

Available online at www.sciencedirect.com

Journal of Combinatorial Theory Series B

Journal of Combinatorial Theory, Series B 96 (2006) 405-425

www.elsevier.com/locate/jctb

On Rota's conjecture and excluded minors containing large projective geometries

Jim Geelen^a, Bert Gerards^{b, c}, Geoff Whittle^d

^aDepartment of Combinatorics and Optimization,University of Waterloo, Waterloo, Canada ^bCWI, Postbus 94079, 1090 GB Amsterdam, The Netherlands ^cDepartment of Mathematics and Computer Science, Eindhoven University of Technology, Postbus 513, 5600 MB Eindhoven, The Netherlands ^dSchool of Mathematical and Computing Sciences,Victoria University, Wellington, New Zealand

> Received 13 September 2004 Available online 9 November 2005

Abstract

We prove that an excluded minor for the class of GF(q)-representable matroids cannot contain a large projective geometry over GF(q) as a minor. © 2005 Elsevier Inc. All rights reserved.

MSC: 05B35

Keywords: Matroids; Rota's conjecture; Excluded minors

1. Introduction

We prove the following theorem.

Theorem 1.1. For each prime power q, there exists an integer k such that no excluded minor for the class of GF(q)-representable matroids contains a PG(k, q)-minor.

We recall that PG(k, q) is the rank-(k + 1) projective geometry over GF(q).

Rota's conjecture states that: for any prime power q, there are only finitely many pairwise nonisomorphic excluded minors for the class of GF(q)-representable matroids. Theorem 1.1 shows that excluded minors cannot contain large projective geometries. On the other hand, in [5] we prove that for any integer k there are only finitely many excluded minors that do not contain the cycle matroid of a $k \times k$ grid. While there is still a big gap to bridge between grids and projective geometries, we are encouraged by these complementary results.

We conjecture the following strengthening of Theorem 1.1; however, it is not clear whether this stronger version would provide additional leverage toward resolving Rota's conjecture.

Conjecture 1.2. For each prime power q, no excluded minor for the class of GF(q)-representable matroids contains a PG(2, q)-minor.

Oxley, Vertigan, and Whittle [8] gave examples showing that, for each q > 5, there is no bound on the number of inequivalent representations for 3-connected matroids over GF(q). This is in stark contrast with the following result, which plays a key role in the proof of Theorem 1.1.

Theorem 1.3. If M is a 3-connected GF(q)-representable matroid with a PG(q, q)-minor, then M is uniquely GF(q)-representable.

We conjecture that this result can be sharpened to:

Conjecture 1.4. If M is a 3-connected GF(q)-representable matroid with a PG(2, q)-minor, then M is uniquely GF(q)-representable.

We use the notation of Oxley [7], with the exception that the simplification of M is denoted by si(M) and the cosimplification of M is denoted by co(M).

2. Connectivity

Let *M* be a matriod. For any subset *A* of E(M) we let $\lambda_M(A) = r_M(A) + r_M(E(M) - A) - r_M(E(M))$; λ_M is the *connectivity function* of *M*. For sets *A*, $B \subseteq E(M)$, we have

(i) $\lambda_M(A) = \lambda_M(E(M) - A),$

(ii) $\lambda_M(A) \leq \lambda_M(A \cup \{e\}) + 1$ for each $e \in E(M)$, and

(iii) $\lambda_M(A) + \lambda_M(B) \ge \lambda_M(A \cup B) + \lambda_M(A \cap B).$

It can be easily verified that $\lambda_M(X) = r_M(X) + r_{M^*}(X) - |X|$ and, hence, that $\lambda_M(X) = \lambda_{M^*}(X)$. We let $\kappa_M(X_1, X_2) = \min(\lambda_M(A) : X_1 \subseteq A \subseteq E(M) - X_2)$. Note that if M' is a minor of M and $X_1, X_2 \subseteq E(M')$, then $\kappa_{M'}(X_1, X_2) \leq \kappa_M(X_1, X_2)$. The following theorem provides a good characterization for $\kappa_M(X_1, X_2)$; this theorem is in fact a generalization of Menger's theorem.

Theorem 2.1 (*Tutte's Linking Theorem [10]*). Let M be a matroid and let X_1, X_2 be disjoint subsets of E(M). Then there exists a minor M' of M, such that $E(M') = X_1 \cup X_2$ and $\lambda_{M'}(X_1) = \kappa_M(X_1, X_2)$.

The following result shows that, if we apply Tutte's Linking Theorem when $\lambda_M(X_1) = \kappa_M(X_1, X_2)$, the resulting minor M' satisfies $M|X_1 = M'|X_1$.

Lemma 2.2. Let M' be a minor of a matroid M and let $X \subseteq E(M)$. If $\lambda_M(X) = \lambda_{M'}(X)$, then M|X = M'|X.

Proof. Note that

$$\lambda_M(X) = r_M(X) + r_{M^*}(X) - |X|$$
$$\leqslant r_{M'}(X) + r_{M'^*}(X) - |X|$$
$$= \lambda_{M'}(X).$$

Therefore, if $\lambda_M(X) = \lambda_{M'}(X)$, then $r_M(X) = r_{M'}(X)$ and, hence, M|X = M'|X. \Box

3-*connectivity*: The rest of this section is devoted to the proof of a connectivity result, Lemma 2.8, that is needed in Section 6.

A matroid M is *internally* 3-connected if M is connected and for any 2-separation (A, B) of M either |A| = 2 or |B| = 2. We require the following well-known results on 3-connected matroids.

Theorem 2.3 (*Bixby's Lemma* [2]). *If e is an element of a* 3-*connected matroid, then either* $M \setminus e$ *or* M/e *is internally* 3-*connected.*

Theorem 2.4 (*Tutte's Triangle Lemma [11]*). Let $T = \{a, b, c\}$ be a triangle in a 3-connected matroid M with $|E(M)| \ge 4$. If neither $M \setminus a$ nor $M \setminus b$ is 3-connected, then there is a triad of M that contains a and exactly one of b and c.

Theorem 2.5 (Wheels and Whirls Theorem [11]). Let M be a 3-connected matroid with $E(M) \neq \emptyset$. If M is not a wheel or a whirl, then there exists $e \in E(M)$, such that $M \setminus e$ or M/e is 3-connected.

Corollary 2.6. If M is a 3-connected matroid with $E(M) \neq \emptyset$, then there exists $e \in E(M)$ such that si(M/e) is 3-connected.

Proof. By the Wheels and Whirls Theorem, we can find a sequence of elements e_1, \ldots, e_k , such that

- (i) $M \setminus e_1, \ldots, e_i$ is 3-connected for each $i \in \{1, \ldots, k\}$, and
- (ii) either $M \setminus e_1, \ldots, e_k$ is a wheel or a whirl, or there exists an element e of $M \setminus e_1, \ldots, e_k$ such that $(M \setminus e_1, \ldots, e_k)/e$ is 3-connected.

In both cases arising from (ii), there exists an element e of $M \setminus e_1, \ldots, e_k$, such that $si((M \setminus e_1, \ldots, e_k)/e)$ is 3-connected. But then si(M/e) is also 3-connected, as required. \Box

Lemma 2.7. Let T be a triangle in a 3-connected matroid M with $|E(M)| \ge 4$. Then there exists $e \in T$ such that $M \setminus e$ is internally 3-connected.

Proof. Suppose otherwise. The result can be readily checked on matroids with at most 6 elements, so we assume that $|E(M)| \ge 7$. By Tutte's Triangle Lemma, there exists a triad T^* with $|T \cap T^*| = 2$; let $e \in T - T^*$. Note that, $(T^*, E(M) - T^*)$ is a 2-separation in M/e. Then M/e is not internally 3-connected since $|E(M)| \ge 7$. So, by Bixby's Lemma, $M \setminus e$ is internally 3-connected. \Box

The following lemma is the main result of this section.

Lemma 2.8. Let *M* be a 3-connected matroid with $|E(M)| \ge 5$. Suppose that no element of *M* is in both a triangle and a triad. Then there exist $u, v \in E(M)$ such that either:

(1) $M \setminus u$ and $M \setminus v$ are 3-connected, and $M \setminus u$, v is internally 3-connected, or (2) M/u and M/v are 3-connected, and M/u, v is internally 3-connected.

Proof. Suppose that *M* is a counterexample. Let $\Lambda(M)$ denote the set of elements $e \in E(M)$ such that $M \setminus e$ is 3-connected, and let $\Lambda^*(M)$ denote $\Lambda(M^*)$. The first three claims are straightforward, we leave the details to the reader.

2.8.1. $r(M) \ge 4$ and $r^*(M) \ge 4$.

2.8.2. If $e \in \Lambda(M)$, then $\Lambda(M \setminus e) = \emptyset$.

2.8.3. If N is a 3-connected matroid, $e \in \Lambda(N)$, and $f \in \Lambda^*(N \setminus e)$, then either $f \in \Lambda^*(N)$ or there is a triangle of N containing both e and f.

2.8.4. $\Lambda(M) \cup \Lambda^*(M) = E(M)$.

Proof. Suppose not; then there exists $e \in E(M)$ such that neither $M \setminus e$ nor M/e is 3-connected. By Bixby's Lemma and duality, we may assume that M/e is internally 3-connected. But then, since M/e is not 3-connected, e is in a triangle, say $T = \{e, a, b\}$. Now $M \setminus e$ is not 3-connected and neither a nor b is in a triad. Then, by Tutte's Triangle Lemma, both $M \setminus a$ and $M \setminus b$ are 3-connected. (We will obtain a contradiction by proving that $M \setminus a$, b is internally 3-connected.) Let (A, B) be a 2-separation in $M \setminus e$ with $a \in A$. Note that $b \in B$, since otherwise $(A \cup \{e\}, B)$ would be a 2-separation in M. Since neither a nor b is in a triad, $|A|, |B| \ge 3$. Moreover, since $|E(M)| \ge 8$, by possibly swapping A and B we may assume that $|A| \ge 4$. Note that, $(A, B \cup \{e\})$ is a 3-separation in M, and $a \in cl_M(B \cup \{e\})$. Thus $(A - \{a\}, B \cup \{e\})$ is a 2-separation in M/a and, hence $(A - \{a\}, (B \cup \{e\}) - \{b\})$ is a 2-separation in $M/a \setminus b$. Thus $(M \setminus b)/a$ is not internally 3-connected. However, $M \setminus b$ is 3-connected, so, by Bixby's Lemma, $M \setminus a, b$ is internally 3-connected.

