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Abstract

We prove that an excluded minor for the class of GF(q)-representable matroids cannot contain a large
projective geometry over GF(q) as a minor.
© 2005 Elsevier Inc. All rights reserved.

MSC: 05B35

Keywords: Matroids; Rota’s conjecture; Excluded minors

1. Introduction

We prove the following theorem.

Theorem 1.1. For each prime power q, there exists an integer k such that no excluded minor for
the class of GF(q)-representable matroids contains a PG(k, q)-minor.

We recall that PG(k, q) is the rank-(k + 1) projective geometry over GF(q).
Rota’s conjecture states that: for any prime power q, there are only finitely many pairwise noni-

somorphic excluded minors for the class of GF(q)-representable matroids. Theorem 1.1 shows that
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excluded minors cannot contain large projective geometries. On the other hand, in [5] we prove
that for any integer k there are only finitely many excluded minors that do not contain the cycle
matroid of a k × k grid. While there is still a big gap to bridge between grids and projective
geometries, we are encouraged by these complementary results.

We conjecture the following strengthening of Theorem 1.1; however, it is not clear whether
this stronger version would provide additional leverage toward resolving Rota’s conjecture.

Conjecture 1.2. For each prime power q, no excluded minor for the class of GF(q)-representable
matroids contains a PG(2, q)-minor.

Oxley, Vertigan, and Whittle [8] gave examples showing that, for each q > 5, there is no bound
on the number of inequivalent representations for 3-connected matroids over GF(q). This is in
stark contrast with the following result, which plays a key role in the proof of Theorem 1.1.

Theorem 1.3. If M is a 3-connected GF(q)-representable matroid with a PG(q, q)-minor, then
M is uniquely GF(q)-representable.

We conjecture that this result can be sharpened to:

Conjecture 1.4. If M is a 3-connected GF(q)-representable matroid with a PG(2, q)-minor, then
M is uniquely GF(q)-representable.

We use the notation of Oxley [7], with the exception that the simplification of M is denoted by
si(M) and the cosimplification of M is denoted by co(M).

2. Connectivity

Let M be a matriod. For any subset A of E(M) we let �M(A) = rM(A) + rM(E(M) − A) −
rM(E(M)); �M is the connectivity function of M. For sets A, B ⊆ E(M), we have

(i) �M(A) = �M(E(M) − A),
(ii) �M(A)��M(A ∪ {e}) + 1 for each e ∈ E(M), and

(iii) �M(A) + �M(B)��M(A ∪ B) + �M(A ∩ B).

It can be easily verified that �M(X) = rM(X)+rM∗(X)−|X| and, hence, that �M(X) = �M∗(X).
We let �M(X1, X2) = min (�M(A) : X1 ⊆ A ⊆ E(M)−X2). Note that if M ′ is a minor of M

and X1, X2 ⊆ E(M ′), then �M ′(X1, X2)��M(X1, X2). The following theorem provides a good
characterization for �M(X1, X2); this theorem is in fact a generalization of Menger’s theorem.

Theorem 2.1 (Tutte’s Linking Theorem [10]). Let M be a matroid and let X1, X2 be disjoint
subsets of E(M). Then there exists a minor M ′ of M, such that E(M ′) = X1 ∪X2 and �M ′(X1) =
�M(X1, X2).

The following result shows that, if we apply Tutte’s Linking Theorem when �M(X1) =
�M(X1, X2), the resulting minor M ′ satisfies M|X1 = M ′|X1.

Lemma 2.2. Let M ′ be a minor of a matroid M and let X ⊆ E(M). If �M(X) = �M ′(X), then
M|X = M ′|X.
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Proof. Note that

�M(X) = rM(X) + rM∗(X) − |X|
� rM ′(X) + rM ′∗(X) − |X|
= �M ′(X).

Therefore, if �M(X) = �M ′(X), then rM(X) = rM ′(X) and, hence, M|X = M ′|X. �

3-connectivity: The rest of this section is devoted to the proof of a connectivity result, Lemma
2.8, that is needed in Section 6.

A matroid M is internally 3-connected if M is connected and for any 2-separation (A, B)

of M either |A| = 2 or |B| = 2. We require the following well-known results on 3-connected
matroids.

Theorem 2.3 (Bixby’s Lemma [2]). If e is an element of a 3-connected matroid, then either M \e

or M/e is internally 3-connected.

Theorem 2.4 (Tutte’s Triangle Lemma [11]). Let T = {a, b, c} be a triangle in a 3-connected
matroid M with |E(M)|�4. If neither M \ a nor M \ b is 3-connected, then there is a triad of M
that contains a and exactly one of b and c.

Theorem 2.5 (Wheels and Whirls Theorem [11]). Let M be a 3-connected matroid with E(M) �=
∅. If M is not a wheel or a whirl, then there exists e ∈ E(M), such that M\e or M/e is 3-connected.

Corollary 2.6. If M is a 3-connected matroid with E(M) �= ∅, then there exists e ∈ E(M) such
that si(M/e) is 3-connected.

Proof. By the Wheels and Whirls Theorem, we can find a sequence of elements e1, . . . , ek , such
that

(i) M \ e1, . . . , ei is 3-connected for each i ∈ {1, . . . , k}, and
(ii) either M \ e1, . . . , ek is a wheel or a whirl, or there exists an element e of M \ e1, . . . , ek

such that (M \ e1, . . . , ek)/e is 3-connected.

In both cases arising from (ii), there exists an element e of M \ e1, . . . , ek , such that si((M \
e1, . . . , ek)/e) is 3-connected. But then si(M/e) is also 3-connected, as required. �

Lemma 2.7. Let T be a triangle in a 3-connected matroid M with |E(M)|�4. Then there exists
e ∈ T such that M \ e is internally 3-connected.

Proof. Suppose otherwise. The result can be readily checked on matroids with at most 6 elements,
so we assume that |E(M)|�7. By Tutte’s Triangle Lemma, there exists a triad T ∗ with |T ∩T ∗| =
2; let e ∈ T −T ∗. Note that, (T ∗, E(M)−T ∗) is a 2-separation in M/e. Then M/e is not internally
3-connected since |E(M)|�7. So, by Bixby’s Lemma, M \ e is internally 3-connected. �

The following lemma is the main result of this section.
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Lemma 2.8. Let M be a 3-connected matroid with |E(M)|�5. Suppose that no element of M is
in both a triangle and a triad. Then there exist u, v ∈ E(M) such that either:

(1) M \ u and M \ v are 3-connected, and M \ u, v is internally 3-connected, or
(2) M/u and M/v are 3-connected, and M/u, v is internally 3-connected.

Proof. Suppose that M is a counterexample. Let �(M) denote the set of elements e ∈ E(M) such
that M \e is 3-connected, and let �∗(M) denote �(M∗). The first three claims are straightforward,
we leave the details to the reader.

2.8.1. r(M)�4 and r∗(M)�4.

2.8.2. If e ∈ �(M), then �(M \ e) = ∅.

2.8.3. If N is a 3-connected matroid, e ∈ �(N), and f ∈ �∗(N \ e), then either f ∈ �∗(N) or
there is a triangle of N containing both e and f.

2.8.4. �(M) ∪ �∗(M) = E(M).

Proof. Suppose not; then there exists e ∈ E(M) such that neither M \ e nor M/e is 3-connected.
By Bixby’s Lemma and duality, we may assume that M/e is internally 3-connected. But then,
since M/e is not 3-connected, e is in a triangle, say T = {e, a, b}. Now M \ e is not 3-connected
and neither a nor b is in a triad. Then, by Tutte’s Triangle Lemma, both M \ a and M \ b are
3-connected. (We will obtain a contradiction by proving that M \ a, b is internally 3-connected.)
Let (A, B) be a 2-separation in M \ e with a ∈ A. Note that b ∈ B, since otherwise (A ∪ {e}, B)

would be a 2-separation in M. Since neither a nor b is in a triad, |A|, |B|�3. Moreover, since
|E(M)|�8, by possibly swapping A and B we may assume that |A|�4. Note that, (A, B ∪ {e})
is a 3-separation in M, and a ∈ clM(B ∪ {e}). Thus (A − {a}, B ∪ {e}) is a 2-separation in
M/a and, hence (A − {a}, (B ∪ {e}) − {b}) is a 2-separation in M/a \ b. Thus (M \ b)/a is
not internally 3-connected. However, M \ b is 3-connected, so, by Bixby’s Lemma, M \ a, b is
internally 3-connected. �

It follows from 2.8.4 that, if e is in a triangle, then M \ e is 3-connected, and if e is in a triad,
then M/e is 3-connected.

