Journal of Combinatorial Theory

On Rota's conjecture and excluded minors containing large projective geometries

Jim Geelen ${ }^{\text {a }}$, Bert Gerards ${ }^{\text {b, }}$, Geoff Whittle ${ }^{\text {d }}$
${ }^{\text {a Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada }}$
${ }^{\mathrm{b}}$ CWI, Postbus 94079, 1090 GB Amsterdam, The Netherlands
${ }^{\text {c }}$ Department of Mathematics and Computer Science, Eindhoven University of Technology, Postbus 513, 5600 MB Eindhoven, The Netherlands
${ }^{\mathrm{d}}$ School of Mathematical and Computing Sciences, Victoria University, Wellington, New Zealand
Received 13 September 2004
Available online 9 November 2005

Abstract

We prove that an excluded minor for the class of $\mathrm{GF}(q)$-representable matroids cannot contain a large projective geometry over $\mathrm{GF}(q)$ as a minor. © 2005 Elsevier Inc. All rights reserved.

MSC: 05B35

Keywords: Matroids; Rota's conjecture; Excluded minors

1. Introduction

We prove the following theorem.
Theorem 1.1. For each prime power q, there exists an integer k such that no excluded minor for the class of $\mathrm{GF}(q)$-representable matroids contains a $\mathrm{PG}(k, q)$-minor.

We recall that $\operatorname{PG}(k, q)$ is the rank- $(k+1)$ projective geometry over $\mathrm{GF}(q)$.
Rota's conjecture states that: for any prime power q, there are only finitely many pairwise nonisomorphic excluded minors for the class of $\mathrm{GF}(q)$-representable matroids. Theorem 1.1 shows that

[^0]excluded minors cannot contain large projective geometries. On the other hand, in [5] we prove that for any integer k there are only finitely many excluded minors that do not contain the cycle matroid of a $k \times k$ grid. While there is still a big gap to bridge between grids and projective geometries, we are encouraged by these complementary results.

We conjecture the following strengthening of Theorem 1.1; however, it is not clear whether this stronger version would provide additional leverage toward resolving Rota's conjecture.

Conjecture 1.2. For each prime power q, no excluded minor for the class of $\mathrm{GF}(q)$-representable matroids contains a $\mathrm{PG}(2, q)$-minor.

Oxley, Vertigan, and Whittle [8] gave examples showing that, for each $q>5$, there is no bound on the number of inequivalent representations for 3-connected matroids over $\mathrm{GF}(q)$. This is in stark contrast with the following result, which plays a key role in the proof of Theorem 1.1.

Theorem 1.3. If M is a 3-connected $\mathrm{GF}(q)$-representable matroid with a $\operatorname{PG}(q, q)$-minor, then M is uniquely $\mathrm{GF}(q)$-representable.

We conjecture that this result can be sharpened to:
Conjecture 1.4. If M is a 3-connected $\mathrm{GF}(q)$-representable matroid with $a \mathrm{PG}(2, q)$-minor, then M is uniquely $\mathrm{GF}(q)$-representable.

We use the notation of Oxley [7], with the exception that the simplification of M is denoted by $\operatorname{si}(M)$ and the cosimplification of M is denoted by $\operatorname{co}(M)$.

2. Connectivity

Let M be a matriod. For any subset A of $E(M)$ we let $\lambda_{M}(A)=r_{M}(A)+r_{M}(E(M)-A)-$ $r_{M}(E(M)) ; \lambda_{M}$ is the connectivity function of M. For sets $A, B \subseteq E(M)$, we have
(i) $\lambda_{M}(A)=\lambda_{M}(E(M)-A)$,
(ii) $\lambda_{M}(A) \leqslant \lambda_{M}(A \cup\{e\})+1$ for each $e \in E(M)$, and
(iii) $\lambda_{M}(A)+\lambda_{M}(B) \geqslant \lambda_{M}(A \cup B)+\lambda_{M}(A \cap B)$.

It can be easily verified that $\lambda_{M}(X)=r_{M}(X)+r_{M^{*}}(X)-|X|$ and, hence, that $\lambda_{M}(X)=\lambda_{M^{*}}(X)$.
We let $\kappa_{M}\left(X_{1}, X_{2}\right)=\min \left(\lambda_{M}(A): X_{1} \subseteq A \subseteq E(M)-X_{2}\right)$. Note that if M^{\prime} is a minor of M and $X_{1}, X_{2} \subseteq E\left(M^{\prime}\right)$, then $\kappa_{M^{\prime}}\left(X_{1}, X_{2}\right) \leqslant \kappa_{M}\left(X_{1}, X_{2}\right)$. The following theorem provides a good characterization for $\kappa_{M}\left(X_{1}, X_{2}\right)$; this theorem is in fact a generalization of Menger's theorem.

Theorem 2.1 (Tutte's Linking Theorem [10]). Let M be a matroid and let X_{1}, X_{2} be disjoint subsets of $E(M)$. Then there exists a minor M^{\prime} of M, such that $E\left(M^{\prime}\right)=X_{1} \cup X_{2}$ and $\lambda_{M^{\prime}}\left(X_{1}\right)=$ $\kappa_{M}\left(X_{1}, X_{2}\right)$.

The following result shows that, if we apply Tutte's Linking Theorem when $\lambda_{M}\left(X_{1}\right)=$ $\kappa_{M}\left(X_{1}, X_{2}\right)$, the resulting minor M^{\prime} satisfies $M\left|X_{1}=M^{\prime}\right| X_{1}$.

Lemma 2.2. Let M^{\prime} be a minor of a matroid M and let $X \subseteq E(M)$. If $\lambda_{M}(X)=\lambda_{M^{\prime}}(X)$, then $M\left|X=M^{\prime}\right| X$.

Proof. Note that

$$
\begin{aligned}
\lambda_{M}(X) & =r_{M}(X)+r_{M^{*}}(X)-|X| \\
& \leqslant r_{M^{\prime}}(X)+r_{M^{\prime *}}(X)-|X| \\
& =\lambda_{M^{\prime}}(X) .
\end{aligned}
$$

Therefore, if $\lambda_{M}(X)=\lambda_{M^{\prime}}(X)$, then $r_{M}(X)=r_{M^{\prime}}(X)$ and, hence, $M\left|X=M^{\prime}\right| X$.
3-connectivity: The rest of this section is devoted to the proof of a connectivity result, Lemma 2.8, that is needed in Section 6.

A matroid M is internally 3-connected if M is connected and for any 2-separation (A, B) of M either $|A|=2$ or $|B|=2$. We require the following well-known results on 3-connected matroids.

Theorem 2.3 (Bixby's Lemma [2]). If e is an element of a 3-connected matroid, then either $M \backslash e$ or M / e is internally 3-connected.

Theorem 2.4 (Tutte's Triangle Lemma [11]). Let $T=\{a, b, c\}$ be a triangle in a 3-connected matroid M with $|E(M)| \geqslant 4$. If neither $M \backslash$ a nor $M \backslash b$ is 3-connected, then there is a triad of M that contains a and exactly one of b and c.

Theorem 2.5 (Wheels and Whirls Theorem [11]). Let M be a 3-connected matroid with $E(M) \neq$ \emptyset. If M is not a wheel or a whirl, then there exists $e \in E(M)$, such that $M \backslash$ e or M / e is 3-connected.

Corollary 2.6. If M is a 3-connected matroid with $E(M) \neq \emptyset$, then there exists $e \in E(M)$ such that $\operatorname{si}(M / e)$ is 3-connected.