It follows from 2.8.4 that, if *e* is in a triangle, then $M \setminus e$ is 3-connected, and if *e* is in a triad, then M/e is 3-connected.

2.8.5. If T is a triangle of M, then $\Lambda(M) \subseteq T$.

Proof. Suppose, by way of contradiction, that there exists $e \in \Lambda(M) - T$. Thus $M \setminus e$ is 3-connected. Then, by Lemma 2.7, there exists $f \in T$ such that $M \setminus e$, f is internally 3-connected. Moreover, by 2.8.4, $M \setminus f$ is 3-connected. \Box

2.8.6. *M* contains no triangles and no triads.

Proof. Suppose otherwise; then, by duality, we may assume that *M* has a triangle *T*. By 2.8.4 and 2.8.5, $\Lambda(M) = T$ and $\Lambda^*(M) = E(M) - T$. Thus *T* is the only triangle of *M*, and, since $\Lambda^*(M) > 3$, *M* contains no triads. Let $e \in E(M) - T$. By the duals of 2.8.2 and 2.8.3, $\Lambda^*(M/e) = \emptyset$ and $\Lambda(M/e) \subseteq T$.

Since $r(M) \ge 4$, there exists $f \in E(M/e) - \operatorname{cl}_{M/e}(T)$. As $f \notin T$ and $\Lambda(M/e) \subseteq T$, the minor $(M/e) \setminus f$ is not 3-connected. Moreover, since M/e has no triads, $(M/e) \setminus f$ is not internally 3-connected. \Box

2.8.7. If $e \in \Lambda(M)$ and $f \in E(M \setminus e)$, then $M \setminus e$, f is not internally 3-connected.

Proof. Suppose that $M \setminus e$, f is internally 3-connected. Then $M \setminus f$ is not 3-connected. Let (A, B) be a 2-separation in $M \setminus f$ with $e \in A$. Since M has no triads, $|A|, |B| \ge 3$. However, $(A - \{e\}, B)$ is a 2-separation in $M \setminus e$, f and $M \setminus e$, f is internally 3-connected, so |A| = 3. But, $\lambda_M(A) = 2$ so A is a triangle or a triad, contradicting 2.8.6. \Box

2.8.8. $\Lambda(M) = E(M)$ and $\Lambda^*(M) = E(M)$.

Proof. By symmetry we may assume that there exists $e \in \Lambda(M)$. By 2.8.7, for each $f \in E(M \setminus e)$, the minor $M \setminus e$, f is not internally 3-connected. Then, by Bixby's Lemma, $M \setminus e/f$ is internally 3-connected. Moreover, since $M \setminus e$ has no triangles, $M \setminus e/f$ is 3-connected. Thus $\Lambda^*(M \setminus e) = E(M \setminus e)$. So, by 2.8.3 and 2.8.6, $E(M) - \{e\} \subseteq \Lambda^*(M)$. Now, since $|\Lambda^*(M)| \ge 2$, we can argue that $\Lambda(M) = E(M)$. Now $|\Lambda(M)| \ge 2$, so $\Lambda^*(M) = E(M)$. \Box

Let $e \in E(M)$. By Corollary 2.6, there exists $f \in E(M/e)$ such that si(M/e, f) is 3-connected. However, by the dual of 2.8.7, M/e, f is not internally 3-connected. Thus, there is a 4-point line L in M/e that contains f. (That is, the restriction of M/e to L is isomorphic to $U_{2,4}$.) Note that M/e has no triads. Then, by Tutte's Triangle Lemma, there exists $a \in L$ such that $M/e \setminus a$ is 3-connected. Now, by Lemma 2.7, there exists $b \in L - \{a\}$ such that $M/e \setminus a$, b is internally 3-connected. If $M/e \setminus a$, b were 3-connected, then $M \setminus a$, b would be internally 3-connected, contradicting 2.8.7. Thus $M/e \setminus a$, b has a series-pair $\{c, d\}$. Since M/e has no triads, $\{a, b, c, d\}$ is a cocircuit of M/e. Since a circuit and a cocircuit cannot meet in exactly one element, $|L \cap \{a, b, c, d\}| \ge 3$. Moreover, since M/e is 3-connected and has at least 7 elements, $L \neq \{a, b, c, d\}$. By symmetry, we may assume that $d \notin L$. Now $M/e \setminus d$ is not internally 3-connected. So, by Bixby's Lemma, M/e, d is internally 3-connected, contradicting 2.8.7.

3. Unique representation

In this section we prove Theorem 1.3.

Let \mathbb{F} be a field and let M be a matroid. Two \mathbb{F} -representations of M are *algebraically equivalent* if one can be obtained from the other by elementary row operations, column scaling, and field automorphisms. A matroid M is *uniquely* \mathbb{F} -representable if it is \mathbb{F} -representable and any two \mathbb{F} -representations of M are algebraically equivalent. The following result is referred to as the Fundamental Theorem of Projective Geometry (see [1, p. 85]).

Theorem 3.1. For each prime power q and integer $k \ge 2$, the projective geometry PG(k, q) is uniquely GF(q)-representable.

Two \mathbb{F} -representations of M are *projectively equivalent* if one can be obtained from the other by elementary row operations, and column scaling. Two representations that are not projectively equivalent are said to be *projectively inequivalent*. By Theorem 3.1, the number of projectively inequivalent representations of PG(k, q), for $k \ge 2$, is $|\operatorname{Aut}(\operatorname{GF}(q))|$ where $\operatorname{Aut}(\operatorname{GF}(q))$ is the automorphism group of GF(q). Let N be a minor of M. We say that N stabilizes M over \mathbb{F} if no \mathbb{F} -representation of N can be extended to two projectively inequivalent \mathbb{F} -representations of M.

Clones: Let *e* and *f* be distinct elements of *M*. We call *e* and *f clones* if there is an automorphism of *M* that swaps *e* and *f* and that acts as the identity on all other elements of *M*; that is, *e* and *f* are clones if $r_M(X \cup \{e\}) = r_M(X \cup \{f\})$ for each set $X \subseteq E(M) - \{e, f\}$.

Lemma 3.2. Let e be an element of a matroid M and let \mathbb{F} be a field. If $M \setminus e$ does not stabilize M over \mathbb{F} , then there exists an \mathbb{F} -representable matroid M' with $E(M') = E(M) \cup \{f\}$ such that $M = M' \setminus f$, and e and f are independent clones in M'.

Proof. If $M \setminus e$ does not stabilize M over \mathbb{F} , then there is an \mathbb{F} -representation, say A, of $M \setminus e$ that extends to two projectively inequivalent \mathbb{F} -representations, say $[A, v_1]$ and $[A, v_2]$, of M. Let M' be the \mathbb{F} -representable matroid represented by the matrix $[A, v_1, v_2]$ where the last two columns are indexed by e and f, respectively. Clearly e and f are clones and, since the representations $[A, v_1]$ and $[A, v_2]$ are projectively inequivalent, $\{e, f\}$ is independent in M'. \Box

Lemma 3.3. Let M be a 3-connected GF(q)-representable matroid and let $L \subseteq E(M)$ be a line of M. If $|L| \ge q$ and $e, f \in E(M) - L$, then e and f are not clones.

Proof. Since *M* is 3-connected, $\kappa_M(L, \{e, f\}) = 2$. Then, by Tutte's Linking Theorem, there exists a minor *N* of *M* with $E(N) = L \cup \{e, f\}$ and $\lambda_N(L) = 2$. Since $\lambda_N(L) = 2$, it follows that $r_N(\{e, f\}) = r_N(L) = 2$ and that $e, f \in cl_N(L)$. Thus r(N) = 2. However, *N* is GF(*q*)-representable and $|E(N)| \ge q + 2$. Thus *N* contains a parallel pair $\{x, y\}$. Now $\{e, f\}$ is not a parallel pair in *N* and N|L = M|L, so *L* does not contain a parallel pair. Thus $\{x, y\}$ contains one element of $\{e, f\}$ and one element of *L*. It follows that *e* and *f* are not clones in *N*, and, hence, they are not clones in *M*. \Box

Lemma 3.4. Let e and f be clones in a matroid M. If $M \setminus e$ is 3-connected and M is not 3-connected, then e and f are parallel.

Proof. If *e* and *f* are clones and $M \setminus e$ is 3-connected, then $M \setminus f$ is also 3-connected and si(*M*) is 3-connected. Thus, if *M* is not 3-connected, then *e* and *f* are in parallel. \Box

The following lemma is a key step in the proof of Theorem 1.3.

Lemma 3.5. Let e and f be elements of a 3-connected GF(q)-representable matroid M. If M/e, f is isomorphic to PG(q, q), then e and f are not clones in M.

Proof. Let N = M/e, f and suppose that e and f are clones. By Lemma 3.5, M has no q-point lines. So, if L is a (q + 1)-point line of N, then $r_M(L) \in \{3, 4\}$. Moreover, since M has 2-point lines, q > 2.

3.5.1. There exists a rank-3 flat P of N such that $e, f \in cl_M(P)$.

Subproof. Suppose not. Then, for each line *L* of *N*, we have $r_M(L) = 3$. Consider *M* as a restriction of PG(q + 2, q), and let *Z* be the line in PG(q + 2, q) spanned by *e* and *f*. Each (q + 1)-

point line *L* of *N* spans a plane in PG(q + 2, q), and this plane intersects *Z* in a point, say z_L . Suppose that there are two lines L_1 and L_2 of *N* such that $z_{L_1} \neq z_{L_2}$. If L_1 and L_2 do not meet at a point, then consider a third line L_3 of *N* that meets both L_1 and L_2 . Note that either $z_{L_3} \neq z_{L_1}$ or $z_{L_3} \neq z_{L_2}$. Therefore, by possibly replacing one of L_1 and L_2 with L_3 , we may assume that L_1 and L_2 meet at a point. Let $P = cl_N(L_1 \cup L_2)$. Now *e* and *f* are spanned by $\{z_{L_1}, z_{L_2}\}$ and z_{L_1} and z_{L_2} are spanned by $L_1 \cup L_2$ in PG(q + 2, q), so *e*, $f \in cl_M(L_1 \cup L_2) \subseteq cl_M(P)$. Now *P* is a rank-3 flat of *N* and *e*, $f \in cl_M(P)$, as required.