2.8.5. If T is a triangle of M, then �(M) ⊆ T .

Proof. Suppose, by way of contradiction, that there exists e ∈ �(M) − T . Thus M \ e is 3-
connected. Then, by Lemma 2.7, there exists f ∈ T such that M \ e, f is internally 3-connected.
Moreover, by 2.8.4, M \ f is 3-connected. �

2.8.6. M contains no triangles and no triads.

Proof. Suppose otherwise; then, by duality, we may assume that M has a triangle T. By 2.8.4
and 2.8.5, �(M) = T and �∗(M) = E(M) − T . Thus T is the only triangle of M, and, since
�∗(M) > 3, M contains no triads. Let e ∈ E(M)−T . By the duals of 2.8.2 and 2.8.3, �∗(M/e) =
∅ and �(M/e) ⊆ T .
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Since r(M)�4, there exists f ∈ E(M/e)− clM/e(T ). As f /∈ T and �(M/e) ⊆ T , the minor
(M/e) \ f is not 3-connected. Moreover, since M/e has no triads, (M/e) \ f is not internally
3-connected. So, by Bixby’s Lemma, M/e, f is internally 3-connected. �

2.8.7. If e ∈ �(M) and f ∈ E(M \ e), then M \ e, f is not internally 3-connected.

Proof. Suppose that M \ e, f is internally 3-connected. Then M \ f is not 3-connected. Let
(A, B) be a 2-separation in M \ f with e ∈ A. Since M has no triads, |A|, |B|�3. However,
(A − {e}, B) is a 2-separation in M \ e, f and M \ e, f is internally 3-connected, so |A| = 3.
But, �M(A) = 2 so A is a triangle or a triad, contradicting 2.8.6. �

2.8.8. �(M) = E(M) and �∗(M) = E(M).

Proof. By symmetry we may assume that there exists e ∈ �(M). By 2.8.7, for each f ∈ E(M\e),
the minor M \ e, f is not internally 3-connected. Then, by Bixby’s Lemma, M \ e/f is internally
3-connected. Moreover, since M \ e has no triangles, M \ e/f is 3-connected. Thus �∗(M \ e) =
E(M \ e). So, by 2.8.3 and 2.8.6, E(M) − {e} ⊆ �∗(M). Now, since |�∗(M)|�2, we can argue
that �(M) = E(M). Now |�(M)|�2, so �∗(M) = E(M). �

Let e ∈ E(M). By Corollary 2.6, there exists f ∈ E(M/e) such that si(M/e, f ) is 3-connected.
However, by the dual of 2.8.7, M/e, f is not internally 3-connected. Thus, there is a 4-point line L
in M/e that contains f. (That is, the restriction of M/e to L is isomorphic to U2,4.) Note that M/e has
no triads. Then, by Tutte’s Triangle Lemma, there exists a ∈ L such that M/e \ a is 3-connected.
Now, by Lemma 2.7, there exists b ∈ L − {a} such that M/e \ a, b is internally 3-connected. If
M/e \a, b were 3-connected, then M \a, b would be internally 3-connected, contradicting 2.8.7.
Thus M/e \ a, b has a series-pair {c, d}. Since M/e has no triads, {a, b, c, d} is a cocircuit of
M/e. Since a circuit and a cocircuit cannot meet in exactly one element, |L ∩ {a, b, c, d}|�3.
Moreover, since M/e is 3-connected and has at least 7 elements, L �= {a, b, c, d}. By symmetry,
we may assume that d /∈ L. Now M/e \ d is not internally 3-connected. So, by Bixby’s Lemma,
M/e, d is internally 3-connected, contradicting 2.8.7. �

3. Unique representation

In this section we prove Theorem 1.3.
Let F be a field and let M be a matroid. Two F-representations of M are algebraically equivalent

if one can be obtained from the other by elementary row operations, column scaling, and field
automorphisms. A matroid M is uniquely F-representable if it is F-representable and any two
F-representations of M are algebraically equivalent. The following result is referred to as the
Fundamental Theorem of Projective Geometry (see [1, p. 85]).

Theorem 3.1. For each prime power q and integer k�2, the projective geometry PG(k, q) is
uniquely GF(q)-representable.

Two F-representations of M are projectively equivalent if one can be obtained from the other
by elementary row operations, and column scaling. Two representations that are not projectively
equivalent are said to be projectively inequivalent. By Theorem 3.1, the number of projectively
inequivalent representations of PG(k, q), for k�2, is |Aut(GF(q))| where Aut(GF(q)) is the
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automorphism group of GF(q). Let N be a minor of M. We say that N stabilizes M over F

if no F-representation of N can be extended to two projectively inequivalent F-representations
of M.

Clones: Let e and f be distinct elements of M. We call e and f clones if there is an automorphism
of M that swaps e and f and that acts as the identity on all other elements of M; that is, e and f are
clones if rM(X ∪ {e}) = rM(X ∪ {f }) for each set X ⊆ E(M) − {e, f }.

Lemma 3.2. Let e be an element of a matroid M and let F be a field. If M \ e does not stabilize
M over F, then there exists an F-representable matroid M ′ with E(M ′) = E(M) ∪ {f } such that
M = M ′ \ f , and e and f are independent clones in M ′.

Proof. If M \ e does not stabilize M over F, then there is an F-representation, say A, of M \ e that
extends to two projectively inequivalent F-representations, say [A, v1] and [A, v2], of M. Let M ′
be the F-representable matroid represented by the matrix [A, v1, v2] where the last two columns
are indexed by e and f, respectively. Clearly e and f are clones and, since the representations
[A, v1] and [A, v2] are projectively inequivalent, {e, f } is independent in M ′. �

Lemma 3.3. Let M be a 3-connected GF(q)-representable matroid and let L ⊆ E(M) be a line
of M. If |L|�q and e, f ∈ E(M) − L, then e and f are not clones.

Proof. Since M is 3-connected, �M(L, {e, f }) = 2. Then, by Tutte’s Linking Theorem, there
exists a minor N of M with E(N) = L ∪ {e, f } and �N(L) = 2. Since �N(L) = 2, it follows
that rN({e, f }) = rN(L) = 2 and that e, f ∈ clN(L). Thus r(N) = 2. However, N is GF(q)-
representable and |E(N)|�q + 2. Thus N contains a parallel pair {x, y}. Now {e, f } is not a
parallel pair in N and N |L = M|L, so L does not contain a parallel pair. Thus {x, y} contains one
element of {e, f } and one element of L. It follows that e and f are not clones in N, and, hence,
they are not clones in M. �

Lemma 3.4. Let e and f be clones in a matroid M. If M\e is 3-connected and M is not 3-connected,
then e and f are parallel.

Proof. If e and f are clones and M \ e is 3-connected, then M \ f is also 3-connected and si(M)

is 3-connected. Thus, if M is not 3-connected, then e and f are in parallel. �

The following lemma is a key step in the proof of Theorem 1.3.

Lemma 3.5. Let e and f be elements of a 3-connected GF(q)-representable matroid M. If M/e, f

is isomorphic to PG(q, q), then e and f are not clones in M.

Proof. Let N = M/e, f and suppose that e and f are clones. By Lemma 3.5, M has no q-point
lines. So, if L is a (q + 1)-point line of N, then rM(L) ∈ {3, 4}. Moreover, since M has 2-point
lines, q > 2.

3.5.1. There exists a rank-3 flat P of N such that e, f ∈ clM(P ).

Subproof. Suppose not. Then, for each line L of N, we have rM(L) = 3. Consider M as a
restriction of PG(q +2, q), and let Z be the line in PG(q +2, q) spanned by e and f. Each (q +1)-
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point line L of N spans a plane in PG(q + 2, q), and this plane intersects Z in a point, say zL.
Suppose that there are two lines L1 and L2 of N such that zL1 �= zL2 . If L1 and L2 do not meet at
a point, then consider a third line L3 of N that meets both L1 and L2. Note that either zL3 �= zL1

or zL3 �= zL2 . Therefore, by possibly replacing one of L1 and L2 with L3, we may assume that
L1 and L2 meet at a point. Let P = clN(L1 ∪ L2). Now e and f are spanned by {zL1 , zL2} and
zL1 and zL2 are spanned by L1 ∪ L2 in PG(q + 2, q), so e, f ∈ clM(L1 ∪ L2) ⊆ clM(P ). Now
P is a rank-3 flat of N and e, f ∈ clM(P ), as required.