Proof. By the Wheels and Whirls Theorem, we can find a sequence of elements e_{1}, \ldots, e_{k}, such that
(i) $M \backslash e_{1}, \ldots, e_{i}$ is 3-connected for each $i \in\{1, \ldots, k\}$, and
(ii) either $M \backslash e_{1}, \ldots, e_{k}$ is a wheel or a whirl, or there exists an element e of $M \backslash e_{1}, \ldots, e_{k}$ such that ($M \backslash e_{1}, \ldots, e_{k}$) e is 3-connected.

In both cases arising from (ii), there exists an element e of $M \backslash e_{1}, \ldots, e_{k}$, such that $\operatorname{si}((M \backslash$ $\left.\left.e_{1}, \ldots, e_{k}\right) / e\right)$ is 3-connected. But then $\operatorname{si}(M / e)$ is also 3-connected, as required.

Lemma 2.7. Let T be a triangle in a 3-connected matroid M with $|E(M)| \geqslant 4$. Then there exists $e \in T$ such that $M \backslash e$ is internally 3-connected.

Proof. Suppose otherwise. The result can be readily checked on matroids with at most 6 elements, so we assume that $|E(M)| \geqslant 7$. By Tutte's Triangle Lemma, there exists a triad T^{*} with $\left|T \cap T^{*}\right|=$ 2 ; let $e \in T-T^{*}$. Note that, ($\left.T^{*}, E(M)-T^{*}\right)$ is a 2-separation in M / e. Then M / e is not internally 3-connected since $|E(M)| \geqslant 7$. So, by Bixby's Lemma, $M \backslash e$ is internally 3-connected.

The following lemma is the main result of this section.

Lemma 2.8. Let M be a 3 -connected matroid with $|E(M)| \geqslant 5$. Suppose that no element of M is in both a triangle and a triad. Then there exist $u, v \in E(M)$ such that either:
(1) $M \backslash u$ and $M \backslash v$ are 3-connected, and $M \backslash u$, v is internally 3-connected, or
(2) M / u and M / v are 3-connected, and M / u, v is internally 3-connected.

Proof. Suppose that M is a counterexample. Let $\Lambda(M)$ denote the set of elements $e \in E(M)$ such that $M \backslash e$ is 3-connected, and let $\Lambda^{*}(M)$ denote $\Lambda\left(M^{*}\right)$. The first three claims are straightforward, we leave the details to the reader.
2.8.1. $r(M) \geqslant 4$ and $r^{*}(M) \geqslant 4$.
2.8.2. If $e \in \Lambda(M)$, then $\Lambda(M \backslash e)=\emptyset$.
2.8.3. If N is a 3-connected matroid, $e \in \Lambda(N)$, and $f \in \Lambda^{*}(N \backslash e)$, then either $f \in \Lambda^{*}(N)$ or there is a triangle of N containing both e and f.
2.8.4. $\Lambda(M) \cup \Lambda^{*}(M)=E(M)$.

Proof. Suppose not; then there exists $e \in E(M)$ such that neither $M \backslash e$ nor M / e is 3-connected. By Bixby's Lemma and duality, we may assume that M / e is internally 3 -connected. But then, since M / e is not 3-connected, e is in a triangle, say $T=\{e, a, b\}$. Now $M \backslash e$ is not 3-connected and neither a nor b is in a triad. Then, by Tutte's Triangle Lemma, both $M \backslash a$ and $M \backslash b$ are 3-connected. (We will obtain a contradiction by proving that $M \backslash a, b$ is internally 3-connected.) Let (A, B) be a 2-separation in $M \backslash e$ with $a \in A$. Note that $b \in B$, since otherwise $(A \cup\{e\}, B)$ would be a 2 -separation in M. Since neither a nor b is in a triad, $|A|,|B| \geqslant 3$. Moreover, since $|E(M)| \geqslant 8$, by possibly swapping A and B we may assume that $|A| \geqslant 4$. Note that, $(A, B \cup\{e\})$ is a 3-separation in M, and $a \in \operatorname{cl}_{M}(B \cup\{e\})$. Thus $(A-\{a\}, B \cup\{e\})$ is a 2-separation in M / a and, hence $(A-\{a\},(B \cup\{e\})-\{b\})$ is a 2-separation in $M / a \backslash b$. Thus $(M \backslash b) / a$ is not internally 3-connected. However, $M \backslash b$ is 3-connected, so, by Bixby's Lemma, $M \backslash a, b$ is internally 3-connected.

It follows from 2.8.4 that, if e is in a triangle, then $M \backslash e$ is 3-connected, and if e is in a triad, then M / e is 3-connected.
2.8.5. If T is a triangle of M, then $\Lambda(M) \subseteq T$.

Proof. Suppose, by way of contradiction, that there exists $e \in \Lambda(M)-T$. Thus $M \backslash e$ is 3connected. Then, by Lemma 2.7, there exists $f \in T$ such that $M \backslash e, f$ is internally 3-connected. Moreover, by 2.8.4, $M \backslash f$ is 3-connected.

2.8.6. M contains no triangles and no triads.

Proof. Suppose otherwise; then, by duality, we may assume that M has a triangle T. By 2.8.4 and 2.8.5, $\Lambda(M)=T$ and $\Lambda^{*}(M)=E(M)-T$. Thus T is the only triangle of M, and, since $\Lambda^{*}(M)>3, M$ contains no triads. Let $e \in E(M)-T$. By the duals of 2.8.2 and 2.8.3, $\Lambda^{*}(M / e)=$ \emptyset and $\Lambda(M / e) \subseteq T$.

Since $r(M) \geqslant 4$, there exists $f \in E(M / e)-\operatorname{cl}_{M / e}(T)$. As $f \notin T$ and $\Lambda(M / e) \subseteq T$, the minor $(M / e) \backslash f$ is not 3-connected. Moreover, since M / e has no triads, $(M / e) \backslash f$ is not internally 3 -connected. So, by Bixby's Lemma, $M / e, f$ is internally 3-connected.
2.8.7. If $e \in \Lambda(M)$ and $f \in E(M \backslash e)$, then $M \backslash e, f$ is not internally 3-connected.

Proof. Suppose that $M \backslash e, f$ is internally 3-connected. Then $M \backslash f$ is not 3-connected. Let (A, B) be a 2-separation in $M \backslash f$ with $e \in A$. Since M has no triads, $|A|,|B| \geqslant 3$. However, ($A-\{e\}, B$) is a 2-separation in $M \backslash e, f$ and $M \backslash e, f$ is internally 3-connected, so $|A|=3$. But, $\lambda_{M}(A)=2$ so A is a triangle or a triad, contradicting 2.8.6.
2.8.8. $\Lambda(M)=E(M)$ and $\Lambda^{*}(M)=E(M)$.

Proof. By symmetry we may assume that there exists $e \in \Lambda(M)$. By 2.8.7, for each $f \in E(M \backslash e)$, the minor $M \backslash e, f$ is not internally 3-connected. Then, by Bixby's Lemma, $M \backslash e / f$ is internally 3-connected. Moreover, since $M \backslash e$ has no triangles, $M \backslash e / f$ is 3-connected. Thus $\Lambda^{*}(M \backslash e)=$ $E(M \backslash e)$. So, by 2.8.3 and 2.8.6, $E(M)-\{e\} \subseteq \Lambda^{*}(M)$. Now, since $\left|\Lambda^{*}(M)\right| \geqslant 2$, we can argue that $\Lambda(M)=E(M)$. Now $|\Lambda(M)| \geqslant 2$, so $\Lambda^{*}(M)=E(M)$.