Thus we may assume that there exists $z \in Z$, such that $z = z_L$ for each (q + 1)-point line Lof N. Let M' be the restriction of PG(q + 2, q) obtained by adding z to M. Now, since $\{e, f, z\}$ is a line, $M'/e, z \setminus f = M'/e, f \setminus z = N$. Since M is 3-connected, $M'/z \setminus f$ is connected. Thus e is in the closure of E(N) in $M'/z \setminus f$. So there is a circuit C of N such that C is independent in M'/z; among all such circuits we choose C as small as possible. Note that, each line of N is also a line of M'/z; thus |C| > 3. Let (I_1, I_2) be a partition of C into two sets with $|I_1|, |I_2| \ge 2$. Since C is a circuit of N and since N is a projective geometry, there exists a unique element a in $cl_N(I_1) \cap cl_N(I_2)$. Now $I_1 \cup \{a\}$ and $I_2 \cup \{a\}$ are both circuits of N and are both smaller than C. Thus, by our choice of $C, I_1 \cup \{a\}$ and $I_2 \cup \{a\}$ are both circuits in M'/z. However, this implies that $C = I_1 \cup I_2$ is dependent in M'/z. This contradiction completes the proof. \Box

3.5.2. If P is a rank-3 flat of N, then there exists a restriction K of N such that $E(K) = P \cup L'$ where L' is a q-point line in K^* .

Subproof. Let *H* be a matroid with $E(H) = L \cup \{a, b, c\}$, where *L* is a *q*-point line of *H* and *a*, *b*, and *c* are placed in parallel with distinct elements of *L* (recall that q > 2). Note that, *H* is GF(*q*)-representable, *H* is cosimple, and $r^*(H) = q + 1$. Thus there is a spanning restriction *H'* of *N* that is isomorphic to H^* . Now let $E(H') = L' \cup \{a', b', c'\}$ where a', b', c' are the elements corresponding to *a*, *b*, *c*. By the symmetry of *N*, we may assume that $a', b', c' \in P$. Finally, let $K = N | (L' \cup P)$; it is straightforward to check that *K* has the desired properties. \Box

Let *P* be the rank-3 flat of *N* given by 3.5.1, let *K* be the restriction of *N* given by 3.5.2, and let *K'* be the restriction of *M* to $E(K) \cup \{e, f\}$. Thus K'/e, f = K. Since $e, f \in cl_{K'}(P)$, the elements *e* and *f* are not in series. Then, by the dual of Lemma 3.4, *K'* is 3-connected. Moreover, since *L'* is a *q*-point coline of *K*, it is also a coline in *K'*. Thus, by applying the dual of Lemma 3.3 to *K'* we obtain a final contradiction. \Box

Stabilizers for a class of matroids: We say that N stabilizes a class \mathcal{M} of matroids over \mathbb{F} if N stabilizes each 3-connected matroid in \mathcal{M} that contains N as a minor. For brevity, when N stabilizes the class of \mathbb{F} -representable matroids over \mathbb{F} , we simply say that N is a *stabilizer* for \mathbb{F} .

Lemma 3.6. Let q be a prime power and let N be a uniquely GF(q)-representable stabilizer for GF(q). Then N has |Aut(GF(q))| projectively inequivalent representations.

Proof. This follows easily from Theorem 3.1 and the fact that *N* is a stabilizer for all projective geometries of sufficiently large rank. \Box

The following result shows that to test whether N stabilizes \mathcal{M} we need only check matroids $M \in \mathcal{M}$ with $r(M) \leq r(N) + 1$ and $r^*(M) \leq r^*(N) + 1$.

Theorem 3.7 (Whittle [12]). Let \mathcal{M} be a class of matroids that is closed with respect to taking minors, duality, and isomorphism. A 3-connected matroid $N \in \mathcal{M}$ stabilizes \mathcal{M} with respect to a field \mathbb{F} if and only if N stabilizes each 3-connected matroid $M \in \mathcal{M}$ satisfying one of the following conditions:

- (i) $N = M \setminus e$ for some $e \in E(M)$,
- (ii) N = M/e for some $e \in E(M)$, or
- (iii) $N = M \setminus e/f$ for some $e, f \in E(M)$ where $M \setminus e$ and M/f are both 3-connected.

We can now prove one of the main results of the paper.

Theorem 3.8. For each prime power q, PG(q, q) is a stabilizer for GF(q).

Proof. Let *M* be a 3-connected GF(q)-representable matroid with a minor *N* isomorphic to PG(q, q). Since there are no 3-connected GF(q)-representable extensions of PG(q, q), then, by Theorem 3.7, it suffices to consider the case that N = M/e for some $e \in E(M)$.

Suppose that *M* is not stabilized by *N*. Then, by applying the dual of Lemma 3.2, we see that there exists a matroid M' with $E(M') = E(M) \cup \{f\}$ such that M'/f = M, the elements *e* and *f* are clones in M', and $\{e, f\}$ is coindependent in M'. Since $\{e, f\}$ is coindependent in M', *e* and *f* are not in series in M'. Then, by the dual of Lemma 3.4, M' is 3-connected. This contradicts Lemma 3.5. \Box

Theorem 1.3 is an immediate consequence of Theorems 3.8 and 3.1.

4. Path-width

Let *M* be a matroid on *E*. The *path-width* of *M* is the least integer *k*, such that there exists an ordering (e_1, \ldots, e_n) of *E*, such that $\lambda_M(\{e_1, \ldots, e_i\}) \leq k$ for all $i \in \{1, \ldots, n\}$. In the remainder of the paper we shift our attention from Theorem 1.1 to the following result.

Theorem 4.1. For any prime power q, there exists an integer k such that, each excluded minor for the class of GF(q)-representable matroids that contains a PG(q+6, q)-minor has path-width at most k.

Theorem 4.1 implies Theorem 1.1. Indeed, it is straightforward to show that PG(k + 1, q) has path-width k + 2, and that path-width is non-increasing with respect to taking minors. Then, by Theorem 4.1, there is no excluded minor for the class of GF(q)-representable matroids that contains a PG(k + 1, q)-minor, proving Theorem 1.1.

Let $\mathcal{A} = (A_1, \dots, A_l)$ be an ordered partition of *E*. We let $\rho_M(\mathcal{A}) = \max(\lambda_M(A_1 \cup \dots \cup A_i))$: $i \in \{1, \dots, l\}$. We use the following two lemmas to obtain bounds on the path-width.

Lemma 4.2. Let M be a matroid, $\mathcal{A} = (A_1, \ldots, A_l)$ and $\mathcal{B} = (B_1, \ldots, B_m)$ be two ordered partitions of E(M), and let $\mathcal{C} = (A_1 \cap B_1, A_1 \cap B_2, \ldots, A_1 \cap B_m, \ldots, A_l \cap B_1, A_l \cap B_2, \ldots, A_l \cap B_m)$. Then $\rho_M(\mathcal{C}) \leq 2\rho_M(\mathcal{A}) + \rho_M(\mathcal{B})$.

Proof. For each $i \in \{1, \ldots, l\}$ and $j \in \{1, \ldots, m\}$, we let

$$A_i = A_1 \cup \cdots \cup A_i$$

$$\widehat{B}_{j} = B_{1} \cup \dots \cup B_{j}, \text{ and}$$

$$S_{ij} = ((A_{1} \cap B_{1}) \cup \dots \cup (A_{1} \cap B_{m})) \cup \dots$$

$$\cup ((A_{i-1} \cap B_{1}) \cup \dots \cup (A_{i-1} \cap B_{m})) \cup \dots$$

$$\cup ((A_{i} \cap B_{1}) \cup \dots \cup (A_{i} \cap B_{j}))$$

$$= \widehat{A}_{i-1} \cup (\widehat{A}_{i} \cap \widehat{B}_{j}).$$

Now there exists $i \in \{1, ..., l\}$ and $j \in \{1, ..., m\}$, such that $\rho_M(\mathcal{C}) = \lambda_M(S_{ij})$. By submodularity,

$$\lambda_{M}(\widehat{A}_{i-1} \cup (\widehat{A}_{i} \cap \widehat{B}_{j})) \leqslant \lambda_{M}(\widehat{A}_{i-1}) + \lambda_{M}(\widehat{A}_{i}) + \lambda(\widehat{B}_{j})$$
$$\leqslant 2\rho_{M}(\mathcal{A}) + \rho_{M}(\mathcal{B}).$$

Therefore $\rho_M(\mathcal{C}) = \lambda_M(S_{ij}) = \lambda_M(\widehat{A}_{i-1} \cup (\widehat{A}_i \cap \widehat{B}_j)) \leq 2\rho_M(\mathcal{A}) + \rho_M(\mathcal{B})$, as required. \Box

Lemma 4.3. Let A, B, and X be disjoint sets of elements in a matroid M such that, for each $e \in X$, either $\kappa_{M\setminus e}(A, B) < \kappa_M(A, B)$ or $\kappa_{M/e}(A, B) < \kappa_M(A, B)$. Then there exists an ordering (e_1, \ldots, e_m) of X and a partition (Y_0, \ldots, Y_m) of E(M) - X such that $A \subseteq Y_0$, $B \subseteq Y_m$, and $\rho_M(Y_0, \{e_1\}, Y_1, \ldots, \{e_m\}, Y_m) = \kappa_M(A, B)$.