Thus we may assume that there exists z ∈ Z, such that z = zL for each (q + 1)-point line L
of N. Let M ′ be the restriction of PG(q + 2, q) obtained by adding z to M. Now, since {e, f, z} is
a line, M ′/e, z \ f = M ′/e, f \ z = N . Since M is 3-connected, M ′/z \ f is connected. Thus
e is in the closure of E(N) in M ′/z \ f . So there is a circuit C of N such that C is independent
in M ′/z; among all such circuits we choose C as small as possible. Note that, each line of N is
also a line of M ′/z; thus |C| > 3. Let (I1, I2) be a partition of C into two sets with |I1|, |I2|�2.
Since C is a circuit of N and since N is a projective geometry, there exists a unique element a in
clN(I1) ∩ clN(I2). Now I1 ∪ {a} and I2 ∪ {a} are both circuits of N and are both smaller than C.
Thus, by our choice of C, I1 ∪ {a} and I2 ∪ {a} are both circuits in M ′/z. However, this implies
that C = I1 ∪ I2 is dependent in M ′/z. This contradiction completes the proof. �

3.5.2. If P is a rank-3 flat of N, then there exists a restriction K of N such that E(K) = P ∪ L′
where L′ is a q-point line in K∗.

Subproof. Let H be a matroid with E(H) = L ∪ {a, b, c}, where L is a q-point line of H and
a, b, and c are placed in parallel with distinct elements of L (recall that q > 2). Note that, H is
GF(q)-representable, H is cosimple, and r∗(H) = q + 1. Thus there is a spanning restriction H ′
of N that is isomorphic to H ∗. Now let E(H ′) = L′ ∪ {a′, b′, c′} where a′, b′, c′ are the elements
corresponding to a, b, c. By the symmetry of N, we may assume that a′, b′, c′ ∈ P . Finally, let
K = N |(L′ ∪ P); it is straightforward to check that K has the desired properties. �

Let P be the rank-3 flat of N given by 3.5.1, let K be the restriction of N given by 3.5.2, and
let K ′ be the restriction of M to E(K) ∪ {e, f }. Thus K ′/e, f = K . Since e, f ∈ clK ′(P ), the
elements e and f are not in series. Then, by the dual of Lemma 3.4, K ′ is 3-connected. Moreover,
since L′ is a q-point coline of K, it is also a coline in K ′. Thus, by applying the dual of Lemma
3.3 to K ′ we obtain a final contradiction. �

Stabilizers for a class of matroids: We say that N stabilizes a class M of matroids over F

if N stabilizes each 3-connected matroid in M that contains N as a minor. For brevity, when
N stabilizes the class of F-representable matroids over F, we simply say that N is a stabilizer
for F.

Lemma 3.6. Let q be a prime power and let N be a uniquely GF(q)-representable stabilizer for
GF(q). Then N has |Aut(GF(q))| projectively inequivalent representations.

Proof. This follows easily from Theorem 3.1 and the fact that N is a stabilizer for all projective
geometries of sufficiently large rank. �

The following result shows that to test whether N stabilizes M we need only check matroids
M ∈ M with r(M)�r(N) + 1 and r∗(M)�r∗(N) + 1.
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Theorem 3.7 (Whittle [12]). Let M be a class of matroids that is closed with respect to taking
minors, duality, and isomorphism. A 3-connected matroid N ∈ M stabilizes M with respect to a
field F if and only if N stabilizes each 3-connected matroid M ∈ M satisfying one of the following
conditions:

(i) N = M \ e for some e ∈ E(M),
(ii) N = M/e for some e ∈ E(M), or

(iii) N = M \ e/f for some e, f ∈ E(M) where M \ e and M/f are both 3-connected.

We can now prove one of the main results of the paper.

Theorem 3.8. For each prime power q, PG(q, q) is a stabilizer for GF(q).

Proof. Let M be a 3-connected GF(q)-representable matroid with a minor N isomorphic to
PG(q, q). Since there are no 3-connected GF(q)-representable extensions of PG(q, q), then, by
Theorem 3.7, it suffices to consider the case that N = M/e for some e ∈ E(M).

Suppose that M is not stabilized by N. Then, by applying the dual of Lemma 3.2, we see that
there exists a matroid M ′ with E(M ′) = E(M) ∪ {f } such that M ′/f = M , the elements e and f
are clones in M ′, and {e, f } is coindependent in M ′. Since {e, f } is coindependent in M ′, e and
f are not in series in M ′. Then, by the dual of Lemma 3.4, M ′ is 3-connected. This contradicts
Lemma 3.5. �

Theorem 1.3 is an immediate consequence of Theorems 3.8 and 3.1.

4. Path-width

Let M be a matroid on E. The path-width of M is the least integer k, such that there exists an
ordering (e1, . . . , en) of E, such that �M({e1, . . . , ei})�k for all i ∈ {1, . . . , n}. In the remainder
of the paper we shift our attention from Theorem 1.1 to the following result.

Theorem 4.1. For any prime power q, there exists an integer k such that, each excluded minor
for the class of GF(q)-representable matroids that contains a PG(q +6, q)-minor has path-width
at most k.

Theorem 4.1 implies Theorem 1.1. Indeed, it is straightforward to show that PG(k + 1, q)

has path-width k + 2, and that path-width is non-increasing with respect to taking minors. Then,
by Theorem 4.1, there is no excluded minor for the class of GF(q)-representable matroids that
contains a PG(k + 1, q)-minor, proving Theorem 1.1.

Let A = (A1, . . . , Al) be an ordered partition of E. We let �M(A) = max(�M(A1 ∪· · ·∪Ai) :
i ∈ {1, . . . , l}). We use the following two lemmas to obtain bounds on the path-width.

Lemma 4.2. Let M be a matroid, A = (A1, . . . , Al) and B = (B1, . . . , Bm) be two ordered
partitions of E(M), and let C = (A1 ∩B1, A1 ∩B2, . . . , A1 ∩Bm, . . . , Al ∩B1, Al ∩B2, . . . , Al ∩
Bm). Then �M(C)�2�M(A) + �M(B).

Proof. For each i ∈ {1, . . . , l} and j ∈ {1, . . . , m}, we let

Âi = A1 ∪ · · · ∪ Ai,
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B̂j = B1 ∪ · · · ∪ Bj , and

Sij = ((A1 ∩ B1) ∪ · · · ∪ (A1 ∩ Bm)) ∪ · · ·
∪ ((Ai−1 ∩ B1) ∪ · · · ∪ (Ai−1 ∩ Bm)) ∪ · · ·
∪ ((Ai ∩ B1) ∪ · · · ∪ (Ai ∩ Bj ))

= Âi−1 ∪ (Âi ∩ B̂j ).

Now there exists i ∈ {1, . . . , l} and j ∈ {1, . . . , m}, such that �M(C) = �M(Sij ). By submodu-
larity,

�M(Âi−1 ∪ (Âi ∩ B̂j )) � �M(Âi−1) + �M(Âi) + �(B̂j )

� 2�M(A) + �M(B).

Therefore �M(C) = �M(Sij ) = �M(Âi−1 ∪ (Âi ∩ B̂j ))�2�M(A) + �M(B), as required. �

Lemma 4.3. Let A, B, and X be disjoint sets of elements in a matroid M such that, for each e ∈
X, either �M\e(A, B) < �M(A, B) or �M/e(A, B) < �M(A, B). Then there exists an ordering
(e1, . . . , em) of X and a partition (Y0, . . . , Ym) of E(M) − X such that A ⊆ Y0, B ⊆ Ym, and
�M(Y0, {e1}, Y1, . . . , {em}, Ym) = �M(A, B).