Let $e \in E(M)$. By Corollary 2.6, there exists $f \in E(M / e)$ such that $\operatorname{si}(M / e, f)$ is 3-connected. However, by the dual of 2.8.7, $M / e, f$ is not internally 3 -connected. Thus, there is a 4-point line L in M / e that contains f. (That is, the restriction of M / e to L is isomorphic to $U_{2,4}$.) Note that M / e has no triads. Then, by Tutte's Triangle Lemma, there exists $a \in L$ such that $M / e \backslash a$ is 3-connected. Now, by Lemma 2.7, there exists $b \in L-\{a\}$ such that $M / e \backslash a, b$ is internally 3-connected. If $M / e \backslash a, b$ were 3-connected, then $M \backslash a, b$ would be internally 3-connected, contradicting 2.8.7. Thus $M / e \backslash a, b$ has a series-pair $\{c, d\}$. Since M / e has no triads, $\{a, b, c, d\}$ is a cocircuit of M / e. Since a circuit and a cocircuit cannot meet in exactly one element, $|L \cap\{a, b, c, d\}| \geqslant 3$. Moreover, since M / e is 3 -connected and has at least 7 elements, $L \neq\{a, b, c, d\}$. By symmetry, we may assume that $d \notin L$. Now $M / e \backslash d$ is not internally 3-connected. So, by Bixby’s Lemma, $M / e, d$ is internally 3 -connected, contradicting 2.8.7.

3. Unique representation

In this section we prove Theorem 1.3.
Let \mathbb{F} be a field and let M be a matroid. Two \mathbb{F}-representations of M are algebraically equivalent if one can be obtained from the other by elementary row operations, column scaling, and field automorphisms. A matroid M is uniquely \mathbb{F}-representable if it is \mathbb{F}-representable and any two \mathbb{F}-representations of M are algebraically equivalent. The following result is referred to as the Fundamental Theorem of Projective Geometry (see [1, p. 85]).

Theorem 3.1. For each prime power q and integer $k \geqslant 2$, the projective geometry $\operatorname{PG}(k, q)$ is uniquely $\mathrm{GF}(q)$-representable.

Two \mathbb{F}-representations of M are projectively equivalent if one can be obtained from the other by elementary row operations, and column scaling. Two representations that are not projectively equivalent are said to be projectively inequivalent. By Theorem 3.1, the number of projectively inequivalent representations of $\operatorname{PG}(k, q)$, for $k \geqslant 2$, is $|\operatorname{Aut}(\operatorname{GF}(q))|$ where $\operatorname{Aut}(\operatorname{GF}(q))$ is the
automorphism group of $\operatorname{GF}(q)$. Let N be a minor of M. We say that N stabilizes M over \mathbb{F} if no \mathbb{F}-representation of N can be extended to two projectively inequivalent \mathbb{F}-representations of M.

Clones: Let e and f be distinct elements of M. We call e and f clones if there is an automorphism of M that swaps e and f and that acts as the identity on all other elements of M; that is, e and f are clones if $r_{M}(X \cup\{e\})=r_{M}(X \cup\{f\})$ for each set $X \subseteq E(M)-\{e, f\}$.

Lemma 3.2. Let e be an element of a matroid M and let \mathbb{F} be a field. If $M \backslash$ e does not stabilize M over \mathbb{F}, then there exists an \mathbb{F}-representable matroid M^{\prime} with $E\left(M^{\prime}\right)=E(M) \cup\{f\}$ such that $M=M^{\prime} \backslash f$, and e and f are independent clones in M^{\prime}.

Proof. If $M \backslash e$ does not stabilize M over \mathbb{F}, then there is an \mathbb{F}-representation, say A, of $M \backslash e$ that extends to two projectively inequivalent \mathbb{F}-representations, say $\left[A, v_{1}\right]$ and $\left[A, v_{2}\right]$, of M. Let M^{\prime} be the \mathbb{F}-representable matroid represented by the matrix $\left[A, v_{1}, v_{2}\right]$ where the last two columns are indexed by e and f, respectively. Clearly e and f are clones and, since the representations $\left[A, v_{1}\right]$ and $\left[A, v_{2}\right]$ are projectively inequivalent, $\{e, f\}$ is independent in M^{\prime}.

Lemma 3.3. Let M be a 3-connected $\mathrm{GF}(q)$-representable matroid and let $L \subseteq E(M)$ be a line of M. If $|L| \geqslant q$ and $e, f \in E(M)-L$, then e and f are not clones.

Proof. Since M is 3 -connected, $\kappa_{M}(L,\{e, f\})=2$. Then, by Tutte's Linking Theorem, there exists a minor N of M with $E(N)=L \cup\{e, f\}$ and $\lambda_{N}(L)=2$. Since $\lambda_{N}(L)=2$, it follows that $r_{N}(\{e, f\})=r_{N}(L)=2$ and that $e, f \in \mathrm{cl}_{N}(L)$. Thus $r(N)=2$. However, N is $\operatorname{GF}(q)-$ representable and $|E(N)| \geqslant q+2$. Thus N contains a parallel pair $\{x, y\}$. Now $\{e, f\}$ is not a parallel pair in N and $N|L=M| L$, so L does not contain a parallel pair. Thus $\{x, y\}$ contains one element of $\{e, f\}$ and one element of L. It follows that e and f are not clones in N, and, hence, they are not clones in M.

Lemma 3.4. Let e andfbe clones in a matroid M. If $M \backslash e$ is 3-connected and M is not 3 -connected, then e and f are parallel.

Proof. If e and f are clones and $M \backslash e$ is 3-connected, then $M \backslash f$ is also 3-connected and $\operatorname{si}(M)$ is 3-connected. Thus, if M is not 3-connected, then e and f are in parallel.

The following lemma is a key step in the proof of Theorem 1.3.
Lemma 3.5. Let e andf be elements of a 3-connected $\mathrm{GF}(q)$-representable matroid M. If $M / e, f$ is isomorphic to $\operatorname{PG}(q, q)$, then e and f are not clones in M.

Proof. Let $N=M / e, f$ and suppose that e and f are clones. By Lemma 3.5, M has no q-point lines. So, if L is a $(q+1)$-point line of N, then $r_{M}(L) \in\{3,4\}$. Moreover, since M has 2-point lines, $q>2$.
3.5.1. There exists a rank-3 flat P of N such that e, $f \in \mathrm{cl}_{M}(P)$.

Subproof. Suppose not. Then, for each line L of N, we have $r_{M}(L)=3$. Consider M as a restriction of $\operatorname{PG}(q+2, q)$, and let Z be the line in $\operatorname{PG}(q+2, q)$ spanned by e and f. Each $(q+1)$ -
point line L of N spans a plane in $\operatorname{PG}(q+2, q)$, and this plane intersects Z in a point, say z_{L}. Suppose that there are two lines L_{1} and L_{2} of N such that $z_{L_{1}} \neq z_{L_{2}}$. If L_{1} and L_{2} do not meet at a point, then consider a third line L_{3} of N that meets both L_{1} and L_{2}. Note that either $z_{L_{3}} \neq z_{L_{1}}$ or $z_{L_{3}} \neq z_{L_{2}}$. Therefore, by possibly replacing one of L_{1} and L_{2} with L_{3}, we may assume that L_{1} and L_{2} meet at a point. Let $P=\operatorname{cl}_{N}\left(L_{1} \cup L_{2}\right)$. Now e and f are spanned by $\left\{z_{L_{1}}, z_{L_{2}}\right\}$ and $z_{L_{1}}$ and $z_{L_{2}}$ are spanned by $L_{1} \cup L_{2}$ in $\operatorname{PG}(q+2, q)$, so $e, f \in \operatorname{cl}_{M}\left(L_{1} \cup L_{2}\right) \subseteq \operatorname{cl}_{M}(P)$. Now P is a rank-3 flat of N and $e, f \in \mathrm{cl}_{M}(P)$, as required.