Proof. Let $k = \kappa_M(A, B)$. The result is vacuous when $X = \emptyset$. Suppose then that X is non-empty and let $e \in X$. Now, inductively, we can find an ordering (e_1, \ldots, e_m) of $X - \{e\}$ and a partition (Y_0, \ldots, Y_m) of $E(M) - (X - \{e\})$ such that $A \subseteq Y_0, B \subseteq Y_m$, and $\rho_M(Y_0, \{e_1\}, Y_1, \ldots, \{e_m\}, Y_m)$ $= \kappa_M(A, B)$. Now $e \in Y_i$ for some $i \in \{0, \ldots, m\}$. Define

$$A' = \begin{cases} A & \text{if } i = 0, \\ (Y_0 \cup \dots \cup Y_{i-1}) \cup \{e_1, \dots, e_i\} & \text{if } i > 1 \end{cases}$$

and

$$B' = \begin{cases} B & \text{if } i = m, \\ (Y_{i+1} \cup \dots \cup Y_m) \cup \{e_{i+1}, \dots, e_m\} & \text{if } i < m. \end{cases}$$

By duality we may assume that $\kappa_{M/e}(A, B) < k$. Thus there exists a partition (X_1, X_2) of E(M/e)with $A \subseteq X_1$, $B \subseteq X_2$, and $\lambda_{M/e}(X_1) = k - 1$. It follows that $\lambda_M(X_1) = \lambda_M(X_1 \cup \{e\}) = k$ and that $e \in cl_M(X_1) \cap cl_M(X_2)$. If A' = A, then $A' \subseteq X_1$. On the other hand, if $A' \neq A$, then $\lambda_M(A') = k$. Then, by submodularity, $\lambda_M(A' \cap X_1) = k$ and $\lambda_M(A' \cup X_1) = k$. So, by replacing X_1 by $A' \cup X_1$, we get $A' \subseteq X_1$. Thus, in either case, we may assume that $A' \subseteq X_1$. Similarly, we may assume that $B' \subseteq X_2$. Finally, we get $\rho_M(Y_0, \{e_1\}, \ldots, Y_{i-1}, \{e_{i-1}\}, Y_i \cap X_1, \{e\}, Y_i \cap X_2, \{e_{i+1}\}, Y_{i+1}, \ldots, \{e_m\}, Y_m) = k$, as required. \Box

5. Final preparations

The following lemma is well-known; we prove it here for the sake of completeness.

Lemma 5.1. Let \mathbb{F} be a field and let M be an excluded minor for the class of \mathbb{F} -representable matroids. If $|E(M)| \ge 5$ then no element of M is in both a triangle and a triad.

Proof. Suppose, by way of contradiction that $e \in E(M)$ is in both a triangle *T* and a triad T^* . Note that $|T \cap T^*| \ge 2$. Since *M* is 3-connected and $|E(M)| \ge 5$, we cannot have $T = T^*$. Thus $|T \cap T^*| = 2$; suppose that $T = \{e_1, e_2, e_3\}$ and $T^* = \{e_2, e_3, e_4\}$. Let *N* be a matroid isomorphic to $M(K_4)$, where one of the triangles in N is labelled by $\{e_1, e_2, e_3\}$. Now let M' be obtained by taking the generalized parallel connection of M/e_4 and N across the triangle $\{e_1, e_2, e_3\}$. Since M/e_4 is \mathbb{F} -representable, so is M'. However, $M' \setminus e_2$, e_3 is isomorphic to M. This contradiction completes the proof. \Box

Lemma 5.2. Let M be a GF(q)-representable matroid and let N be a minor of M isomorphic to PG(k + 2, q). Then for each $e \in E(M)$ there exists a restriction N' of N isomorphic to PG(k, q) such that N' is a minor of both $M \setminus e$ and M/e.

Proof. By deleting or contracting the other elements in a way that keeps N as a minor, we may assume that $E(M) = E(N) \cup \{e\}$. The result is straightforward if $e \in E(N)$; so assume that $e \notin E(N)$. We may also assume that e is neither a loop nor a coloop.

First consider the case that $N = M \setminus e$. Since *M* is GF(q)-representable, *e* is in parallel with some element $e' \in E(N)$. Since $e' \in E(N)$, there is a restriction *N'* of *N* isomorphic to PG(k, q) such that *N'* is a minor of both $M \setminus e'$ and M/e'. Thus, since *e* and *e'* are in parallel, *N'* is a minor of both $M \setminus e'$ and M/e'.

Now consider the case that N = M/e. Since *e* is not a coloop of *M*, there exists some triangle *T* of *N* such that $e \in cl_M(T)$. Choose a restriction *N'* of *N* isomorphic to PG(k, q) such that $r_N(T \cup E(N')) = r(N') + 2$. Thus *N'* is a minor of *N/T* and hence also of *M/T*. However, *e* is a loop in *M/T*. So *N'* is a minor of both *M/e* and *M \ e*. \Box

A matroid *M* is called *stable* if it is connected and it cannot be written as the 2-sum of two non-binary matroids. This differs from the original definition in [4] since we require that *M* is connected. Suppose that $\eta_q(M)$ denotes the number of GF(*q*)-representations of *M* up to projective equivalence. It is easy to see that if *M* is the 2-sum of M_1 and M_2 , then $\eta_q(M) = \eta_q(M_1)\eta_q(M_2)$. Moreover, if *M* is a binary matroid, then $\eta_q(M) = 1$. It follows that if *M* is a stable GF(*q*)representable matroid, then by repeatedly decomposing across 2-separations we will obtain a 3-connected matroid *M'* such that $\eta_q(M) = \eta_q(M')$. It follows that if *N* is a stabilizer for GF(*q*), and if *M* is a stable matroid that contains *N* as a minor, then *N* stabilizes *M* over GF(*q*).

The following two lemmas can be derived from results in [12]; we include direct proofs for completeness.

Lemma 5.3. Let M be a 3-connected matroid, let $u, v \in E(M)$ be such that $M \setminus u, v$ is stable, and suppose that $M \setminus u, v$ has a minor N that is uniquely GF(q)-representable and is a stabilizer for GF(q). If $M \setminus u$ and $M \setminus v$ are both GF(q)-representable, then there exists a GF(q)-representable matroid M', such that $M' \setminus u = M \setminus u$ and $M' \setminus v = M \setminus v$.

Proof. Let *B* be a basis of *M* containing neither *u* nor *v*. Consider GF(q)-representations A_1 and A_2 of $M \setminus u$ and $M \setminus v$, respectively. By applying row operations we may assume that:

$$B \qquad v \qquad B \qquad u$$

$$A_1 = \begin{pmatrix} I & C_1 & y \end{pmatrix} \text{ and } A_2 = \begin{pmatrix} I & C_2 & x \end{pmatrix}.$$

Thus (I, C_1) and (I, C_2) are both GF(q)-representations of $M \setminus u, v$. However, $M \setminus u, v$ is uniquely GF(q)-representable since N is a minor of $M \setminus u, v$. Therefore, by possibly applying a field automorphism and rescaling, we may assume that $C_1 = C_2$. Now let M' be the matroid represented over GF(q) by

$$\begin{array}{cccc} B & u & v \\ (I & C_1 & x & y). \end{array}$$

Clearly $M' \setminus u = M \setminus u$ and $M' \setminus v = M \setminus v$, as required. \Box

Lemma 5.4. Let M_1 and M_2 be GF(q)-representable matroids on the same ground set and let $u, v \in E(M_1)$ be such that $M_1 \setminus u = M_2 \setminus u$ and $M_1 \setminus v = M_2 \setminus v$. If $M_1 \setminus u$ and $M_2 \setminus v$ are both stable, $M_1 \setminus u$, v is connected, and $M_1 \setminus u$, v has a minor N that is uniquely GF(q)-representable and is a stabilizer for the class of GF(q)-representable matroids, then $M_1 = M_2$.

Proof. Since $M_1 \setminus u$ and $M_1 \setminus v$ are connected, $\{u, v\}$ is co-independent. Thus there exists a basis *B* of M_1 disjoint from *u* and *v*. For each $i \in \{1, 2\}$, consider a GF(*q*)-representation A_i of M_i where:

$$A_i = \begin{pmatrix} B & u & v \\ I & C_i & x_i & y_i \end{pmatrix}.$$

Now (I, C_1, x_1) and (I, C_2, x_2) are both representations of $M_1 \setminus v$. However, $M_1 \setminus v$ is uniquely GF(q)-representable since it is stable and contains N as a minor. Therefore, by possibly applying a field automorphism and rescaling, we may assume that $C_2 = C_1$ and $x_2 = x_1$. So we may assume that $A_2 = (I, C_1, x_1, y_2)$. Now we have two representations, (I, C_1, y_1) and (I, C_1, y_2) , of $M_1 \setminus u$ and, since $M_1 \setminus u$ is stable and contains N as a minor, these representations are algebraically equivalent. Consider the operations required to transform (I, C_1, y_1) into (I, C_1, y_2) ; we have at our disposal row operations, column scaling, and field automorphisms. The common identity matrix limits the row operations to row scaling. Since $M_1 \setminus u$, v contains N as a minor and since, by Theorem 3.1, N has |Aut(GF(q))| weakly inequivalent representations, we cannot apply field automorphisms (while keeping (I, C_1) and (I, C_2) projectively equivalent). Moreover, since $M_1 \setminus u$, v is connected, the only scalings that we may apply to (I, C_1) without changing it are trivial (that is, multiply every row by a constant α and divide all columns by α). Therefore y_2 is obtained from y_1 by scaling, and, hence, $M_2 = M_1$. \Box

The next result is considerably harder to prove; we defer the proof to Sections 8–10. Before stating the result we need some definitions. If M_1 and M_2 are two matroids on a common ground set, then a set *B* is said to *distinguish* M_1 from M_2 if *B* is a basis of exactly one of M_1 and M_2 . Let *X* be a set of elements in a matroid *M*. We say that *X* is *connected* in *M* if *X* is contained in a single component of *M*. We say that *X* is *3-connected* in *M* if *X* is connected and for any partition (X_1, X_2) of *X* with $|X_1|, |X_2| \ge 2$ we have $\kappa_M(X_1, X_2) \ge 2$.

Lemma 5.5. Let M, M', and N be matroids, let B be a basis of M, let $u, v \in E(M) - B$, and let $a, b \in B$ be such that

- (1) M' is a GF(q)-representable matroid on the same ground set as $M, M' \setminus u = M \setminus u, M' \setminus v = M \setminus v$, and $(B \{a, b\}) \cup \{u, v\}$ distinguishes M from M';
- (2) *N* is a uniquely GF(q)-representable stabilizer for GF(q) and *N* is a minor of $M \setminus u, v$; and
- (3) $E(N) \cup \{a, b, u\}$ is 3-connected in $M \setminus v$ and $E(N) \cup \{a, b, v\}$ is 3-connected in $M \setminus u$.

Then M is not GF(q)-representable.

6. Proof of Theorem 4.1

Let *s* denote the number of elements of PG(*q*, *q*), and let *t* be the number of PG(*q*, *q*) restrictions of PG(*q* + 2, *q*). In this section we prove Theorem 4.1 with $k = 24t2^{s+3} + 4$.