Proof. Let k = �M(A, B). The result is vacuous when X = ∅. Suppose then that X is non-empty
and let e ∈ X. Now, inductively, we can find an ordering (e1, . . . , em) of X − {e} and a partition
(Y0, . . . , Ym) of E(M)−(X−{e}) such that A ⊆ Y0, B ⊆ Ym, and �M(Y0, {e1}, Y1, . . . , {em}, Ym)

= �M(A, B). Now e ∈ Yi for some i ∈ {0, . . . , m}. Define

A′ =
{

A if i = 0,

(Y0 ∪ · · · ∪ Yi−1) ∪ {e1, . . . , ei} if i > 1

and

B ′ =
{

B if i = m,

(Yi+1 ∪ · · · ∪ Ym) ∪ {ei+1, . . . , em} if i < m.

By duality we may assume that �M/e(A, B) < k. Thus there exists a partition (X1, X2) of E(M/e)

with A ⊆ X1, B ⊆ X2, and �M/e(X1) = k − 1. It follows that �M(X1) = �M(X1 ∪ {e}) = k

and that e ∈ clM(X1) ∩ clM(X2). If A′ = A, then A′ ⊆ X1. On the other hand, if A′ �= A, then
�M(A′) = k. Then, by submodularity, �M(A′ ∩ X1) = k and �M(A′ ∪ X1) = k. So, by replacing
X1 by A′ ∪ X1, we get A′ ⊆ X1. Thus, in either case, we may assume that A′ ⊆ X1. Similarly,
we may assume that B ′ ⊆ X2. Finally, we get �M(Y0, {e1}, . . . , Yi−1, {ei−1}, Yi ∩ X1, {e}, Yi ∩
X2, {ei+1}, Yi+1, . . . , {em}, Ym) = k, as required. �

5. Final preparations

The following lemma is well-known; we prove it here for the sake of completeness.

Lemma 5.1. Let F be a field and let M be an excluded minor for the class of F-representable
matroids. If |E(M)|�5 then no element of M is in both a triangle and a triad.

Proof. Suppose, by way of contradiction that e ∈ E(M) is in both a triangle T and a triad T ∗.
Note that |T ∩ T ∗|�2. Since M is 3-connected and |E(M)|�5, we cannot have T = T ∗. Thus
|T ∩T ∗| = 2; suppose that T = {e1, e2, e3} and T ∗ = {e2, e3, e4}. Let N be a matroid isomorphic
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to M(K4), where one of the triangles in N is labelled by {e1, e2, e3}. Now let M ′ be obtained by
taking the generalized parallel connection of M/e4 and N across the triangle {e1, e2, e3}. Since
M/e4 is F-representable, so is M ′. However, M ′ \ e2, e3 is isomorphic to M. This contradiction
completes the proof. �

Lemma 5.2. Let M be a GF(q)-representable matroid and let N be a minor of M isomorphic to
PG(k + 2, q). Then for each e ∈ E(M) there exists a restriction N ′ of N isomorphic to PG(k, q)

such that N ′ is a minor of both M \ e and M/e.

Proof. By deleting or contracting the other elements in a way that keeps N as a minor, we may
assume that E(M) = E(N) ∪ {e}. The result is straightforward if e ∈ E(N); so assume that
e /∈ E(N). We may also assume that e is neither a loop nor a coloop.

First consider the case that N = M \ e. Since M is GF(q)-representable, e is in parallel with
some element e′ ∈ E(N). Since e′ ∈ E(N), there is a restriction N ′ of N isomorphic to PG(k, q)

such that N ′ is a minor of both M \ e′ and M/e′. Thus, since e and e′ are in parallel, N ′ is a minor
of both M \ e and M/e.

Now consider the case that N = M/e. Since e is not a coloop of M, there exists some triangle
T of N such that e ∈ clM(T ). Choose a restriction N ′ of N isomorphic to PG(k, q) such that
rN(T ∪ E(N ′)) = r(N ′) + 2. Thus N ′ is a minor of N/T and hence also of M/T . However, e
is a loop in M/T . So N ′ is a minor of both M/e and M \ e. �

A matroid M is called stable if it is connected and it cannot be written as the 2-sum of two
non-binary matroids. This differs from the original definition in [4] since we require that M is
connected. Suppose that �q(M) denotes the number of GF(q)-representations of M up to projective
equivalence. It is easy to see that if M is the 2-sum of M1 and M2, then �q(M) = �q(M1)�q(M2).
Moreover, if M is a binary matroid, then �q(M) = 1. It follows that if M is a stable GF(q)-
representable matroid, then by repeatedly decomposing across 2-separations we will obtain a
3-connected matroid M ′ such that �q(M) = �q(M ′). It follows that if N is a stabilizer for GF(q),
and if M is a stable matroid that contains N as a minor, then N stabilizes M over GF(q).

The following two lemmas can be derived from results in [12]; we include direct proofs for
completeness.

Lemma 5.3. Let M be a 3-connected matroid, let u, v ∈ E(M) be such that M \u, v is stable, and
suppose that M \ u, v has a minor N that is uniquely GF(q)-representable and is a stabilizer for
GF(q). If M \u and M \v are both GF(q)-representable, then there exists a GF(q)-representable
matroid M ′, such that M ′ \ u = M \ u and M ′ \ v = M \ v.

Proof. Let B be a basis of M containing neither u nor v. Consider GF(q)-representations A1 and
A2 of M \ u and M \ v, respectively. By applying row operations we may assume that:

A1 = ( B v

I C1 y
)

and A2 = ( B u

I C2 x
)
.

Thus (I, C1) and (I, C2) are both GF(q)-representations of M \ u, v. However, M \ u, v is
uniquely GF(q)-representable since N is a minor of M \ u, v. Therefore, by possibly applying
a field automorphism and rescaling, we may assume that C1 = C2. Now let M ′ be the matroid
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represented over GF(q) by

( B u v

I C1 x y
)
.

Clearly M ′ \ u = M \ u and M ′ \ v = M \ v, as required. �

Lemma 5.4. Let M1 and M2 be GF(q)-representable matroids on the same ground set and let
u, v ∈ E(M1) be such that M1 \ u = M2 \ u and M1 \ v = M2 \ v. If M1 \ u and M2 \ v are both
stable, M1 \u, v is connected, and M1 \u, v has a minor N that is uniquely GF(q)-representable
and is a stabilizer for the class of GF(q)-representable matroids, then M1 = M2.

Proof. Since M1 \u and M1 \v are connected, {u, v} is co-independent. Thus there exists a basis
B of M1 disjoint from u and v. For each i ∈ {1, 2}, consider a GF(q)-representation Ai of Mi

where:

Ai = ( B u v

I Ci xi yi

)
.

Now (I, C1, x1) and (I, C2, x2) are both representations of M1 \ v. However, M1 \ v is uniquely
GF(q)-representable since it is stable and contains N as a minor. Therefore, by possibly applying
a field automorphism and rescaling, we may assume that C2 = C1 and x2 = x1. So we may
assume that A2 = (I, C1, x1, y2). Now we have two representations, (I, C1, y1) and (I, C1, y2),
ofM1\u and, sinceM1\u is stable and contains N as a minor, these representations are algebraically
equivalent. Consider the operations required to transform (I, C1, y1) into (I, C1, y2); we have
at our disposal row operations, column scaling, and field automorphisms. The common identity
matrix limits the row operations to row scaling. Since M1 \ u, v contains N as a minor and
since, by Theorem 3.1, N has |Aut(GF(q))| weakly inequivalent representations, we cannot apply
field automorphisms (while keeping (I, C1) and (I, C2) projectively equivalent). Moreover, since
M1 \ u, v is connected, the only scalings that we may apply to (I, C1) without changing it are
trivial (that is, multiply every row by a constant � and divide all columns by �). Therefore y2 is
obtained from y1 by scaling, and, hence, M2 = M1. �

The next result is considerably harder to prove; we defer the proof to Sections 8–10. Before
stating the result we need some definitions. If M1 and M2 are two matroids on a common ground
set, then a set B is said to distinguish M1 from M2 if B is a basis of exactly one of M1 and M2.
Let X be a set of elements in a matroid M. We say that X is connected in M if X is contained in a
single component of M. We say that X is 3-connected in M if X is connected and for any partition
(X1, X2) of X with |X1|, |X2|�2 we have �M(X1, X2)�2.