Thus we may assume that there exists $z \in Z$, such that $z=z_{L}$ for each $(q+1)$-point line L of N. Let M^{\prime} be the restriction of $\operatorname{PG}(q+2, q)$ obtained by adding z to M. Now, since $\{e, f, z\}$ is a line, $M^{\prime} / e, z \backslash f=M^{\prime} / e, f \backslash z=N$. Since M is 3-connected, $M^{\prime} / z \backslash f$ is connected. Thus e is in the closure of $E(N)$ in $M^{\prime} / z \backslash f$. So there is a circuit C of N such that C is independent in M^{\prime} / z; among all such circuits we choose C as small as possible. Note that, each line of N is also a line of M^{\prime} / z; thus $|C|>3$. Let $\left(I_{1}, I_{2}\right)$ be a partition of C into two sets with $\left|I_{1}\right|,\left|I_{2}\right| \geqslant 2$. Since C is a circuit of N and since N is a projective geometry, there exists a unique element a in $\mathrm{cl}_{N}\left(I_{1}\right) \cap \mathrm{cl}_{N}\left(I_{2}\right)$. Now $I_{1} \cup\{a\}$ and $I_{2} \cup\{a\}$ are both circuits of N and are both smaller than C. Thus, by our choice of $C, I_{1} \cup\{a\}$ and $I_{2} \cup\{a\}$ are both circuits in M^{\prime} / z. However, this implies that $C=I_{1} \cup I_{2}$ is dependent in M^{\prime} / z. This contradiction completes the proof.
3.5.2. If P is a rank-3 flat of N, then there exists a restriction K of N such that $E(K)=P \cup L^{\prime}$ where L^{\prime} is a q-point line in K^{*}.

Subproof. Let H be a matroid with $E(H)=L \cup\{a, b, c\}$, where L is a q-point line of H and a, b, and c are placed in parallel with distinct elements of L (recall that $q>2$). Note that, H is $\mathrm{GF}(q)$-representable, H is cosimple, and $r^{*}(H)=q+1$. Thus there is a spanning restriction H^{\prime} of N that is isomorphic to H^{*}. Now let $E\left(H^{\prime}\right)=L^{\prime} \cup\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$ where $a^{\prime}, b^{\prime}, c^{\prime}$ are the elements corresponding to a, b, c. By the symmetry of N, we may assume that $a^{\prime}, b^{\prime}, c^{\prime} \in P$. Finally, let $K=N \mid\left(L^{\prime} \cup P\right)$; it is straightforward to check that K has the desired properties.

Let P be the rank-3 flat of N given by 3.5.1, let K be the restriction of N given by 3.5.2, and let K^{\prime} be the restriction of M to $E(K) \cup\{e, f\}$. Thus $K^{\prime} / e, f=K$. Since $e, f \in \mathrm{cl}_{K^{\prime}}(P)$, the elements e and f are not in series. Then, by the dual of Lemma 3.4, K^{\prime} is 3 -connected. Moreover, since L^{\prime} is a q-point coline of K, it is also a coline in K^{\prime}. Thus, by applying the dual of Lemma 3.3 to K^{\prime} we obtain a final contradiction.

Stabilizers for a class of matroids: We say that N stabilizes a class \mathcal{M} of matroids over \mathbb{F} if N stabilizes each 3-connected matroid in \mathcal{M} that contains N as a minor. For brevity, when N stabilizes the class of \mathbb{F}-representable matroids over \mathbb{F}, we simply say that N is a stabilizer for \mathbb{F}.

Lemma 3.6. Let q be a prime power and let N be a uniquely $\mathrm{GF}(q)$-representable stabilizer for $\mathrm{GF}(q)$. Then N has $|\operatorname{Aut}(\mathrm{GF}(q))|$ projectively inequivalent representations.

Proof. This follows easily from Theorem 3.1 and the fact that N is a stabilizer for all projective geometries of sufficiently large rank.

The following result shows that to test whether N stabilizes \mathcal{M} we need only check matroids $M \in \mathcal{M}$ with $r(M) \leqslant r(N)+1$ and $r^{*}(M) \leqslant r^{*}(N)+1$.

Theorem 3.7 (Whittle [12]). Let \mathcal{M} be a class of matroids that is closed with respect to taking minors, duality, and isomorphism. A 3-connected matroid $N \in \mathcal{M}$ stabilizes \mathcal{M} with respect to a field \mathbb{F} if and only if N stabilizes each 3 -connected matroid $M \in \mathcal{M}$ satisfying one of the following conditions:
(i) $N=M \backslash e$ for some $e \in E(M)$,
(ii) $N=M / e$ for some $e \in E(M)$, or
(iii) $N=M \backslash e / f$ for some $e, f \in E(M)$ where $M \backslash e$ and M / f are both 3-connected.

We can now prove one of the main results of the paper.
Theorem 3.8. For each prime power $q, \operatorname{PG}(q, q)$ is a stabilizer for $\mathrm{GF}(q)$.
Proof. Let M be a 3-connected $\operatorname{GF}(q)$-representable matroid with a minor N isomorphic to $\operatorname{PG}(q, q)$. Since there are no 3-connected $\mathrm{GF}(q)$-representable extensions of $\operatorname{PG}(q, q)$, then, by Theorem 3.7, it suffices to consider the case that $N=M / e$ for some $e \in E(M)$.

Suppose that M is not stabilized by N. Then, by applying the dual of Lemma 3.2, we see that there exists a matroid M^{\prime} with $E\left(M^{\prime}\right)=E(M) \cup\{f\}$ such that $M^{\prime} / f=M$, the elements e and f are clones in M^{\prime}, and $\{e, f\}$ is coindependent in M^{\prime}. Since $\{e, f\}$ is coindependent in M^{\prime}, e and f are not in series in M^{\prime}. Then, by the dual of Lemma 3.4, M^{\prime} is 3-connected. This contradicts Lemma 3.5.

Theorem 1.3 is an immediate consequence of Theorems 3.8 and 3.1.

4. Path-width

Let M be a matroid on E. The path-width of M is the least integer k, such that there exists an ordering $\left(e_{1}, \ldots, e_{n}\right)$ of E, such that $\lambda_{M}\left(\left\{e_{1}, \ldots, e_{i}\right\}\right) \leqslant k$ for all $i \in\{1, \ldots, n\}$. In the remainder of the paper we shift our attention from Theorem 1.1 to the following result.

Theorem 4.1. For any prime power q, there exists an integer k such that, each excluded minor for the class of $\mathrm{GF}(q)$-representable matroids that contains $a \mathrm{PG}(q+6, q)$-minor has path-width at most k.

Theorem 4.1 implies Theorem 1.1. Indeed, it is straightforward to show that $\operatorname{PG}(k+1, q)$ has path-width $k+2$, and that path-width is non-increasing with respect to taking minors. Then, by Theorem 4.1, there is no excluded minor for the class of $\mathrm{GF}(q)$-representable matroids that contains a $\operatorname{PG}(k+1, q)$-minor, proving Theorem 1.1.

Let $\mathcal{A}=\left(A_{1}, \ldots, A_{l}\right)$ be an ordered partition of E. We let $\rho_{M}(\mathcal{A})=\max \left(\lambda_{M}\left(A_{1} \cup \cdots \cup A_{i}\right):\right.$ $i \in\{1, \ldots, l\}$). We use the following two lemmas to obtain bounds on the path-width.

Lemma 4.2. Let M be a matroid, $\mathcal{A}=\left(A_{1}, \ldots, A_{l}\right)$ and $\mathcal{B}=\left(B_{1}, \ldots, B_{m}\right)$ be two ordered partitions of $E(M)$, and let $\mathcal{C}=\left(A_{1} \cap B_{1}, A_{1} \cap B_{2}, \ldots, A_{1} \cap B_{m}, \ldots, A_{l} \cap B_{1}, A_{l} \cap B_{2}, \ldots, A_{l} \cap\right.$ $\left.B_{m}\right)$. Then $\rho_{M}(\mathcal{C}) \leqslant 2 \rho_{M}(\mathcal{A})+\rho_{M}(\mathcal{B})$.