Let *M* be an excluded minor for the class of GF(q)-representable matroids. Suppose by way of contradiction that *M* contains a PG(q + 6, q)- or a $PG(q + 6, q)^*$ -minor and that the path-width of *M* is greater than *k*. By Lemma 5.1, no element of *M* is in both a triangle and a triad. Therefore, by Lemma 2.8 and by possibly replacing *M* with M^* , we may assume that there exist elements $u, v \in E(M)$ such that $M \setminus u$ and $M \setminus v$ are 3-connected and $M \setminus u, v$ is internally 3-connected. By Lemma 5.2, $M \setminus u, v$ has a PG(q + 2, q)- or a $PG(q + 2, q)^*$ -minor *N*. Therefore, by Lemma 5.3 and Theorem 3.8, there exists a GF(q)-representable matroid M' on the same ground set as *M* such that $M' \setminus u = M \setminus u$ and $M' \setminus v = M \setminus v$. Moreover, by Lemma 5.4, M' is unique.

6.1. There exists a basis B of M and elements $a, b \in B$ such that $u, v \notin B$ and $(B - \{a, b\}) \cup \{u, v\}$ distinguishes M from M'.

Proof. Suppose that B' distinguishes M from M'. Since M is 3-connected, there exists a basis B of M that is disjoint from $\{u, v\}$; we choose such B minimizing |B' - B|. Note that |B| = |B'| and that $u, v \in B' - B$; thus, if |B' - B| = 2, then 6.1 holds (take a and b to be the two elements in B - B'). Hence, we may assume that |B' - B| > 2; let $x \in (B' - B) - \{u, v\}$. By one of the standard basis exchange axioms, there exists $y \in B - B'$ such that $(B \cup \{x\}) - \{y\}$ is a basis of at least one of M and M'; let $B'' = (B \cup \{x\}) - \{y\}$. Since $u, v \notin B''$, B'' does not distinguish M from M'. Thus B'' is a basis of M that contains neither u nor v. However, |B' - B''| < |B' - B|, contradicting our choice of B. \Box

Let $N' \in \{N, N^*\}$ be isomorphic to PG(q + 2, q), and let N'_1, \ldots, N'_t be the PG(q, q)restrictions of N'. Now, for each $i \in \{1, \ldots, t\}$, let $N'_i = N_i$ if N' = N and let $N'_i = N^*_i$ if $N' = N^*$. Let $Z = E(M) - \{a, b, u, v\}$. Now, for each $i \in \{1, \ldots, t\}$, let Z_i denote the set
of all elements $e \in Z$ such that $(M \setminus u, v) \setminus e$ and $(M \setminus u, v)/e$ both contain N_i as a minor. By
Lemma 5.2, each element in Z is contained in at least one of Z_1, \ldots, Z_t .

For each $i \in \{1, ..., t\}$, let $\Pi_i(u)$ denote the set of all partitions (A_1, A_2) of $E(N_i) \cup \{a, b, v\}$ such that $\kappa_{M \setminus u}(A_1, A_2) = 2$, and let $\Pi_i(v)$ denote the set of all partitions (A_1, A_2) of $E(N_i) \cup \{a, b, u\}$ such that $\kappa_{M \setminus v}(A_1, A_2) = 2$. Recall that $|E(N_i)| = s$, so we trivially get $|\Pi_i(u)|, |\Pi_i(v)| \leq 2^{s+3}$.

6.2. For each $e \in Z_i$ either

- (a) there exists $(A_1, A_2) \in \prod_i (u)$ such that either $\kappa_{(M \setminus u) \setminus e}(A_1, A_2) < 2 \text{ or } \kappa_{(M \setminus u)/e}(A_1, A_2) < 2$; or
- (b) there exists $(A_1, A_2) \in \prod_i (v)$ such that either $\kappa_{(M \setminus v) \setminus e}(A_1, A_2) < 2$ or $\kappa_{(M \setminus v)/e}(A_1, A_2) < 2$.

Proof. If $e \notin B$, then let

 $M_1 = M \setminus e, M'_1 = M' \setminus e, \text{ and } B_1 = B.$

If $e \in B$, then let

 $M_1 = M/e, M'_1 = M'/e, \text{ and } B_1 = B - \{e\}.$

Note that, B_1 is a basis of M_1 . Moreover

- (1) M_1 and M'_1 are GF(q)-representable matroids on the same ground set, $M'_1 \setminus u = M_1 \setminus u$, $M'_1 \setminus v = M_1 \setminus v$, and $(B_1 - \{a, b\}) \cup \{u, v\}$ distinguishes M_1 from M'_1 ; and
- (2) N_i is a uniquely GF(q)-representable stabilizer for GF(q) and N_i is a minor of $M_1 \setminus u, v$.

Then, by Lemma 5.5, either

- (i) $E(N_i) \cup \{a, b, u\}$ is not 3-connected in $M_1 \setminus v$, or
- (ii) $E(N_i) \cup \{a, b, v\}$ is not 3-connected in $M_1 \setminus u$.

However, $E(N_i) \cup \{a, b, u\}$ is 3-connected in $M \setminus v$ and $E(N_i) \cup \{a, b, v\}$ is 3-connected in $M \setminus u$. It follows that one of (a) and (b) hold. \Box

The result is now relatively straightforward, we just apply Lemmas 4.3 and 4.2 to bound the path-width of M.

For each $i \in \{1, ..., t\}$, $w \in \{u, v\}$, and $\pi = (A_1, A_2) \in \prod_i (w)$, let $Z_i(w, \pi)$ denote the set of all elements $e \in Z_i$ for which either $\kappa_{(M\setminus w)\setminus e}(A_1, A_2) < 2$ or $\kappa_{(M\setminus w)/e}(A_1, A_2) < 2$.

6.3. For each $i \in \{1, ..., t\}$, $w \in \{u, v\}$, and $\pi = (A_1, A_2) \in \Pi_i(w)$ there exists an ordering $(e_1, ..., e_m)$ of $Z_i(w, \pi)$ and a partition $(Y_0, ..., Y_m)$ of $E(M) - Z_i(w, \pi)$, such that $\rho_M(Y_0, \{e_1\}, Y_1, ..., \{e_m\}, Y_m) \leq 3$.

Proof. By Lemma 4.3, there exists an ordering (e_1, \ldots, e_m) of $Z_i(w, \pi)$ and a partition (Y_0, \ldots, Y_m) of $(E(M) - Z_i(w, \pi)) - \{w\}$ such that $\rho_{M\setminus w}(Y_0, \{e_1\}, Y_1, \ldots, \{e_m\}, Y_m) \leq 2$. Adding w to Y_0 gives the result. \Box

Now let $Z_i(w)$ denote the union of the sets $Z_i(w, \pi)$ over all $\pi \in \prod_i(w)$. By 6.3 and Lemma 4.2, we get

6.4. For each $i \in \{1, ..., t\}$ and $w \in \{u, v\}$, there exists an ordering $(e_1, ..., e_m)$ of $Z_i(w)$ and a partition $(Y_0, ..., Y_m)$ of $E(M) - Z_i(w)$, such that $\rho_M(Y_0, \{e_1\}, Y_1, ..., \{e_m\}, Y_m) \leq 6|\Pi_i(w)| \leq 6 (2^{s+3})$.

Now, for each $e \in Z$, there exists $i \in \{1, ..., t\}$ such that $e \in Z_i(u)$ or $e \in Z_i(v)$. Then, by 6.4 and Lemma 4.2, we get

6.5. There exists an ordering $(e_1, ..., e_m)$ of Z and a partition $(Y_0, ..., Y_m)$ of E(M) - Z such that $\rho_M(Y_0, \{e_1\}, Y_1, ..., \{e_m\}, Y_m) \le 24t2^{s+3}$.

Now $E(M) - Z = \{a, b, u, v\}$ so, by 6.5, $M \setminus \{u, v, a, b\}$ has path-width at most $24t2^{s+3}$. Hence, M has path-width at most $24t2^{s+3} + 4 = k$. This contradiction completes the proof. \Box

7. Fixing a basis

In the proof of Lemma 5.5, we work with a pair (M, B) where B is a fixed basis of the matroid M. In this section we formalize the notion of a matroid viewed with respect to a fixed basis. The results given here were introduced in [4]; we use different notation in the hope of keeping a closer connection to more familiar matroid notions.

We denote the symmetric difference of sets *X* and *Y* by $X\Delta Y$; that is, $X\Delta Y = (X - Y) \cup (Y - X)$.

Let B be a basis of a matroid M. A set $X \subseteq E(M)$ is a *feasible set* of (M, B) if $X\Delta B$ is a basis of M. Duality is quite transparent in this setting, since (M, B) and $(M^*, E(M) - B)$ have the same feasible sets.

Representations: An \mathbb{F} -representation of (M, B) is a $B \times (E(M) - B)$ matrix A over \mathbb{F} , such that

$$B$$

(I A

)

is an \mathbb{F} -representation of M. (Elsewhere, A is often called a *standard representation*.) Note that, $X \subseteq E(M)$ is a feasible set of (M, B) if and only if $|X \cap B| = |X - B|$ and the submatrix $A[X \cap B, X - B]$ is non-singular. (Many of the results given below are straightforward for representable matroids.)

Fundamental graphs: The fundamental graph of (M, B), denoted by $G_{(M,B)}$ or by G_B , is the graph whose vertex set is E(M) and whose edge set is given by the 2-element feasible sets of (M, B). Note that G_B is bipartite with bipartition (B, E(M) - B). For $X \subseteq E(M)$, we denote by $G_B[X]$ the subgraph of G_B induced by the vertex set X. The following results relate feasible sets to the fundamental graph.

Lemma 7.1 (Brualdi [3]). If X is a feasible set of (M, B), then $G_B[X]$ has a perfect matching.

Lemma 7.2 (*Krogdahl* [6]). If $G_B[X]$ has a unique perfect matching, then X is a feasible set of (M, B).

Minors: For any $X \subseteq E(M)$, we let

$$M[X, B] = M \setminus (E(M) - (X \cup B))/(B - X);$$

such minors are said to be *visible* with respect to *B*. It is straightforward to show that, for any minor *N* of *M*, there exists a basis *B'* of *M* such that N = M[E(N), B']. Note that $B \cap X$ is a basis of M[X, B] and the fundamental graph of $(M[X, B], B \cap X)$ is $G_B[X]$. Moreover, if *A* is a representation of (M, B) then $A[B \cap X, X - B]$ is a representation of $(M[X, B], B \cap X)$.