Lemma 5.5. Let M, M ′, and N be matroids, let B be a basis of M, let u, v ∈ E(M) − B, and let
a, b ∈ B be such that

(1) M ′ is a GF(q)-representable matroid on the same ground set as M, M ′ \u = M \u, M ′ \v =
M \ v, and (B − {a, b}) ∪ {u, v} distinguishes M from M ′;

(2) N is a uniquely GF(q)-representable stabilizer for GF(q) and N is a minor of M \ u, v; and
(3) E(N) ∪ {a, b, u} is 3-connected in M \ v and E(N) ∪ {a, b, v} is 3-connected in M \ u.

Then M is not GF(q)-representable.
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6. Proof of Theorem 4.1

Let s denote the number of elements of PG(q, q), and let t be the number of PG(q, q) restrictions
of PG(q + 2, q). In this section we prove Theorem 4.1 with k = 24t2s+3 + 4.

Let M be an excluded minor for the class of GF(q)-representable matroids. Suppose by way of
contradiction that M contains a PG(q + 6, q)- or a PG(q + 6, q)∗-minor and that the path-width
of M is greater than k. By Lemma 5.1, no element of M is in both a triangle and a triad. Therefore,
by Lemma 2.8 and by possibly replacing M with M∗, we may assume that there exist elements
u, v ∈ E(M) such that M \ u and M \ v are 3-connected and M \ u, v is internally 3-connected.
By Lemma 5.2, M \ u, v has a PG(q + 2, q)- or a PG(q + 2, q)∗-minor N. Therefore, by Lemma
5.3 and Theorem 3.8, there exists a GF(q)-representable matroid M ′ on the same ground set as
M such that M ′ \ u = M \ u and M ′ \ v = M \ v. Moreover, by Lemma 5.4, M ′ is unique.

6.1. There exists a basis B of M and elements a, b ∈ B such that u, v /∈ B and (B−{a, b})∪{u, v}
distinguishes M from M ′.

Proof. Suppose that B ′ distinguishes M from M ′. Since M is 3-connected, there exists a basis B
of M that is disjoint from {u, v}; we choose such B minimizing |B ′ − B|. Note that |B| = |B ′|
and that u, v ∈ B ′ − B; thus, if |B ′ − B| = 2, then 6.1 holds (take a and b to be the two elements
in B − B ′). Hence, we may assume that |B ′ − B| > 2; let x ∈ (B ′ − B) − {u, v}. By one of the
standard basis exchange axioms, there exists y ∈ B − B ′ such that (B ∪ {x}) − {y} is a basis of
at least one of M and M ′; let B ′′ = (B ∪ {x}) − {y}. Since u, v /∈ B ′′, B ′′ does not distinguish M
from M ′. Thus B ′′ is a basis of M that contains neither u nor v. However, |B ′ − B ′′| < |B ′ − B|,
contradicting our choice of B. �

Let N ′ ∈ {N, N∗} be isomorphic to PG(q + 2, q), and let N ′
1, . . . , N

′
t be the PG(q, q)-

restrictions of N ′. Now, for each i ∈ {1, . . . , t}, let N ′
i = Ni if N ′ = N and let N ′

i = N∗
i

if N ′ = N∗. Let Z = E(M) − {a, b, u, v}. Now, for each i ∈ {1, . . . , t}, let Zi denote the set
of all elements e ∈ Z such that (M \ u, v) \ e and (M \ u, v)/e both contain Ni as a minor. By
Lemma 5.2, each element in Z is contained in at least one of Z1, . . . , Zt .

For each i ∈ {1, . . . , t}, let �i (u) denote the set of all partitions (A1, A2) of E(Ni) ∪
{a, b, v} such that �M\u(A1, A2) = 2, and let �i (v) denote the set of all partitions (A1, A2)

of E(Ni) ∪ {a, b, u} such that �M\v(A1, A2) = 2. Recall that |E(Ni)| = s, so we trivially get
|�i (u)|, |�i (v)|�2s+3.

6.2. For each e ∈ Zi either

(a) there exists (A1, A2) ∈ �i (u) such that either �(M\u)\e(A1, A2) < 2 or �(M\u)/e(A1, A2) <

2; or
(b) there exists (A1, A2) ∈ �i (v) such that either �(M\v)\e(A1, A2) < 2 or �(M\v)/e(A1, A2) <

2.

Proof. If e /∈ B, then let

M1 = M \ e, M ′
1 = M ′ \ e, and B1 = B.

If e ∈ B, then let

M1 = M/e, M ′
1 = M ′/e, and B1 = B − {e}.
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Note that, B1 is a basis of M1. Moreover

(1) M1 and M ′
1 are GF(q)-representable matroids on the same ground set, M ′

1 \ u = M1 \ u,
M ′

1 \ v = M1 \ v, and (B1 − {a, b}) ∪ {u, v} distinguishes M1 from M ′
1; and

(2) Ni is a uniquely GF(q)-representable stabilizer for GF(q) and Ni is a minor of M1 \ u, v.

Then, by Lemma 5.5, either

(i) E(Ni) ∪ {a, b, u} is not 3-connected in M1 \ v, or
(ii) E(Ni) ∪ {a, b, v} is not 3-connected in M1 \ u.

However, E(Ni)∪{a, b, u} is 3-connected in M \v and E(Ni)∪{a, b, v} is 3-connected in M \u.
It follows that one of (a) and (b) hold. �

The result is now relatively straightforward, we just apply Lemmas 4.3 and 4.2 to bound the
path-width of M.

For each i ∈ {1, . . . , t}, w ∈ {u, v}, and � = (A1, A2) ∈ �i (w), let Zi(w, �) denote the set of
all elements e ∈ Zi for which either �(M\w)\e(A1, A2) < 2 or �(M\w)/e(A1, A2) < 2.

6.3. For each i ∈ {1, . . . , t}, w ∈ {u, v}, and � = (A1, A2) ∈ �i (w) there exists an or-
dering (e1, . . . , em) of Zi(w, �) and a partition (Y0, . . . , Ym) of E(M) − Zi(w, �), such that
�M(Y0, {e1}, Y1, . . . , {em}, Ym)�3.

Proof. By Lemma 4.3, there exists an ordering (e1, . . . , em) of Zi(w, �) and a partition (Y0, . . . ,

Ym) of (E(M) − Zi(w, �)) − {w} such that �M\w(Y0, {e1}, Y1, . . . , {em}, Ym)�2. Adding w to
Y0 gives the result. �

Now let Zi(w) denote the union of the sets Zi(w, �) over all � ∈ �i (w). By 6.3 and Lemma
4.2, we get

6.4. For each i ∈ {1, . . . , t} and w ∈ {u, v}, there exists an ordering (e1, . . . , em) of Zi(w) and a
partition (Y0, . . . , Ym) of E(M) − Zi(w), such that �M(Y0, {e1}, Y1, . . . , {em}, Ym)

�6|�i (w)|�6
(
2s+3

)
.

Now, for each e ∈ Z, there exists i ∈ {1, . . . , t} such that e ∈ Zi(u) or e ∈ Zi(v). Then, by
6.4 and Lemma 4.2, we get

6.5. There exists an ordering (e1, . . . , em) of Z and a partition (Y0, . . . , Ym) of E(M) − Z such
that �M(Y0, {e1}, Y1, . . . , {em}, Ym)�24t2s+3.

Now E(M) − Z = {a, b, u, v} so, by 6.5, M \ {u, v, a, b} has path-width at most 24t2s+3.
Hence, M has path-width at most 24t2s+3 + 4 = k. This contradiction completes the proof. �

7. Fixing a basis

In the proof of Lemma 5.5, we work with a pair (M, B) where B is a fixed basis of the matroid
M. In this section we formalize the notion of a matroid viewed with respect to a fixed basis. The
results given here were introduced in [4]; we use different notation in the hope of keeping a closer
connection to more familiar matroid notions.
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We denote the symmetric difference of sets X andY by X�Y ; that is, X�Y = (X−Y )∪(Y −X).
Let B be a basis of a matroid M. A set X ⊆ E(M) is a feasible set of (M, B) if X�B is a basis

of M. Duality is quite transparent in this setting, since (M, B) and (M∗, E(M) − B) have the
same feasible sets.

Representations: An F-representation of (M, B) is a B × (E(M) − B) matrix A over F, such
that

( B

I A
)

is an F-representation of M. (Elsewhere, A is often called a standard representation.) Note that,
X ⊆ E(M) is a feasible set of (M, B) if and only if |X ∩ B| = |X − B| and the submatrix
A[X ∩ B, X − B] is non-singular. (Many of the results given below are straightforward for
representable matroids.)