Proof. For each $i \in\{1, \ldots, l\}$ and $j \in\{1, \ldots, m\}$, we let

$$
\widehat{A}_{i}=A_{1} \cup \cdots \cup A_{i}
$$

$$
\begin{aligned}
\widehat{B}_{j}= & B_{1} \cup \cdots \cup B_{j}, \text { and } \\
S_{i j}= & \left(\left(A_{1} \cap B_{1}\right) \cup \cdots \cup\left(A_{1} \cap B_{m}\right)\right) \cup \cdots \\
& \cup\left(\left(A_{i-1} \cap B_{1}\right) \cup \cdots \cup\left(A_{i-1} \cap B_{m}\right)\right) \cup \cdots \\
& \cup\left(\left(A_{i} \cap B_{1}\right) \cup \cdots \cup\left(A_{i} \cap B_{j}\right)\right) \\
= & \widehat{A}_{i-1} \cup\left(\widehat{A}_{i} \cap \widehat{B}_{j}\right) .
\end{aligned}
$$

Now there exists $i \in\{1, \ldots, l\}$ and $j \in\{1, \ldots, m\}$, such that $\rho_{M}(\mathcal{C})=\lambda_{M}\left(S_{i j}\right)$. By submodularity,

$$
\begin{aligned}
\lambda_{M}\left(\widehat{A}_{i-1} \cup\left(\widehat{A}_{i} \cap \widehat{B}_{j}\right)\right) & \leqslant \lambda_{M}\left(\widehat{A}_{i-1}\right)+\lambda_{M}\left(\widehat{A}_{i}\right)+\lambda\left(\widehat{B}_{j}\right) \\
& \leqslant 2 \rho_{M}(\mathcal{A})+\rho_{M}(\mathcal{B}) .
\end{aligned}
$$

Therefore $\rho_{M}(\mathcal{C})=\lambda_{M}\left(S_{i j}\right)=\lambda_{M}\left(\widehat{A}_{i-1} \cup\left(\widehat{A}_{i} \cap \widehat{B}_{j}\right)\right) \leqslant 2 \rho_{M}(\mathcal{A})+\rho_{M}(\mathcal{B})$, as required.
Lemma 4.3. Let A, B, and X be disjoint sets of elements in a matroid M such that, for each $e \in$ X, either $\kappa_{M \backslash e}(A, B)<\kappa_{M}(A, B)$ or $\kappa_{M / e}(A, B)<\kappa_{M}(A, B)$. Then there exists an ordering $\left(e_{1}, \ldots, e_{m}\right)$ of X and a partition $\left(Y_{0}, \ldots, Y_{m}\right)$ of $E(M)-X$ such that $A \subseteq Y_{0}, B \subseteq Y_{m}$, and $\rho_{M}\left(Y_{0},\left\{e_{1}\right\}, Y_{1}, \ldots,\left\{e_{m}\right\}, Y_{m}\right)=\kappa_{M}(A, B)$.

Proof. Let $k=\kappa_{M}(A, B)$. The result is vacuous when $X=\emptyset$. Suppose then that X is non-empty and let $e \in X$. Now, inductively, we can find an ordering $\left(e_{1}, \ldots, e_{m}\right)$ of $X-\{e\}$ and a partition $\left(Y_{0}, \ldots, Y_{m}\right)$ of $E(M)-(X-\{e\})$ such that $A \subseteq Y_{0}, B \subseteq Y_{m}$, and $\rho_{M}\left(Y_{0},\left\{e_{1}\right\}, Y_{1}, \ldots,\left\{e_{m}\right\}, Y_{m}\right)$ $=\kappa_{M}(A, B)$. Now $e \in Y_{i}$ for some $i \in\{0, \ldots, m\}$. Define

$$
A^{\prime}= \begin{cases}A & \text { if } i=0, \\ \left(Y_{0} \cup \cdots \cup Y_{i-1}\right) \cup\left\{e_{1}, \ldots, e_{i}\right\} & \text { if } i>1\end{cases}
$$

and

$$
B^{\prime}= \begin{cases}B & \text { if } i=m, \\ \left(Y_{i+1} \cup \cdots \cup Y_{m}\right) \cup\left\{e_{i+1}, \ldots, e_{m}\right\} & \text { if } i<m .\end{cases}
$$

By duality we may assume that $\kappa_{M / e}(A, B)<k$. Thus there exists a partition $\left(X_{1}, X_{2}\right)$ of $E(M / e)$ with $A \subseteq X_{1}, B \subseteq X_{2}$, and $\lambda_{M / e}\left(X_{1}\right)=k-1$. It follows that $\lambda_{M}\left(X_{1}\right)=\lambda_{M}\left(X_{1} \cup\{e\}\right)=k$ and that $e \in \operatorname{cl}_{M}\left(X_{1}\right) \cap \operatorname{cl}_{M}\left(X_{2}\right)$. If $A^{\prime}=A$, then $A^{\prime} \subseteq X_{1}$. On the other hand, if $A^{\prime} \neq A$, then $\lambda_{M}\left(A^{\prime}\right)=k$. Then, by submodularity, $\lambda_{M}\left(A^{\prime} \cap X_{1}\right)=k$ and $\lambda_{M}\left(A^{\prime} \cup X_{1}\right)=k$. So, by replacing X_{1} by $A^{\prime} \cup X_{1}$, we get $A^{\prime} \subseteq X_{1}$. Thus, in either case, we may assume that $A^{\prime} \subseteq X_{1}$. Similarly, we may assume that $B^{\prime} \subseteq X_{2}$. Finally, we get $\rho_{M}\left(Y_{0},\left\{e_{1}\right\}, \ldots, Y_{i-1},\left\{e_{i-1}\right\}, Y_{i} \cap X_{1},\{e\}, Y_{i} \cap\right.$ $\left.X_{2},\left\{e_{i+1}\right\}, Y_{i+1}, \ldots,\left\{e_{m}\right\}, Y_{m}\right)=k$, as required.

5. Final preparations

The following lemma is well-known; we prove it here for the sake of completeness.
Lemma 5.1. Let \mathbb{F} be a field and let M be an excluded minor for the class of \mathbb{F}-representable matroids. If $|E(M)| \geqslant 5$ then no element of M is in both a triangle and a triad.

Proof. Suppose, by way of contradiction that $e \in E(M)$ is in both a triangle T and a triad T^{*}. Note that $\left|T \cap T^{*}\right| \geqslant 2$. Since M is 3-connected and $|E(M)| \geqslant 5$, we cannot have $T=T^{*}$. Thus $\left|T \cap T^{*}\right|=2$; suppose that $T=\left\{e_{1}, e_{2}, e_{3}\right\}$ and $T^{*}=\left\{e_{2}, e_{3}, e_{4}\right\}$. Let N be a matroid isomorphic
to $M\left(K_{4}\right)$, where one of the triangles in N is labelled by $\left\{e_{1}, e_{2}, e_{3}\right\}$. Now let M^{\prime} be obtained by taking the generalized parallel connection of M / e_{4} and N across the triangle $\left\{e_{1}, e_{2}, e_{3}\right\}$. Since M / e_{4} is \mathbb{F}-representable, so is M^{\prime}. However, $M^{\prime} \backslash e_{2}, e_{3}$ is isomorphic to M. This contradiction completes the proof.

Lemma 5.2. Let M be a $\mathrm{GF}(q)$-representable matroid and let N be a minor of M isomorphic to $\mathrm{PG}(k+2, q)$. Then for each $e \in E(M)$ there exists a restriction N^{\prime} of N isomorphic to $\operatorname{PG}(k, q)$ such that N^{\prime} is a minor of both $M \backslash e$ and M / e.