Pivoting: We will need to change bases; for example, to make some minor visible. Suppose that X is a feasible set of (M, B). Then $B\Delta X$ is a basis of M. Now Y is a feasible set of $(M, B\Delta X)$ if and only if $X\Delta Y$ is a feasible set of (M, B). Typically we will shift from (M, B) to $(M, B\Delta \{x, y\})$ for some edge $\{x, y\}$ of G_B ; such a change is referred to as a *pivot on xy*. Let $B' = B\Delta \{x, y\}$. We can determine much of the structure of $G_{B'}$ from G_B . Note that uv is an edge of $G_{B'}$ if and only if $\{u, v\}\Delta \{x, y\}$ is feasible in (M, B). Thus

- (i) $\{x, y\}$ is an edge of $G_{B'}$.
- (ii) If $v \in E(M) \{x, y\}$, then xv is an edge of $G_{B'}$ if and only if yv is an edge of G_B . Similarly, yv is an edge of $G_{B'}$ if and only if xv is an edge of G_B .
- (iii) If $u, v \in E(M) \{x, y\}$ and v is adjacent to neither x nor y in G_B , then uv is an edge of $G_{B'}$ if and only if uv is an edge of G_B .
- (iv) If $u, v \in E(M) \{x, y\}$ where ux and vy are edges of G_B but uv is not, then uv is an edge of $G_{B'}$.

This leaves only one problematic case: if $G_B[\{x, y, u, v\}]$ is a circuit, then we cannot determine whether uv is an edge of $G_{B'}$ using only information from G_B . All we can say in this case is that, uv is an edge of $G_{B'}$ if and only if $\{x, y, u, v\}$ is a feasible set of (M, B).

A set $X \subseteq E(M)$ is a *twirl* of (M, B) if $G_B[X]$ is an induced circuit and X is feasible; it is easy to check that if X is a twirl, then M[X, B] is a whirl. We are only interested in 4-element twirls; these are precisely visible $U_{2,4}$ -minors.

Connectivity and fundamental graphs: The following results help us identify 1- and 2-separations using fundamental graphs. In each of the these results, B is a basis of a matroid M.

Lemma 7.3. Let $Y \subseteq E(M)$. Then, $\lambda_M(Y) > 0$ if and only if there exists an edge uv of G_B with $u \in Y$ and $v \in V - Y$.

Corollary 7.4. *M* is connected if and only if G_B is connected.

A partition (X_1, X_2) of E(M) is called a *split* of G_B if $|X_1|, |X_2| \ge 2$ and the edges of G_B connecting X_1 to X_2 induce a complete bipartite graph; that is, there exist $Y_1 \subseteq X_1$ and $Y_2 \subseteq X_2$ such that each vertex in Y_1 is adjacent to each vertex in Y_2 , and these are the only edges between X_1 and X_2 .

Lemma 7.5. If (X_1, X_2) is a 2-separation in M, then (X_1, X_2) is a split of G_B .

A partial converse is given by the following result.

Lemma 7.6 (See [4, Proposition 4.12]). Let (X_1, X_2) be a split in G_B and let $x_1 \in X_1$ and $x_2 \in X_2$ where x_1 and x_2 are adjacent in G_B . Then, (X_1, X_2) is a 2-separation in M if and only if there is no twirl $\{x_1, x_2, y_1, y_2\}$ in (M, B) with $y_1 \in X_1$ and $y_2 \in X_2$.

Series and parallel elements: Suppose that x and y are parallel in M. We may assume that $y \notin B$. If $x \in B$, then y is pendant to x in G_B ; that is, x is the only neighbour of y. On the other hand, if $x \notin B$, then x and y are twins in G_B ; that is, x and y have the same neighbours. Similarly, if x and y are in series in M and $y \in B$, then either x is pendant to y in G_B or x and y are twins. The converse need not be true. If x and y are twins in G_B , then x and y need not be in series or in parallel. However, by 7.6, if x is pendant to y in G_B , then either x and y are in series (when $x \in B$) or x and y are in parallel (when $x \notin B$).

8. 3-Connected sets and fundamental graphs

In this section we prove various connectivity results, most of which concern 3-connected sets in a matroid with a fixed basis. Let X be a 3-connected set in a connected matroid M. Now let $\mathcal{F}_M(X) = \{Z \subseteq E(M) : \lambda_M(Z) \leq 1 \text{ and } |X \cap Z| \leq 1\}$ and let $\Pi_M(X)$ be the collection of maximal sets in $\mathcal{F}_M(X)$.

Lemma 8.1. If X is a 3-connected set in a connected matroid M and $|X| \ge 4$, then $\Pi_M(X)$ is a partition of E(M).

Proof. Note that, for each $v \in E(M)$, we have $\{v\} \in \mathcal{F}_M(X)$. Thus it suffices to prove that, if $Z_1, Z_2 \in \mathcal{F}_M(X)$ and $Z_1 \cap Z_2 \neq \emptyset$, then $Z_1 \cup Z_2 \in \mathcal{F}_M(X)$. By submodularity, $\lambda_M(Z_1) + \lambda_M(Z_2) \ge \lambda_M(Z_1 \cap Z_2) + \lambda_M(Z_1 \cup Z_2)$. Since $Z_1, Z_2 \in \mathcal{F}_M(X)$, we have $\lambda_M(Z_1), \lambda_M(Z_2) \le 1$. Moreover, since $Z_1 \cap Z_2 \neq \emptyset$ and since M is connected, we have $\lambda_M(Z_1 \cap Z_2) \ge 1$. Therefore $\lambda_M(Z_1 \cup Z_2) \le 1$. Now $|(Z_1 \cup Z_2) \cap X| \le 2$ so $|X - (Z_1 \cup Z_2)| \ge 2$. Hence, since X is a 3-connected set, we must have $|(Z_1 \cup Z_2) \cap X| \le 1$ and, so, $Z_1 \cup Z_2 \in \mathcal{F}_M(X)$, as required. \Box

For any $\pi \subseteq E(M)$, we let $\partial_{(M,B)}(\pi)$ be the elements of π that have a neighbour in $E(M) - \pi$ in G_B . For a partition Π of E(M), we let $\partial_{(M,B)}(\Pi)$ denote $(\partial_{(M,B)}(\pi) : \pi \in \Pi)$. Where there is no fear of ambiguity we denote $\partial_{(M,B)}$ by ∂_B . Now suppose that B is a basis of M and that (X_1, X_2) is a 2-separation of M. Then, as noted in the previous section, (X_1, X_2) is a split of G_B . Now let $x_1 \in \partial_B(X_1)$ and $x_2 \in \partial_B(X_2)$. It is straightforward to prove that M is the 2-sum of $M[X_1 \cup \{x_2\}, B]$ and $M[\{x_1\} \cup X_2, B]$ (identifying x_1 with x_2) and that, up to isomorphism, these matroids do not depend on the particular choice of x_1 and x_2 . Decomposing across each of the 2-separations given by the parts of $\Pi_M(X)$, we obtain the following lemma.

Lemma 8.2. Let B be a basis of a connected matroid M and let X be a 3-connected set of M with $|X| \ge 4$. If T is a transversal of $\partial_B(\Pi_M(X))$, then M[T, B] is 3-connected. Moreover, if N is a 3-connected minor of M with $X \subseteq E(N)$, then M[T, B] has a minor isomorphic to N.

Lemma 8.2 provides a way of recognizing that certain minors are 3-connected; we also need to recognize that certain minors are stable.

Lemma 8.3. Let *B* be a basis in a connected matroid *M* and let $X \subseteq E(M)$ be a 3-connected set in *M* with $|X| \ge 4$. If $S \subseteq E(M)$ where $S \cap \pi \neq \emptyset$ for each $\pi \in \Pi_M(X)$ and each component of $G_B[S \cap \pi]$ is a tree containing exactly one element of $\partial_B(\pi)$, then M[S, B] is stable.

Proof. Note that, there is a transversal $T \subseteq S$ of $\partial_B(\Pi_M(X))$. By Lemma 8.2, M[T, B] is 3-connected. Moreover, we can obtain M[T, B] from M[S, B] by repeated simplification and cosimplification. Thus M[S, B] is stable. \Box

We need the following elementary fact about bipartite graphs; the easy proof is left to the reader.

Lemma 8.4. If G = (V, E) is a connected bipartite graph and $u, v, w \in V$, then there exists $A \subseteq V$, such that $u, v, w \in A$ and G[A] is a tree.

Lemma 8.5. Let *B* be a basis in a connected matroid *M* and let $X \subseteq E(M)$ be a 3-connected set in *M* with $|X| \ge 4$. If $\pi \in \prod_M (X)$ and $Z \subseteq \pi$ with $|Z| \le 2$, then there exists $S \subseteq \pi$, such that $Z \subseteq S$ and each component of $G_B[S]$ is a tree with exactly one vertex in $\partial_B(\pi)$.

Proof. Let $v \in E(M) - \pi$ be a vertex of G_B that has a neighbour in π . By Lemma 8.4, there exists $S \subseteq \pi$, such that $Z \subseteq S$ and $G_B[S \cup \{v\}]$ is a tree. Since v is adjacent to every vertex in $\partial_B(\pi)$, each component of $G_B[S]$ is a tree with exactly one vertex in $\partial_B(\pi)$. \Box

Lemma 8.6. Let e be an element of a connected matroid M and let N be a 3-connected non-binary minor of $M \setminus e$. If $M \setminus e$ is stable but M is not stable, then there exists $\pi \in \prod_{M \setminus e}(E(N))$ such that $\lambda_M(\pi \cup \{e\}) = 1$.

Proof. If *M* is not stable, then *M* can be expressed as the 2-sum of two non-binary matroids M_1 and M_2 on ground sets $X_1 \cup \{z\}$ and $X_2 \cup \{z\}$ respectively. By symmetry, we may assume that $e \in X_1$. Moreover, since $M \setminus e$ is stable, $M_1 \setminus e$ is binary. It follows that $|X_1 \cap E(N)| \leq 1$. Thus there exists $\pi \in \prod_{M \setminus e} (E(N))$ such that $X_1 - \{e\} \subseteq \pi$. Now, since $\lambda_M(X_1) = \lambda_{M \setminus e} (X_1 - \{e\})$, we have $e \in cl_M(X_1 - \{e\})$. Then $e \in cl_M(\pi)$ and, hence, $\lambda_M(\pi \cup \{e\}) = 1$. \Box

We conclude this section with two easy connectivity results.