Fundamental graphs: The fundamental graph of (M, B), denoted by G(M,B) or by GB , is the
graph whose vertex set is E(M) and whose edge set is given by the 2-element feasible sets of
(M, B). Note that GB is bipartite with bipartition (B, E(M) − B). For X ⊆ E(M), we denote
by GB [X] the subgraph of GB induced by the vertex set X. The following results relate feasible
sets to the fundamental graph.

Lemma 7.1 (Brualdi [3]). If X is a feasible set of (M, B), then GB [X] has a perfect matching.

Lemma 7.2 (Krogdahl [6]). If GB [X] has a unique perfect matching, then X is a feasible set of
(M, B).

Minors: For any X ⊆ E(M), we let

M[X, B] = M \ (E(M) − (X ∪ B))/(B − X);

such minors are said to be visible with respect to B. It is straightforward to show that, for any
minor N of M, there exists a basis B ′ of M such that N = M[E(N), B ′]. Note that B ∩ X is a
basis of M[X, B] and the fundamental graph of (M[X, B], B ∩ X) is GB [X]. Moreover, if A is
a representation of (M, B) then A[B ∩ X, X − B] is a representation of (M[X, B], B ∩ X).

Pivoting: We will need to change bases; for example, to make some minor visible. Suppose that
X is a feasible set of (M, B). Then B�X is a basis of M. Now Y is a feasible set of (M, B�X) if
and only if X�Y is a feasible set of (M, B). Typically we will shift from (M, B) to (M, B�{x, y})
for some edge {x, y} of GB ; such a change is referred to as a pivot on xy. Let B ′ = B�{x, y}. We
can determine much of the structure of GB ′ from GB . Note that uv is an edge of GB ′ if and only
if {u, v}�{x, y} is feasible in (M, B). Thus

(i) {x, y} is an edge of GB ′ .
(ii) If v ∈ E(M)−{x, y}, then xv is an edge of GB ′ if and only if yv is an edge of GB . Similarly,

yv is an edge of GB ′ if and only if xv is an edge of GB .
(iii) If u, v ∈ E(M)−{x, y} and v is adjacent to neither x nor y in GB , then uv is an edge of GB ′

if and only if uv is an edge of GB .
(iv) If u, v ∈ E(M) − {x, y} where ux and vy are edges of GB but uv is not, then uv is an edge

of GB ′ .
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This leaves only one problematic case: if GB [{x, y, u, v}] is a circuit, then we cannot determine
whether uv is an edge of GB ′ using only information from GB . All we can say in this case is that,
uv is an edge of GB ′ if and only if {x, y, u, v} is a feasible set of (M, B).

A set X ⊆ E(M) is a twirl of (M, B) if GB [X] is an induced circuit and X is feasible; it is easy
to check that if X is a twirl, then M[X, B] is a whirl. We are only interested in 4-element twirls;
these are precisely visible U2,4-minors.

Connectivity and fundamental graphs: The following results help us identify 1- and
2-separations using fundamental graphs. In each of the these results, B is a basis of a
matroid M.

Lemma 7.3. Let Y ⊆ E(M). Then, �M(Y ) > 0 if and only if there exists an edge uv of GB with
u ∈ Y and v ∈ V − Y .

Corollary 7.4. M is connected if and only if GB is connected.

A partition (X1, X2) of E(M) is called a split of GB if |X1|, |X2|�2 and the edges of GB

connecting X1 to X2 induce a complete bipartite graph; that is, there exist Y1 ⊆ X1 and Y2 ⊆ X2
such that each vertex in Y1 is adjacent to each vertex in Y2, and these are the only edges between
X1 and X2.

Lemma 7.5. If (X1, X2) is a 2-separation in M, then (X1, X2) is a split of GB .

A partial converse is given by the following result.

Lemma 7.6 (See [4, Proposition 4.12]). Let (X1, X2) be a split in GB and let x1 ∈ X1 and
x2 ∈ X2 where x1 and x2 are adjacent in GB . Then, (X1, X2) is a 2-separation in M if and only
if there is no twirl {x1, x2, y1, y2} in (M, B) with y1 ∈ X1 and y2 ∈ X2.

Series and parallel elements: Suppose that x and y are parallel in M. We may assume that y /∈ B.
If x ∈ B, then y is pendant to x in GB ; that is, x is the only neighbour of y. On the other hand,
if x /∈ B, then x and y are twins in GB ; that is, x and y have the same neighbours. Similarly, if
x and y are in series in M and y ∈ B, then either x is pendant to y in GB or x and y are twins.
The converse need not be true. If x and y are twins in GB , then x and y need not be in series or
in parallel. However, by 7.6, if x is pendant to y in GB , then either x and y are in series (when
x ∈ B) or x and y are in parallel (when x /∈ B).

8. 3-Connected sets and fundamental graphs

In this section we prove various connectivity results, most of which concern 3-connected sets
in a matroid with a fixed basis. Let X be a 3-connected set in a connected matroid M. Now let
FM(X) = {Z ⊆ E(M) : �M(Z)�1 and |X ∩ Z|�1} and let �M(X) be the collection of
maximal sets in FM(X).

Lemma 8.1. If X is a 3-connected set in a connected matroid M and |X|�4, then �M(X) is a
partition of E(M).
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Proof. Note that, for each v ∈ E(M), we have {v} ∈ FM(X). Thus it suffices to prove that, if
Z1, Z2 ∈ FM(X) and Z1 ∩ Z2 �= ∅, then Z1 ∪ Z2 ∈ FM(X). By submodularity, �M(Z1) +
�M(Z2)��M(Z1 ∩ Z2) + �M(Z1 ∪ Z2). Since Z1, Z2 ∈ FM(X), we have �M(Z1), �M(Z2)�1.
Moreover, since Z1 ∩ Z2 �= ∅ and since M is connected, we have �M(Z1 ∩ Z2)�1. Therefore
�M(Z1 ∪Z2)�1. Now |(Z1 ∪Z2)∩X|�2 so |X−(Z1 ∪Z2)|�2. Hence, since X is a 3-connected
set, we must have |(Z1 ∪ Z2) ∩ X|�1 and, so, Z1 ∪ Z2 ∈ FM(X), as required. �

For any � ⊆ E(M), we let �(M,B)(�) be the elements of � that have a neighbour in E(M) − �
in GB . For a partition � of E(M), we let �(M,B)(�) denote (�(M,B)(�) : � ∈ �). Where there
is no fear of ambiguity we denote �(M,B) by �B . Now suppose that B is a basis of M and that
(X1, X2) is a 2-separation of M. Then, as noted in the previous section, (X1, X2) is a split of
GB . Now let x1 ∈ �B(X1) and x2 ∈ �B(X2). It is straightforward to prove that M is the 2-sum
of M[X1 ∪ {x2}, B] and M[{x1} ∪ X2, B] (identifying x1 with x2) and that, up to isomorphism,
these matroids do not depend on the particular choice of x1 and x2. Decomposing across each of
the 2-separations given by the parts of �M(X), we obtain the following lemma.

Lemma 8.2. Let B be a basis of a connected matroid M and let X be a 3-connected set of M with
|X|�4. If T is a transversal of �B(�M(X)), then M[T , B] is 3-connected. Moreover, if N is a
3-connected minor of M with X ⊆ E(N), then M[T , B] has a minor isomorphic to N.

Lemma 8.2 provides a way of recognizing that certain minors are 3-connected; we also need
to recognize that certain minors are stable.

Lemma 8.3. Let B be a basis in a connected matroid M and let X ⊆ E(M) be a 3-connected set
in M with |X|�4. If S ⊆ E(M) where S ∩ � �= ∅ for each � ∈ �M(X) and each component of
GB [S ∩ �] is a tree containing exactly one element of �B(�), then M[S, B] is stable.

Proof. Note that, there is a transversal T ⊆ S of �B(�M(X)). By Lemma 8.2, M[T , B] is
3-connected. Moreover, we can obtain M[T , B] from M[S, B] by repeated simplification and
cosimplification. Thus M[S, B] is stable. �

We need the following elementary fact about bipartite graphs; the easy proof is left to the reader.

Lemma 8.4. If G = (V , E) is a connected bipartite graph and u, v, w ∈ V , then there exists
A ⊆ V , such that u, v, w ∈ A and G[A] is a tree.