Proof. By deleting or contracting the other elements in a way that keeps N as a minor, we may assume that $E(M)=E(N) \cup\{e\}$. The result is straightforward if $e \in E(N)$; so assume that $e \notin E(N)$. We may also assume that e is neither a loop nor a coloop.

First consider the case that $N=M \backslash e$. Since M is GF (q)-representable, e is in parallel with some element $e^{\prime} \in E(N)$. Since $e^{\prime} \in E(N)$, there is a restriction N^{\prime} of N isomorphic to $\mathrm{PG}(k, q)$ such that N^{\prime} is a minor of both $M \backslash e^{\prime}$ and M / e^{\prime}. Thus, since e and e^{\prime} are in parallel, N^{\prime} is a minor of both $M \backslash e$ and M / e.

Now consider the case that $N=M / e$. Since e is not a coloop of M, there exists some triangle T of N such that $e \in \operatorname{cl}_{M}(T)$. Choose a restriction N^{\prime} of N isomorphic to $\operatorname{PG}(k, q)$ such that $r_{N}\left(T \cup E\left(N^{\prime}\right)\right)=r\left(N^{\prime}\right)+2$. Thus N^{\prime} is a minor of N / T and hence also of M / T. However, e is a loop in M / T. So N^{\prime} is a minor of both M / e and $M \backslash e$.

A matroid M is called stable if it is connected and it cannot be written as the 2-sum of two non-binary matroids. This differs from the original definition in [4] since we require that M is connected. Suppose that $\eta_{q}(M)$ denotes the number of $\mathrm{GF}(q)$-representations of M up to projective equivalence. It is easy to see that if M is the 2 -sum of M_{1} and M_{2}, then $\eta_{q}(M)=\eta_{q}\left(M_{1}\right) \eta_{q}\left(M_{2}\right)$. Moreover, if M is a binary matroid, then $\eta_{q}(M)=1$. It follows that if M is a stable $\operatorname{GF}(q)$ representable matroid, then by repeatedly decomposing across 2 -separations we will obtain a 3-connected matroid M^{\prime} such that $\eta_{q}(M)=\eta_{q}\left(M^{\prime}\right)$. It follows that if N is a stabilizer for $\operatorname{GF}(q)$, and if M is a stable matroid that contains N as a minor, then N stabilizes M over $\operatorname{GF}(q)$.

The following two lemmas can be derived from results in [12]; we include direct proofs for completeness.

Lemma 5.3. Let M be a 3-connected matroid, let $u, v \in E(M)$ be such that $M \backslash u$, v is stable, and suppose that $M \backslash u$, v has a minor N that is uniquely $\mathrm{GF}(q)$-representable and is a stabilizer for $\mathrm{GF}(q)$. If $M \backslash u$ and $M \backslash v$ are both $\mathrm{GF}(q)$-representable, then there exists a $\mathrm{GF}(q)$-representable matroid M^{\prime}, such that $M^{\prime} \backslash u=M \backslash u$ and $M^{\prime} \backslash v=M \backslash v$.

Proof. Let B be a basis of M containing neither u nor v. Consider $\operatorname{GF}(q)$-representations A_{1} and A_{2} of $M \backslash u$ and $M \backslash v$, respectively. By applying row operations we may assume that:

$$
\left.\left.A_{1}=\begin{array}{ccl}
B & & v \\
I & C_{1} & y
\end{array}\right) \text { and } A_{2}=\begin{array}{ccc}
B & & u \\
I & C_{2} & x
\end{array}\right) .
$$

Thus (I, C_{1}) and (I, C_{2}) are both $\mathrm{GF}(q)$-representations of $M \backslash u, v$. However, $M \backslash u, v$ is uniquely $\operatorname{GF}(q)$-representable since N is a minor of $M \backslash u, v$. Therefore, by possibly applying a field automorphism and rescaling, we may assume that $C_{1}=C_{2}$. Now let M^{\prime} be the matroid
represented over $\mathrm{GF}(q)$ by
$\left.\begin{array}{cccc}B & & u & v \\ I & C_{1} & x & y\end{array}\right)$.

Clearly $M^{\prime} \backslash u=M \backslash u$ and $M^{\prime} \backslash v=M \backslash v$, as required.
Lemma 5.4. Let M_{1} and M_{2} be $\mathrm{GF}(q)$-representable matroids on the same ground set and let $u, v \in E\left(M_{1}\right)$ be such that $M_{1} \backslash u=M_{2} \backslash u$ and $M_{1} \backslash v=M_{2} \backslash v$. If $M_{1} \backslash u$ and $M_{2} \backslash v$ are both stable, $M_{1} \backslash u$, v is connected, and $M_{1} \backslash u$, v has a minor N that is uniquely $\mathrm{GF}(q)$-representable and is a stabilizer for the class of $\mathrm{GF}(q)$-representable matroids, then $M_{1}=M_{2}$.

Proof. Since $M_{1} \backslash u$ and $M_{1} \backslash v$ are connected, $\{u, v\}$ is co-independent. Thus there exists a basis B of M_{1} disjoint from u and v. For each $i \in\{1,2\}$, consider a $\operatorname{GF}(q)$-representation A_{i} of M_{i} where:

$$
\left.A_{i}=\begin{array}{cccc}
B & & u & v \\
I & C_{i} & x_{i} & y_{i}
\end{array}\right) .
$$

Now $\left(I, C_{1}, x_{1}\right)$ and $\left(I, C_{2}, x_{2}\right)$ are both representations of $M_{1} \backslash v$. However, $M_{1} \backslash v$ is uniquely $\mathrm{GF}(q)$-representable since it is stable and contains N as a minor. Therefore, by possibly applying a field automorphism and rescaling, we may assume that $C_{2}=C_{1}$ and $x_{2}=x_{1}$. So we may assume that $A_{2}=\left(I, C_{1}, x_{1}, y_{2}\right)$. Now we have two representations, $\left(I, C_{1}, y_{1}\right)$ and $\left(I, C_{1}, y_{2}\right)$, of $M_{1} \backslash u$ and, since $M_{1} \backslash u$ is stable and contains N as a minor, these representations are algebraically equivalent. Consider the operations required to transform $\left(I, C_{1}, y_{1}\right)$ into $\left(I, C_{1}, y_{2}\right)$; we have at our disposal row operations, column scaling, and field automorphisms. The common identity matrix limits the row operations to row scaling. Since $M_{1} \backslash u, v$ contains N as a minor and since, by Theorem 3.1, N has $|\operatorname{Aut}(\operatorname{GF}(q))|$ weakly inequivalent representations, we cannot apply field automorphisms (while keeping (I, C_{1}) and (I, C_{2}) projectively equivalent). Moreover, since $M_{1} \backslash u, v$ is connected, the only scalings that we may apply to (I, C_{1}) without changing it are trivial (that is, multiply every row by a constant α and divide all columns by α). Therefore y_{2} is obtained from y_{1} by scaling, and, hence, $M_{2}=M_{1}$.

The next result is considerably harder to prove; we defer the proof to Sections 8-10. Before stating the result we need some definitions. If M_{1} and M_{2} are two matroids on a common ground set, then a set B is said to distinguish M_{1} from M_{2} if B is a basis of exactly one of M_{1} and M_{2}. Let X be a set of elements in a matroid M. We say that X is connected in M if X is contained in a single component of M. We say that X is 3-connected in M if X is connected and for any partition $\left(X_{1}, X_{2}\right)$ of X with $\left|X_{1}\right|,\left|X_{2}\right| \geqslant 2$ we have $\kappa_{M}\left(X_{1}, X_{2}\right) \geqslant 2$.

