.

Theorem 6.4. A set of prioritized standard equations has a unique solution up to
a bisimulation.

Proof. This proof exactly follows the proof given by Milner (1989a). It proceeds
by induction on the number of equations. For one equation, X=H, we have the
solution P=rec X.H. Moreover, if there is a process Q such that Q=H[Q�X] then,
by Rec(2), we have Q=rec X.H.

Assume it is true for n equations. Let S: X� =H� _ [Xn+1=Hn+1] be a system with
n+1 equations. Consider the system of n equations S$: X� =H� [ rec Xn+1 .Hn+1�Xn+1

];
Xn+1 does not occur free in S$. Therefore, by the induction hypothesis, there is a
set of processes P� such that

X� =H� [ rec Xn+1.Hn+1�Xn+1
][P� �X� ].

If we choose Pn+1=rec Xn+1.Hn+1 [P� �X� ] we have found a solution to the system S.
For the uniqueness, suppose that we have a second solution Q� _ [Qn+1]. That

is,

Q� =H� [Q� , Qn+1�X� , Xn+1
]

Qn+1=Hn+1[
Q� , Qn+1�X� , Xn+1

]

The second equation can be written

Qn+1=Hn+1[Q� �X� ][Qn+1�Xn+1
]

and therefore, by Rec(2), we have Qn+1=rec Xn+1. Hn+1[Q� �X� ], which can be
rewritten as Qn+1=(rec Xn+1.Hn+1)[Q� �X� ]. It follows that Qn+1=Pn+1 . By the
induction hypothesis, it is easy to see that Q� =P� . K
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6.7. Completeness

Theorem 6.5. For any two FS processes P and Q, if Pt? Q then P=Q.

Proof. By Theorem 6.1, there exists two processes, P$ and Q$, with no unguarded
recursion, such that P=P$ and Q=Q$. By Theorem 6.2 and Theorem 6.3, P$ and Q$
satisfy a common set of prioritized equations S. And by Theorem 6.4, P$=Q$. K

7. CONCLUSIONS

We have described a timed process algebra called ACSR that supports the
notions of resources, interrupt, and priorities. ACSR employs a synchronous
semantics for resource-consuming actions that take time and an asynchronous
semantics for events that are instantaneous. There is a single parallel operator that
can be used to express both interleaving at the event level and lock-step parallelism
at the action level.

ACSR's algebraic laws are derived from a term equivalence based on prioritized
strong bisimulation, which incorporates a notion of preemption based on priority,
synchronization and resource utilization. These laws can be used to rewrite process
terms in proving the correctness of a real-time system. The set of laws is proved
sound and complete for most finite state processes.

Traditionally, researchers in process algebra have proved the soundness of
algebraic axioms by using the bisimulation definition as described by Milner
(1989): one must first pick up a possible derivation of a process and show such a
derivation can be found in the other process. Unlike Milner's method based on the
bisimulation definition, our soundness proof is based on two functions, T and T? ,
such that given a ACSR process P, T (P) (T?(P)) is a set of pairs (a, P$) , where
P w�a P$ (P w�a ? P$). Furthermore, these are complete sets of derivations of a pro-
cess. The main use of these functions is as follows: given two ACSR finite processes
P and Q, if T (P) is the same as the T (Q), then T?(P) is the same as the T?(Q),
and hence, P and Q are prioritized bisimilar. Hence, the soundness of an axiom
P=Q can be proved by showing that T (P)=T (Q) or, if T (P){T (Q) then
showing that T?(P)=T?(Q). This approach simplifies the soundness proof, and
seems to increase the degree of understandability for the intuitive meaning of the
soundness proof.

The completeness proof described in this paper is based on the proof in (Milner,
1989, 1989a). The completeness proof of Milner consists the following four steps:
(1) prove that unguarded recursions can be eliminated; (2) prove that any finite
state process without unguarded recursion satisfies a certain kind of equations;
(3) prove that if two processes are bisimilar, then they satisfy a common set of
equations; (4) prove that those sets of equations have a unique solution up to
bisimulation. Due to ACSR's operators, such as scope and resource closure, our
complete axiomatization is for a larger subset of finite state processes than those
considered by Milner (1989, 1989a).

There are three areas of research that should be explored to extend the capability
of ACSR. The first extension is to support dynamic priorities. ACSR supports only
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static priority; i.e., the priorities of actions and events cannot change during the
execution of a process. Since modeling of many real-time scheduling algorithms,
such as earliest deadline first, first-come-first-served, etc., requires dynamic
priorities, it would be useful to support dynamic priority in timed process algebras.
This requires some method to capture the state information and then use that infor-
mation in reassigning priorities. A preliminary result on this extension is reported
in (Choi, Lee, and Xie, 1995). The second extension is to allow dense time so that
a timed action can take an arbitrary non-zero amount of time. The dense time ver-
sion ACSR has been developed by Bre� mond-Gre� goire (1994). The third extension
is to specify the value of time using a variable and then derive the range of time
values that ensure the correct timing of a process.
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