Lemma 8.5. Let B be a basis in a connected matroid M and let X ⊆ E(M) be a 3-connected
set in M with |X|�4. If � ∈ �M(X) and Z ⊆ � with |Z|�2, then there exists S ⊆ �, such that
Z ⊆ S and each component of GB [S] is a tree with exactly one vertex in �B(�).

Proof. Let v ∈ E(M) − � be a vertex of GB that has a neighbour in �. By Lemma 8.4, there
exists S ⊆ �, such that Z ⊆ S and GB [S ∪ {v}] is a tree. Since v is adjacent to every vertex in
�B(�), each component of GB [S] is a tree with exactly one vertex in �B(�). �

Lemma 8.6. Let e be an element of a connected matroid M and let N be a 3-connected non-binary
minor of M \ e. If M \ e is stable but M is not stable, then there exists � ∈ �M\e(E(N)) such
that �M(� ∪ {e}) = 1.
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Proof. If M is not stable, then M can be expressed as the 2-sum of two non-binary matroids M1
and M2 on ground sets X1 ∪ {z} and X2 ∪ {z} respectively. By symmetry, we may assume that
e ∈ X1. Moreover, since M \ e is stable, M1 \ e is binary. It follows that |X1 ∩ E(N)|�1. Thus
there exists � ∈ �M\e(E(N)) such that X1 − {e} ⊆ �. Now, since �M(X1) = �M\e(X1 − {e}),
we have e ∈ clM(X1 − {e}). Then e ∈ clM(�) and, hence, �M(� ∪ {e}) = 1. �

We conclude this section with two easy connectivity results.

Lemma 8.7. Let (X, D, Y ) be a partition of the ground set of a matroid M where D is co-
independent in M. Then, �M(X) = �M\D(X) if and only if D ⊆ clM(Y ).

Proof. Note that,

�M(X) − �M\D(X) = (rM(X) + rM(D ∪ Y ) − r(M))

−(rM(X) + rM(Y ) − rM(X ∪ Y ))

= (rM(X) + rM(D ∪ Y ) − r(M))

−(rM(X) + rM(Y ) − r(M))

= rM(D ∪ Y ) − rM(Y ).

Thus, �M(X) = �M\D(X) if and only if D ⊆ clM(Y ). �

Lemma 8.8. Let X and Y be disjoint sets of elements of a matroid M and let B be a basis of M. If
�M(X) > �M[X∪Y,B](X), then there exists e ∈ E(M) − (X ∪ Y ), such that �M[X∪Y∪{e},B](X) >

�M[X∪Y,B](X).

Proof. Let C = (E(M) − (X ∪ Y )) ∩ B and let D = E(M) − (X ∪ Y ∪ C). By using duality,
we may assume that D is not empty. Now let N = M/C; thus N \ D = M[X ∪ Y, B]. Suppose
that �N(X) > �N\D(X). Then, by Lemma 8.7, there exists e ∈ D such that e /∈ clN(Y ). Then,
again by Lemma 8.7, �M[X∪Y∪{e},B](X) = �N\(D−{e})(X) > �N\D(X) = �M[X∪Y,B](X), as
required. Therefore we may assume that �N(X) = �N\D(X). Then, by Lemma 8.7, D ⊆ clN(Y ).
However, since N = M/C, we have D ⊆ clM(Y ∪C). So, by Lemma 8.7, �M\D(X) = �M(X) >

�(M\D)/C(X). But D �= ∅, so by replacing M with M \ D the result follows inductively. �

9. Proof of Lemma 5.5

Recall that M, M ′, and N are matroids, B is a basis of M, u, v ∈ E(M) − B, and a, b ∈ B

sayisfying

(1) M ′ is a GF(q)-representable matroid on the same ground set as M, M ′ \u = M \u, M ′ \ v =
M \ v, and (B − {a, b}) ∪ {u, v} distinguishes M from M ′;

(2) N is a uniquely GF(q)-representable stabilizer for GF(q) and N is a minor of M \ u, v; and
(3) E(N) ∪ {a, b, u} is 3-connected in M \ v and E(N) ∪ {a, b, v} is 3-connected in M \ u.

We will need that N is non-binary. It is straightforward to show that a binary matroid can only
be a stabilizer over GF(2) or GF(3). On the other hand, Lemma 5.5 is straightforward when
q ∈ {2, 3}. Therefore we may assume that N is non-binary.
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Note that G(M,B) and G(M ′,B) are the same; we denote this graph by GB . Since E(N)∪{u, a, b}
is 3-connected in M \ v, the set E(N) ∪ {a, b} is connected in M \ u, v. Thus E(N) ∪ {a, b} is
contained in a component, say H, of GB − u − v. Now it is easy to check that the hypotheses of
Lemma 5.5 are satisfied when we replace M and M ′ by M[V (H) ∪ {u, v}, B] and M ′[V (H) ∪
{u, v}, B], respectively. Thus we may assume that M \ u, v is connected.

A set F ⊆ E(M) distinguishes (M, B) from (M, B ′) if F is a feasible set of exactly one of
(M, B) and (M, B ′). Thus {a, b, u, v} distinguishes (M, B) from (M, B ′). Since M \u = M ′ \u

and M \v = M ′ \v, both u and v are contained in any set that distinguishes (M, B) from (M, B ′).
During the proof we change our choice of a, b, and B; however, we are careful that a, b, and B
are chosen such that they satisfy the following four conditions:

9.1. B is a basis of M with u, v /∈ B and a, b ∈ B;

9.2. {a, b, u, v} distinguishes (M, B) from (M ′, B);

9.3. no two of a, b, and u are in the same part of �M\v(E(N)); and

9.4. no two of a, b, and v are in the same part of �M\u(E(N)).

Conditions 9.1 and 9.2 are trivially satisfied by our initial a, b, and B. Moreover, since E(N) ∪
{a, b, u} is 3-connected in M \ v and, E(N) ∪ {a, b, v} is 3-connected in M \ u, conditions 9.3
and 9.4 are also satisfied.

Let � = �M\u,v(E(N)). For each e ∈ E(M) − {u, v}, we let �e denote the set in � that
contains e. In this section we abbreviate �(M\u,v,B) to �.

9.5. If X is a transversal of �(�), then M[X, B] is 3-connected, uniquely GF(q)-representable,
and is a stabilizer for GF(q).

Proof. By Lemma 8.2, M[X, B] is 3-connected and contains an N-minor. Then, since N is
uniquely GF(q)-representable and is a stabilizer for GF(q), M[X, B] is uniquely GF(q)-represent-
able and is a stabilizer for GF(q). �

Since {a, b, u, v} distinguishes (M, B) from (M, B ′), we see, by Lemmas 7.1 and 7.2, that:

9.6. GB [{u, v, a, b}] is a circuit.

9.7. If x is adjacent to both a and b in GB , then {x, a, b, u} and {x, a, b, v} are both twirls of
(M, B).

Proof. Suppose that {x, a, b, v} is not a twirl of (M, B). Then x and v are in parallel in M[{x, a, b,

u, v}, B] and, hence, also in M ′[{x, a, b, u, v}, B]. Thus, {a, b, u, v} is feasible in (M, B) if and
only if {x, a, b, u} is feasible in (M, B). Similarly, {a, b, u, v} is feasible in (M ′, B) if and only
if {x, a, b, u} is feasible in (M ′, B). Then, since {a, b, u, v} distinguishes (M, B) and (M ′, B),
the set {a, b, u, v′} also distinguishes (M, B) and (M ′, B). This contradicts the fact that M \ v =
M ′ \ v. �

We rely on the following result to prove that M is not GF(q)-representable.



J. Geelen et al. / Journal of Combinatorial Theory, Series B 96 (2006) 405–425 423

9.8. Let X be a transversal of �(�) and let S ⊆ E(M) − {u, v} with X ∪ {a, b} ⊆ S. If
M[S ∪ {u}, B] and M[S ∪ {v}, B] are stable and M[S, B] is connected, then M is not GF(q)-
representable.

Proof. Let M1 = M[S ∪ {u, v}, B] and M2 = M ′[S ∪ {u, v}, B]. Note that M1 \ u = M2 \ u

and M1 \ v = M2 \ v. However, M1 �= M2 since {a, b, u, v} distinguishes (M, B) from (M, B ′).
Moreover, M1 \ u and M1 \ v are stable and M1 \ u, v is connected. Then, by Lemma 5.4, M1 is
not GF(q)-representable. �

Henceforth, we assume that M is GF(q)-representable, and, hence, there does not exist a set S
satisfying the hypotheses of 9.8. By 9.8 we can exclude an easy case.