Lemma 5.5. Let M, M^{\prime}, and N be matroids, let B be a basis of M, let $u, v \in E(M)-B$, and let $a, b \in B$ be such that
(1) M^{\prime} is a $\mathrm{GF}(q)$-representable matroid on the same ground set as $M, M^{\prime} \backslash u=M \backslash u, M^{\prime} \backslash v=$ $M \backslash v$, and $(B-\{a, b\}) \cup\{u, v\}$ distinguishes M from M^{\prime};
(2) N is a uniquely $\mathrm{GF}(q)$-representable stabilizer for $\mathrm{GF}(q)$ and N is a minor of $M \backslash u$, v; and
(3) $E(N) \cup\{a, b, u\}$ is 3-connected in $M \backslash v$ and $E(N) \cup\{a, b, v\}$ is 3-connected in $M \backslash u$.

Then M is not $\mathrm{GF}(q)$-representable.

6. Proof of Theorem 4.1

Let s denote the number of elements of $\operatorname{PG}(q, q)$, and let t be the number of $\operatorname{PG}(q, q)$ restrictions of $\operatorname{PG}(q+2, q)$. In this section we prove Theorem 4.1 with $k=24 t 2^{s+3}+4$.

Let M be an excluded minor for the class of $\mathrm{GF}(q)$-representable matroids. Suppose by way of contradiction that M contains a $\operatorname{PG}(q+6, q)$ - or a $\operatorname{PG}(q+6, q)^{*}$-minor and that the path-width of M is greater than k. By Lemma 5.1, no element of M is in both a triangle and a triad. Therefore, by Lemma 2.8 and by possibly replacing M with M^{*}, we may assume that there exist elements $u, v \in E(M)$ such that $M \backslash u$ and $M \backslash v$ are 3-connected and $M \backslash u, v$ is internally 3-connected. By Lemma 5.2, $M \backslash u, v$ has a $\operatorname{PG}(q+2, q)$ - or a $\operatorname{PG}(q+2, q)^{*}$-minor N. Therefore, by Lemma 5.3 and Theorem 3.8, there exists a $\mathrm{GF}(q)$-representable matroid M^{\prime} on the same ground set as M such that $M^{\prime} \backslash u=M \backslash u$ and $M^{\prime} \backslash v=M \backslash v$. Moreover, by Lemma 5.4, M^{\prime} is unique.

6.1. There exists a basis B of M and elements $a, b \in B$ such that $u, v \notin B$ and $(B-\{a, b\}) \cup\{u, v\}$ distinguishes M from M^{\prime}.

Proof. Suppose that B^{\prime} distinguishes M from M^{\prime}. Since M is 3-connected, there exists a basis B of M that is disjoint from $\{u, v\}$; we choose such B minimizing $\left|B^{\prime}-B\right|$. Note that $|B|=\left|B^{\prime}\right|$ and that $u, v \in B^{\prime}-B$; thus, if $\left|B^{\prime}-B\right|=2$, then 6.1 holds (take a and b to be the two elements in $\left.B-B^{\prime}\right)$. Hence, we may assume that $\left|B^{\prime}-B\right|>2$; let $x \in\left(B^{\prime}-B\right)-\{u, v\}$. By one of the standard basis exchange axioms, there exists $y \in B-B^{\prime}$ such that $(B \cup\{x\})-\{y\}$ is a basis of at least one of M and M^{\prime}; let $B^{\prime \prime}=(B \cup\{x\})-\{y\}$. Since $u, v \notin B^{\prime \prime}, B^{\prime \prime}$ does not distinguish M from M^{\prime}. Thus $B^{\prime \prime}$ is a basis of M that contains neither u nor v. However, $\left|B^{\prime}-B^{\prime \prime}\right|<\left|B^{\prime}-B\right|$, contradicting our choice of B.

Let $N^{\prime} \in\left\{N, N^{*}\right\}$ be isomorphic to $\operatorname{PG}(q+2, q)$, and let $N_{1}^{\prime}, \ldots, N_{t}^{\prime}$ be the $\operatorname{PG}(q, q)$ restrictions of N^{\prime}. Now, for each $i \in\{1, \ldots, t\}$, let $N_{i}^{\prime}=N_{i}$ if $N^{\prime}=N$ and let $N_{i}^{\prime}=N_{i}^{*}$ if $N^{\prime}=N^{*}$. Let $Z=E(M)-\{a, b, u, v\}$. Now, for each $i \in\{1, \ldots, t\}$, let Z_{i} denote the set of all elements $e \in Z$ such that $(M \backslash u, v) \backslash e$ and $(M \backslash u, v) / e$ both contain N_{i} as a minor. By Lemma 5.2, each element in Z is contained in at least one of Z_{1}, \ldots, Z_{t}.

For each $i \in\{1, \ldots, t\}$, let $\Pi_{i}(u)$ denote the set of all partitions $\left(A_{1}, A_{2}\right)$ of $E\left(N_{i}\right) \cup$ $\{a, b, v\}$ such that $\kappa_{M \backslash u}\left(A_{1}, A_{2}\right)=2$, and let $\Pi_{i}(v)$ denote the set of all partitions $\left(A_{1}, A_{2}\right)$ of $E\left(N_{i}\right) \cup\{a, b, u\}$ such that $\kappa_{M \backslash v}\left(A_{1}, A_{2}\right)=2$. Recall that $\left|E\left(N_{i}\right)\right|=s$, so we trivially get $\left|\Pi_{i}(u)\right|,\left|\Pi_{i}(v)\right| \leqslant 2^{s+3}$.

6.2. For each $e \in Z_{i}$ either

(a) there exists $\left(A_{1}, A_{2}\right) \in \Pi_{i}(u)$ such that either $\kappa_{(M \backslash u) \backslash e}\left(A_{1}, A_{2}\right)<2$ or $\kappa_{(M \backslash u) / e}\left(A_{1}, A_{2}\right)<$ 2; or
(b) there exists $\left(A_{1}, A_{2}\right) \in \Pi_{i}(v)$ such that either $\kappa_{(M \backslash v) \backslash e}\left(A_{1}, A_{2}\right)<2$ or $\kappa_{(M \backslash v) / e}\left(A_{1}, A_{2}\right)<$ 2.

Proof. If $e \notin B$, then let

$$
M_{1}=M \backslash e, M_{1}^{\prime}=M^{\prime} \backslash e, \text { and } B_{1}=B
$$

If $e \in B$, then let

$$
M_{1}=M / e, M_{1}^{\prime}=M^{\prime} / e, \text { and } B_{1}=B-\{e\} .
$$

Note that, B_{1} is a basis of M_{1}. Moreover
(1) M_{1} and M_{1}^{\prime} are $\mathrm{GF}(q)$-representable matroids on the same ground set, $M_{1}^{\prime} \backslash u=M_{1} \backslash u$, $M_{1}^{\prime} \backslash v=M_{1} \backslash v$, and $\left(B_{1}-\{a, b\}\right) \cup\{u, v\}$ distinguishes M_{1} from M_{1}^{\prime}; and
(2) N_{i} is a uniquely $\operatorname{GF}(q)$-representable stabilizer for $\mathrm{GF}(q)$ and N_{i} is a minor of $M_{1} \backslash u, v$.

Then, by Lemma 5.5, either
(i) $E\left(N_{i}\right) \cup\{a, b, u\}$ is not 3-connected in $M_{1} \backslash v$, or
(ii) $E\left(N_{i}\right) \cup\{a, b, v\}$ is not 3-connected in $M_{1} \backslash u$.

However, $E\left(N_{i}\right) \cup\{a, b, u\}$ is 3-connected in $M \backslash v$ and $E\left(N_{i}\right) \cup\{a, b, v\}$ is 3-connected in $M \backslash u$. It follows that one of (a) and (b) hold.

The result is now relatively straightforward, we just apply Lemmas 4.3 and 4.2 to bound the path-width of M.