Lemma 8.7. Let (X, D, Y) be a partition of the ground set of a matroid M where D is coindependent in M. Then, $\lambda_M(X) = \lambda_{M \setminus D}(X)$ if and only if $D \subseteq cl_M(Y)$.

Proof. Note that,

$$\begin{split} \lambda_{M}(X) - \lambda_{M \setminus D}(X) &= (r_{M}(X) + r_{M}(D \cup Y) - r(M)) \\ &- (r_{M}(X) + r_{M}(Y) - r_{M}(X \cup Y)) \\ &= (r_{M}(X) + r_{M}(D \cup Y) - r(M)) \\ &- (r_{M}(X) + r_{M}(Y) - r(M)) \\ &= r_{M}(D \cup Y) - r_{M}(Y). \end{split}$$

Thus, $\lambda_M(X) = \lambda_{M \setminus D}(X)$ if and only if $D \subseteq cl_M(Y)$. \Box

Lemma 8.8. Let X and Y be disjoint sets of elements of a matroid M and let B be a basis of M. If $\lambda_M(X) > \lambda_{M[X \cup Y, B]}(X)$, then there exists $e \in E(M) - (X \cup Y)$, such that $\lambda_{M[X \cup Y \cup \{e\}, B]}(X) > \lambda_{M[X \cup Y, B]}(X)$.

Proof. Let $C = (E(M) - (X \cup Y)) \cap B$ and let $D = E(M) - (X \cup Y \cup C)$. By using duality, we may assume that D is not empty. Now let N = M/C; thus $N \setminus D = M[X \cup Y, B]$. Suppose that $\lambda_N(X) > \lambda_{N\setminus D}(X)$. Then, by Lemma 8.7, there exists $e \in D$ such that $e \notin cl_N(Y)$. Then, again by Lemma 8.7, $\lambda_{M[X \cup Y \cup \{e\}, B]}(X) = \lambda_{N\setminus D}(-\{e\})(X) > \lambda_{N\setminus D}(X) = \lambda_{M[X \cup Y, B]}(X)$, as required. Therefore we may assume that $\lambda_N(X) = \lambda_{N\setminus D}(X)$. Then, by Lemma 8.7, $D \subseteq cl_N(Y)$. However, since N = M/C, we have $D \subseteq cl_M(Y \cup C)$. So, by Lemma 8.7, $\lambda_{M\setminus D}(X) = \lambda_M(X) > \lambda_{(M\setminus D)/C}(X)$. But $D \neq \emptyset$, so by replacing M with $M \setminus D$ the result follows inductively. \Box

9. Proof of Lemma 5.5

Recall that M, M', and N are matroids, B is a basis of M, $u, v \in E(M) - B$, and $a, b \in B$ sayisfying

- (1) M' is a GF(q)-representable matroid on the same ground set as $M, M' \setminus u = M \setminus u, M' \setminus v = M \setminus v$, and $(B \{a, b\}) \cup \{u, v\}$ distinguishes M from M';
- (2) N is a uniquely GF(q)-representable stabilizer for GF(q) and N is a minor of $M \setminus u, v$; and
- (3) $E(N) \cup \{a, b, u\}$ is 3-connected in $M \setminus v$ and $E(N) \cup \{a, b, v\}$ is 3-connected in $M \setminus u$.

We will need that *N* is non-binary. It is straightforward to show that a binary matroid can only be a stabilizer over GF(2) or GF(3). On the other hand, Lemma 5.5 is straightforward when $q \in \{2, 3\}$. Therefore we may assume that *N* is non-binary.

Note that $G_{(M,B)}$ and $G_{(M',B)}$ are the same; we denote this graph by G_B . Since $E(N) \cup \{u, a, b\}$ is 3-connected in $M \setminus v$, the set $E(N) \cup \{a, b\}$ is connected in $M \setminus u$, v. Thus $E(N) \cup \{a, b\}$ is contained in a component, say H, of $G_B - u - v$. Now it is easy to check that the hypotheses of Lemma 5.5 are satisfied when we replace M and M' by $M[V(H) \cup \{u, v\}, B]$ and $M'[V(H) \cup \{u, v\}, B]$, respectively. Thus we may assume that $M \setminus u$, v is connected.

A set $F \subseteq E(M)$ distinguishes (M, B) from (M, B') if F is a feasible set of exactly one of (M, B) and (M, B'). Thus $\{a, b, u, v\}$ distinguishes (M, B) from (M, B'). Since $M \setminus u = M' \setminus u$ and $M \setminus v = M' \setminus v$, both u and v are contained in any set that distinguishes (M, B) from (M, B'). During the proof we change our choice of a, b, and B; however, we are careful that a, b, and B are chosen such that they satisfy the following four conditions:

9.1. *B* is a basis of *M* with $u, v \notin B$ and $a, b \in B$;

9.2. $\{a, b, u, v\}$ distinguishes (M, B) from (M', B);

9.3. no two of a, b, and u are in the same part of $\Pi_{M \setminus v}(E(N))$; and

9.4. no two of a, b, and v are in the same part of $\Pi_{M\setminus u}(E(N))$.

Conditions 9.1 and 9.2 are trivially satisfied by our initial *a*, *b*, and *B*. Moreover, since $E(N) \cup \{a, b, u\}$ is 3-connected in $M \setminus v$ and, $E(N) \cup \{a, b, v\}$ is 3-connected in $M \setminus u$, conditions 9.3 and 9.4 are also satisfied.

Let $\Pi = \Pi_{M \setminus u, v}(E(N))$. For each $e \in E(M) - \{u, v\}$, we let π_e denote the set in Π that contains *e*. In this section we abbreviate $\partial_{(M \setminus u, v, B)}$ to ∂ .

9.5. If X is a transversal of $\partial(\Pi)$, then M[X, B] is 3-connected, uniquely GF(q)-representable, and is a stabilizer for GF(q).

Proof. By Lemma 8.2, M[X, B] is 3-connected and contains an *N*-minor. Then, since *N* is uniquely GF(q)-representable and is a stabilizer for GF(q), M[X, B] is uniquely GF(q)-representable and is a stabilizer for GF(q). \Box

Since $\{a, b, u, v\}$ distinguishes (M, B) from (M, B'), we see, by Lemmas 7.1 and 7.2, that:

9.6. $G_B[\{u, v, a, b\}]$ is a circuit.

9.7. If x is adjacent to both a and b in G_B , then $\{x, a, b, u\}$ and $\{x, a, b, v\}$ are both twirls of (M, B).

Proof. Suppose that $\{x, a, b, v\}$ is not a twirl of (M, B). Then x and v are in parallel in $M[\{x, a, b, u, v\}, B]$ and, hence, also in $M'[\{x, a, b, u, v\}, B]$. Thus, $\{a, b, u, v\}$ is feasible in (M, B) if and only if $\{x, a, b, u\}$ is feasible in (M, B). Similarly, $\{a, b, u, v\}$ is feasible in (M', B) if and only if $\{x, a, b, u\}$ is feasible in (M', B). Then, since $\{a, b, u, v\}$ is feasible in (M', B) and (M', B), the set $\{a, b, u, v'\}$ also distinguishes (M, B) and (M', B). This contradicts the fact that $M \setminus v = M' \setminus v$. \Box

We rely on the following result to prove that M is not GF(q)-representable.

9.8. Let X be a transversal of $\hat{o}(\Pi)$ and let $S \subseteq E(M) - \{u, v\}$ with $X \cup \{a, b\} \subseteq S$. If $M[S \cup \{u\}, B]$ and $M[S \cup \{v\}, B]$ are stable and M[S, B] is connected, then M is not GF(q)-representable.

Proof. Let $M_1 = M[S \cup \{u, v\}, B]$ and $M_2 = M'[S \cup \{u, v\}, B]$. Note that $M_1 \setminus u = M_2 \setminus u$ and $M_1 \setminus v = M_2 \setminus v$. However, $M_1 \neq M_2$ since $\{a, b, u, v\}$ distinguishes (M, B) from (M, B'). Moreover, $M_1 \setminus u$ and $M_1 \setminus v$ are stable and $M_1 \setminus u$, v is connected. Then, by Lemma 5.4, M_1 is not GF(q)-representable. \Box

Henceforth, we assume that M is GF(q)-representable, and, hence, there does not exist a set S satisfying the hypotheses of 9.8. By 9.8 we can exclude an easy case.

9.9. No transversal of $\partial(\Pi)$ contains both a and b.

Proof. Suppose that there is a transversal *X* of $\partial(\Pi)$ with $a, b \in X$ and let $S = X \cup \{u, v\}$. By 9.5, $M[S - \{u, v\}, B]$ is 3-connected. Thus $M[S - \{u\}, B]$ and $M[S - \{v\}, B]$ are both internally 3-connected, and, hence, stable. Thus we have a contradiction to 9.8. \Box

Currently *a* and *b* play interchangeable roles in the proof. By possibly swapping *a* and *b* we may assume that:

9.10. If $b \in \partial(\pi_b)$, then $a \in \partial(\pi_b)$.

Proof. Suppose that $b \in \partial(\pi_b)$. By the symmetry between *a* and *b* we may also suppose that $a \in \partial(\pi_a)$. If $\pi_a = \pi_b$, then the assumption holds. On the other hand, if $\pi_a \neq \pi_b$, then there is a transversal *X* of $\partial(\Pi)$ that contains both *a* and *b*, contradicting 9.9. \Box

9.11. Suppose that $b' \in \partial(\pi_b)$ such that if $a \in \partial(\pi_b)$ then a = b'. Now let $v' \in E(M) - (\{u, v\} \cup \pi_b)$ be a neighbour of b'. Then $\lambda_{M[\{b,b',v,v'\},B]}(\{b,b'\}) > 1$.

Proof. By 9.10, $b' \neq b$. Suppose to the contrary that $\lambda_{M[\{b,b',v,v'\},B]}(\{b,b'\}) = 1$. Thus $(\{b,b'\}, \{v,v'\})$ is a split in $G_B[\{b,b',v,v'\}]$. However, note that *b* is adjacent to *v* and *b'* is adjacent to *v'*. It follows that *b* and *b'* are both adjacent to *v* and *v'*. Moreover, $\{b, b', v, v'\}$ is not a twirl in (M, B). Since *b* is adjacent to *v'*, we have $b \in \partial(\pi_b)$. Then, by 9.10, $a \in \partial(\pi_b)$. Hence, by our definition of *b'*, we have b' = a. Now *v'* is adjacent to both *a* and *b* but $\{v', a, b, v\}$ is not a twirl in (M, B), contradicting 9.7. \Box

9.12. Let $S \subseteq E(M) - \{u, v\}$ where $a, b \in S$, M[S, B] is stable, and $S \cap \pi \neq \emptyset$ for each $\pi \in \Pi$. If $M[S \cup \{v\}, B]$ is not stable, then $\lambda_{M[\pi_b \cup \{v\} \cup S, B]}(\pi_b \cup \{v\}) = 1$.