9.9. No transversal of �(�) contains both a and b.

Proof. Suppose that there is a transversal X of �(�) with a, b ∈ X and let S = X ∪ {u, v}. By
9.5, M[S −{u, v}, B] is 3-connected. Thus M[S −{u}, B] and M[S −{v}, B] are both internally
3-connected, and, hence, stable. Thus we have a contradiction to 9.8. �

Currently a and b play interchangeable roles in the proof. By possibly swapping a and b we
may assume that:

9.10. If b ∈ �(�b), then a ∈ �(�b).

Proof. Suppose that b ∈ �(�b). By the symmetry between a and b we may also suppose that
a ∈ �(�a). If �a = �b, then the assumption holds. On the other hand, if �a �= �b, then there is a
transversal X of �(�) that contains both a and b, contradicting 9.9. �

9.11. Suppose that b′ ∈ �(�b) such that if a ∈ �(�b) then a = b′. Now let v′ ∈ E(M)− ({u, v}∪
�b) be a neighbour of b′. Then �M[{b,b′,v,v′},B]({b, b′}) > 1.

Proof. By 9.10, b′ �= b. Suppose to the contrary that �M[{b,b′,v,v′},B]({b, b′}) = 1. Thus ({b, b′},
{v, v′}) is a split in GB [{b, b′, v, v′}]. However, note that b is adjacent to v and b′ is adjacent to
v′. It follows that b and b′ are both adjacent to v and v′. Moreover, {b, b′, v, v′} is not a twirl in
(M, B). Since b is adjacent to v′, we have b ∈ �(�b). Then, by 9.10, a ∈ �(�b). Hence, by our
definition of b′, we have b′ = a. Now v′ is adjacent to both a and b but {v′, a, b, v} is not a twirl
in (M, B), contradicting 9.7. �

9.12. Let S ⊆ E(M)−{u, v} where a, b ∈ S, M[S, B] is stable, and S ∩� �= ∅ for each � ∈ �.
If M[S ∪ {v}, B] is not stable, then �M[�b∪{v}∪S,B](�b ∪ {v}) = 1.

Proof. Let M̂ = M[S∪{v}, B] and let X ⊆ S be a transversal of �(�). By 9.5, X is a 3-connected
set in M̂ \ v, so �M̂\v(X) = (S ∩ � : � ∈ �). If M[S ∪ {v}, B] is not stable, then, by Lemma
8.6, there exists � ∈ �M̂\v(X) such that �M̂ (� ∪ {v}) = 1. It follows that v ∈ clM̂ (�). Therefore,
for any �′ ∈ �M̂\v(X) where � �= �′, we have �M̂ (�′) = 1. However, by 9.11, �M̂ (�b ∩ S) > 1.
Thus � = S ∩ �b. Suppose that �M[�b∪{v}∪S,B](�b ∪ {v}) > 1. We know that �M[S,B](�) = 1.
So, by Lemma 8.8, there exists e ∈ (�b ∪ {v}) − � such that �M[S∪{e},B](� ∪ {e}) > 1. Since
�M[�b∪S,B](�b) = 1, it follows that e = v. But this contradicts the fact that �M̂ (�∪{v}) = 1. �

Note that there is still symmetry between u and v. Thus, an analogous result holds with the
roles of u and v swapped in 9.12.
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Case 1: �a = �b.
By Lemma 8.5, there exists Sb ⊆ �b such that a, b ∈ Sb and each component of GB [Sb] is a

tree containing exactly one element of �(�b). Now let b′ ∈ �(�b) ∩ Sb and let X be a transversal
of �(�) that contains b′. Finally, let x be a neighbour of b′ in GB [X]. By 9.4, �M\u(�b ∪ {v}) >

1 = �M[�b∪{v,x},B](�b ∪ {v}). Then, by Lemma 8.8, there exists ev ∈ E(M) − (�b ∪ {u, v, x})
such that �M[�b∪{ev,v,x},B](�b ∪ {v}) > 1. Similarly, there exists eu ∈ E(M) − (�b ∪ {u, v, x})
such that �M[�b∪{eu,u,x},B](�b ∪ {u}) > 1.

Case 1.1: eu and ev are not both contained in �x .
By Lemmas 8.3 and 8.5, there exists S ⊆ E(M)−{u, v} such that M[S, B] is stable, eu, ev, x ∈

S, S∩�b = Sb, and S∩� �= ∅ for each � ∈ �. Since b′, x, eu, ev ∈ S, we have �M[�b∪{u}∪S,B](�b∪
{u}) > 1 and �M[�b∪{v}∪S,B](�b ∪{v}) > 1. Therefore, by 9.12, M[S ∪{u}, B] and M[S ∪{v}, B]
are both stable, contradicting 9.8.

Case 1.2: eu, ev ∈ �x .
Since X is a transversal of �(�), the minor M[X, B] is 3-connected. Hence, GB [X] has no ver-

tices of degree one. Therefore b′ has a neighbour x′ in GB [X−{x}]. Note that, �M[�b∪{x,x′,u,eu},B]
(�b∪{u}) > 1 = �M[�b∪{u,x′},B](�b∪{u}). Then, by Lemma 8.8, there exists e′

u ∈ {x, eu} such that
�M[�b∪{u,x′,e′

u},B](�b ∪{u}) > 1. Similarly, there exists e′
v ∈ {x, ev} such that �M[�b∪{v,x′,e′

v},B](�b

∪ {v}) > 1. Note that, e′
u, e

′
v ∈ �x and that �x �= �x′ . Therefore replacing x, eu, and ev with x′,

e′
u, and e′

v returns us to Case 1.1.
Case 2: �a �= �b.
We choose Sa ⊆ �a such that GB [Sa] is a path connecting a to some element a′ ∈ �(Sa). Now

we choose Sb ⊆ �b such that GB [Sb] is a path connecting b to some element b′ ∈ �(Sb). Now let
X be a transversal of �(�) containing both a′ and b′, and let S = Sa ∪ Sb ∪ X. By Lemma 8.3,
M[S, B] is stable. By 9.8 and by possibly swapping u and v, we may assume that M[S ∪ {u}, B]
is not stable. Then, by 9.12, �M[�b∪{u}∪S,B](�b ∪ {u}) = 1. Thus (�b ∪ {u}, S − �b) is a split in
GB [�b ∪ {u} ∪ S]. Recall that u is adjacent to a in GB . It follows that a ∈ �(�a) and that a is
adjacent to b′ in GB .

Now let â = b′, b̂ = b, and B̂ = B�{a, b′}. Observe that â and b̂ are in the same part of �. We
will show that â, b̂, and B̂ satisfy 9.1, 9.2, 9.3, 9.4, and 9.9; thus reducing Case 2 to Case 1. Note that,
â, b̂, and B̂ trivially satisfy 9.1. Moreover, as {̂a, b̂, u, v} = {a, b, u, v}�{a, b′} and {a, b, u, v}
distinguishes (M, B) from (M ′, B), the set {̂a, b̂, u, v} distinguishes (M, B̂) from (M ′, B̂). Thus
â, b̂, and B̂ also satisfy 9.2. Note that, a and b′ remain adjacent in GB̂ , so â ∈ �(M\u,v,B̂)(�b).

Hence, â, b̂, and B̂ satisfy 9.9.
It remains to prove that â, b̂, and B̂ satisfy 9.3 and 9.4; suppose otherwise. By the symmetry

between u and v, we may assume that there exists � ∈ �M\v(E(N)), such that |�∩ {̂a, b̂, u}|�2.
However, by 9.3, � cannot contain both of b̂ = b and u. Thus â = b′ ∈ �. Again using 9.3, since
� contains one of u and b, we have a /∈ �. Now (�, E(M) − ({v} ∪ �)) is a split in GB − v and
both of the edges ub and ab′ cross this split. It follows that u, b′ ∈ �, a, b /∈ �, and that u and b′
are both adjacent to a and b. By 9.7, {b′, a, b, u} is a twirl of (M, B); this contradicts the fact that
�M\v(�) = 1. This final contradiction completes the proof of Lemma 5.5. �
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