Proof. Let $\widehat{M} = M[S \cup \{v\}, B]$ and let $X \subseteq S$ be a transversal of $\partial(\Pi)$. By 9.5, X is a 3-connected set in $\widehat{M} \setminus v$, so $\Pi_{\widehat{M} \setminus v}(X) = (S \cap \pi : \pi \in \Pi)$. If $M[S \cup \{v\}, B]$ is not stable, then, by Lemma 8.6, there exists $\pi \in \Pi_{\widehat{M} \setminus v}(X)$ such that $\lambda_{\widehat{M}}(\pi \cup \{v\}) = 1$. It follows that $v \in cl_{\widehat{M}}(\pi)$. Therefore, for any $\pi' \in \Pi_{\widehat{M} \setminus v}(X)$ where $\pi \neq \pi'$, we have $\lambda_{\widehat{M}}(\pi') = 1$. However, by 9.11, $\lambda_{\widehat{M}}(\pi_b \cap S) > 1$. Thus $\pi = S \cap \pi_b$. Suppose that $\lambda_{M[\pi_b \cup \{v\} \cup S, B]}(\pi_b \cup \{v\}) > 1$. We know that $\lambda_{M[S,B]}(\pi) = 1$. So, by Lemma 8.8, there exists $e \in (\pi_b \cup \{v\}) - \pi$ such that $\lambda_{M[S \cup \{e\}, B]}(\pi \cup \{e\}) > 1$. Since $\lambda_{M[\pi_b \cup S, B]}(\pi_b) = 1$, it follows that e = v. But this contradicts the fact that $\lambda_{\widehat{M}}(\pi \cup \{v\}) = 1$. \Box

Note that there is still symmetry between u and v. Thus, an analogous result holds with the roles of u and v swapped in 9.12.

Case 1: $\pi_a = \pi_b$.

By Lemma 8.5, there exists $S_b \subseteq \pi_b$ such that $a, b \in S_b$ and each component of $G_B[S_b]$ is a tree containing exactly one element of $\partial(\pi_b)$. Now let $b' \in \partial(\pi_b) \cap S_b$ and let X be a transversal of $\partial(\Pi)$ that contains b'. Finally, let x be a neighbour of b' in $G_B[X]$. By 9.4, $\lambda_{M\setminus u}(\pi_b \cup \{v\}) > 1 = \lambda_{M[\pi_b \cup \{v, x\}, B]}(\pi_b \cup \{v\})$. Then, by Lemma 8.8, there exists $e_v \in E(M) - (\pi_b \cup \{u, v, x\})$ such that $\lambda_{M[\pi_b \cup \{e_v, v, x\}, B]}(\pi_b \cup \{v\}) > 1$. Similarly, there exists $e_u \in E(M) - (\pi_b \cup \{u, v, x\})$ such that $\lambda_{M[\pi_b \cup \{e_u, u, x\}, B]}(\pi_b \cup \{u\}) > 1$.

Case 1.1: e_u and e_v are not both contained in π_x .

By Lemmas 8.3 and 8.5, there exists $S \subseteq E(M) - \{u, v\}$ such that M[S, B] is stable, $e_u, e_v, x \in S$, $S \cap \pi_b = S_b$, and $S \cap \pi \neq \emptyset$ for each $\pi \in \Pi$. Since $b', x, e_u, e_v \in S$, we have $\lambda_{M[\pi_b \cup \{u\} \cup S, B]}(\pi_b \cup \{u\}) > 1$ and $\lambda_{M[\pi_b \cup \{v\} \cup S, B]}(\pi_b \cup \{v\}) > 1$. Therefore, by 9.12, $M[S \cup \{u\}, B]$ and $M[S \cup \{v\}, B]$ are both stable, contradicting 9.8.

Case 1.2: $e_u, e_v \in \pi_x$.

Since X is a transversal of $\partial(\Pi)$, the minor M[X, B] is 3-connected. Hence, $G_B[X]$ has no vertices of degree one. Therefore b' has a neighbour x' in $G_B[X - \{x\}]$. Note that, $\lambda_{M[\pi_b \cup \{x, x', u, e_u\}, B]}(\pi_b \cup \{u\}) > 1 = \lambda_{M[\pi_b \cup \{u, x'\}, B]}(\pi_b \cup \{u\})$. Then, by Lemma 8.8, there exists $e'_u \in \{x, e_u\}$ such that $\lambda_{M[\pi_b \cup \{u, x', e'_u\}, B]}(\pi_b \cup \{u\}) > 1$. Similarly, there exists $e'_v \in \{x, e_v\}$ such that $\lambda_{M[\pi_b \cup \{v, x', e'_v\}, B]}(\pi_b \cup \{v\}) > 1$. Note that, $e'_u, e'_v \in \pi_x$ and that $\pi_x \neq \pi_{x'}$. Therefore replacing x, e_u , and e_v with x', e'_u , and e'_v returns us to Case 1.1.

Case 2: $\pi_a \neq \pi_b$.

We choose $S_a \subseteq \pi_a$ such that $G_B[S_a]$ is a path connecting *a* to some element $a' \in \partial(S_a)$. Now we choose $S_b \subseteq \pi_b$ such that $G_B[S_b]$ is a path connecting *b* to some element $b' \in \partial(S_b)$. Now let *X* be a transversal of $\partial(\Pi)$ containing both *a'* and *b'*, and let $S = S_a \cup S_b \cup X$. By Lemma 8.3, M[S, B] is stable. By 9.8 and by possibly swapping *u* and *v*, we may assume that $M[S \cup \{u\}, B]$ is not stable. Then, by 9.12, $\lambda_{M[\pi_b \cup \{u\} \cup S, B]}(\pi_b \cup \{u\}) = 1$. Thus $(\pi_b \cup \{u\}, S - \pi_b)$ is a split in $G_B[\pi_b \cup \{u\} \cup S]$. Recall that *u* is adjacent to *a* in G_B . It follows that $a \in \partial(\pi_a)$ and that *a* is adjacent to *b'* in G_B .

Now let $\hat{a} = b', \hat{b} = b$, and $\hat{B} = B\Delta\{a, b'\}$. Observe that \hat{a} and \hat{b} are in the same part of Π . We will show that \hat{a}, \hat{b} , and \hat{B} satisfy 9.1, 9.2, 9.3, 9.4, and 9.9; thus reducing Case 2 to Case 1. Note that, $\hat{a}, \hat{b}, \hat{b}$, and \hat{B} trivially satisfy 9.1. Moreover, as $\{\hat{a}, \hat{b}, u, v\} = \{a, b, u, v\}\Delta\{a, b'\}$ and $\{a, b, u, v\}$ distinguishes (M, B) from (M', B), the set $\{\hat{a}, \hat{b}, u, v\}$ distinguishes (M, \hat{B}) from (M', \hat{B}) . Thus \hat{a}, \hat{b} , and \hat{B} also satisfy 9.2. Note that, a and b' remain adjacent in $G_{\hat{B}}$, so $\hat{a} \in \hat{c}_{(M \setminus u, v, \hat{B})}(\pi_b)$. Hence, \hat{a}, \hat{b} , and \hat{B} satisfy 9.9.

It remains to prove that \hat{a}, \hat{b} , and \hat{B} satisfy 9.3 and 9.4; suppose otherwise. By the symmetry between u and v, we may assume that there exists $\pi \in \prod_{M \setminus v}(E(N))$, such that $|\pi \cap \{\hat{a}, \hat{b}, u\}| \ge 2$. However, by 9.3, π cannot contain both of $\hat{b} = b$ and u. Thus $\hat{a} = b' \in \pi$. Again using 9.3, since π contains one of u and b, we have $a \notin \pi$. Now $(\pi, E(M) - (\{v\} \cup \pi))$ is a split in $G_B - v$ and both of the edges ub and ab' cross this split. It follows that $u, b' \in \pi, a, b \notin \pi$, and that u and b' are both adjacent to a and b. By 9.7, $\{b', a, b, u\}$ is a twirl of (M, B); this contradicts the fact that $\lambda_{M \setminus v}(\pi) = 1$. This final contradiction completes the proof of Lemma 5.5. \Box

Acknowledgements

This research was partially supported by grants from the Natural Sciences and Engineering Research Council of Canada and the Marsden Fund of New Zealand.

References

- [1] E. Artin, Geometric Algebra, Interscience, New York, 1957.
- [2] R.E. Bixby, A simple theorem on 3-connectivity, Linear Algebra Appl. 45 (1982) 123–126.
- [3] R.A. Brualdi, Comments on bases in dependence structures, Bull. Austral. Math. Soc. 1 (1989) 161-167.
- [4] J.F. Geelen, A.M.H. Gerards, A. Kapoor, The excluded minors for GF(4)-representable matroids, J. Combin. Theory Ser. B 79 (2000) 247–299.
- [5] J. Geelen, B. Gerards, G. Whittle, Excluding a planar graph from GF(q)-representable matroids, Research Report 03-4, School of Mathematical and Computing Sciences, Victoria University of Wellington, 2003.
- [6] S. Krogdahl, The dependence graph for bases in matroids, Discrete Math. 19 (1977) 47–59.
- [7] J.G. Oxley, Matroid Theory, Oxford University Press, New York, 1992.
- [8] J.G. Oxley, D.L. Vertigan, G. Whittle, On inequivalent representations of matroids over finite fields, J. Combin. Theory Ser. B 67 (1996) 325–343.
- [10] W.T. Tutte, Menger's theorem for matroids, J. Res. Nat. Bur. Standards Section B 69 (1965) 49-53.
- [11] W.T. Tutte, Connectivity in matroids, Canad. J. Math. 18 (1966) 1301-1324.
- [12] G. Whittle, Stabilizers of classes of representable matroids, J. Combin. Theory Ser. B 77 (1999) 39-72.