For each $i \in\{1, \ldots, t\}, w \in\{u, v\}$, and $\pi=\left(A_{1}, A_{2}\right) \in \Pi_{i}(w)$, let $Z_{i}(w, \pi)$ denote the set of all elements $e \in Z_{i}$ for which either $\kappa_{(M \backslash w) \backslash e}\left(A_{1}, A_{2}\right)<2$ or $\kappa_{(M \backslash w) / e}\left(A_{1}, A_{2}\right)<2$.
6.3. For each $i \in\{1, \ldots, t\}, w \in\{u, v\}$, and $\pi=\left(A_{1}, A_{2}\right) \in \Pi_{i}(w)$ there exists an ordering $\left(e_{1}, \ldots, e_{m}\right)$ of $Z_{i}(w, \pi)$ and a partition $\left(Y_{0}, \ldots, Y_{m}\right)$ of $E(M)-Z_{i}(w, \pi)$, such that $\rho_{M}\left(Y_{0},\left\{e_{1}\right\}, Y_{1}, \ldots,\left\{e_{m}\right\}, Y_{m}\right) \leqslant 3$.

Proof. By Lemma 4.3, there exists an ordering $\left(e_{1}, \ldots, e_{m}\right)$ of $Z_{i}(w, \pi)$ and a partition $\left(Y_{0}, \ldots\right.$, $\left.Y_{m}\right)$ of $\left(E(M)-Z_{i}(w, \pi)\right)-\{w\}$ such that $\rho_{M \backslash w}\left(Y_{0},\left\{e_{1}\right\}, Y_{1}, \ldots,\left\{e_{m}\right\}, Y_{m}\right) \leqslant 2$. Adding w to Y_{0} gives the result.

Now let $Z_{i}(w)$ denote the union of the sets $Z_{i}(w, \pi)$ over all $\pi \in \Pi_{i}(w)$. By 6.3 and Lemma 4.2, we get
6.4. For each $i \in\{1, \ldots, t\}$ and $w \in\{u, v\}$, there exists an ordering $\left(e_{1}, \ldots, e_{m}\right)$ of $Z_{i}(w)$ and a partition $\left(Y_{0}, \ldots, Y_{m}\right)$ of $E(M)-Z_{i}(w)$, such that $\rho_{M}\left(Y_{0},\left\{e_{1}\right\}, Y_{1}, \ldots,\left\{e_{m}\right\}, Y_{m}\right)$ $\leqslant 6\left|\Pi_{i}(w)\right| \leqslant 6\left(2^{s+3}\right)$.

Now, for each $e \in Z$, there exists $i \in\{1, \ldots, t\}$ such that $e \in Z_{i}(u)$ or $e \in Z_{i}(v)$. Then, by 6.4 and Lemma 4.2, we get
6.5. There exists an ordering $\left(e_{1}, \ldots, e_{m}\right)$ of Z and a partition $\left(Y_{0}, \ldots, Y_{m}\right)$ of $E(M)-Z$ such that $\rho_{M}\left(Y_{0},\left\{e_{1}\right\}, Y_{1}, \ldots,\left\{e_{m}\right\}, Y_{m}\right) \leqslant 24 t 2^{s+3}$.

Now $E(M)-Z=\{a, b, u, v\}$ so, by $6.5, M \backslash\{u, v, a, b\}$ has path-width at most $24 t 2^{s+3}$. Hence, M has path-width at most $24 t 2^{s+3}+4=k$. This contradiction completes the proof.

7. Fixing a basis

In the proof of Lemma 5.5, we work with a pair (M, B) where B is a fixed basis of the matroid M. In this section we formalize the notion of a matroid viewed with respect to a fixed basis. The results given here were introduced in [4]; we use different notation in the hope of keeping a closer connection to more familiar matroid notions.

We denote the symmetric difference of sets X and Y by $X \Delta Y$; that is, $X \Delta Y=(X-Y) \cup(Y-X)$.
Let B be a basis of a matroid M. A set $X \subseteq E(M)$ is a feasible set of (M, B) if $X \Delta B$ is a basis of M. Duality is quite transparent in this setting, since (M, B) and $\left(M^{*}, E(M)-B\right)$ have the same feasible sets.

Representations: An \mathbb{F}-representation of (M, B) is a $B \times(E(M)-B)$ matrix A over \mathbb{F}, such that

```
B
(\begin{array}{ll}{I}&{A}\end{array})
```

is an \mathbb{F}-representation of M. (Elsewhere, A is often called a standard representation.) Note that, $X \subseteq E(M)$ is a feasible set of (M, B) if and only if $|X \cap B|=|X-B|$ and the submatrix $A[X \cap B, X-B]$ is non-singular. (Many of the results given below are straightforward for representable matroids.)

Fundamental graphs: The fundamental graph of (M, B), denoted by $G_{(M, B)}$ or by G_{B}, is the graph whose vertex set is $E(M)$ and whose edge set is given by the 2-element feasible sets of (M, B). Note that G_{B} is bipartite with bipartition $(B, E(M)-B)$. For $X \subseteq E(M)$, we denote by $G_{B}[X]$ the subgraph of G_{B} induced by the vertex set X. The following results relate feasible sets to the fundamental graph.

Lemma 7.1 (Brualdi [3]). If X is a feasible set of (M, B), then $G_{B}[X]$ has a perfect matching.
Lemma 7.2 (Krogdahl [6]). If $G_{B}[X]$ has a unique perfect matching, then X is a feasible set of (M, B).

Minors: For any $X \subseteq E(M)$, we let

$$
M[X, B]=M \backslash(E(M)-(X \cup B)) /(B-X)
$$

such minors are said to be visible with respect to B. It is straightforward to show that, for any minor N of M, there exists a basis B^{\prime} of M such that $N=M\left[E(N), B^{\prime}\right]$. Note that $B \cap X$ is a basis of $M[X, B]$ and the fundamental graph of $(M[X, B], B \cap X)$ is $G_{B}[X]$. Moreover, if A is a representation of (M, B) then $A[B \cap X, X-B]$ is a representation of $(M[X, B], B \cap X)$.

Pivoting: We will need to change bases; for example, to make some minor visible. Suppose that X is a feasible set of (M, B). Then $B \Delta X$ is a basis of M. Now Y is a feasible set of $(M, B \Delta X)$ if and only if $X \Delta Y$ is a feasible set of (M, B). Typically we will shift from (M, B) to $(M, B \Delta\{x, y\})$ for some edge $\{x, y\}$ of G_{B}; such a change is referred to as a pivot on $x y$. Let $B^{\prime}=B \Delta\{x, y\}$. We can determine much of the structure of $G_{B^{\prime}}$ from G_{B}. Note that $u v$ is an edge of $G_{B^{\prime}}$ if and only if $\{u, v\} \Delta\{x, y\}$ is feasible in (M, B). Thus
(i) $\{x, y\}$ is an edge of $G_{B^{\prime}}$.
(ii) If $v \in E(M)-\{x, y\}$, then $x v$ is an edge of $G_{B^{\prime}}$ if and only if $y v$ is an edge of G_{B}. Similarly, $y v$ is an edge of $G_{B^{\prime}}$ if and only if $x v$ is an edge of G_{B}.
(iii) If $u, v \in E(M)-\{x, y\}$ and v is adjacent to neither x nor y in G_{B}, then $u v$ is an edge of $G_{B^{\prime}}$ if and only if $u v$ is an edge of G_{B}.
(iv) If $u, v \in E(M)-\{x, y\}$ where $u x$ and $v y$ are edges of G_{B} but $u v$ is not, then $u v$ is an edge of $G_{B^{\prime}}$.

This leaves only one problematic case: if $G_{B}[\{x, y, u, v\}]$ is a circuit, then we cannot determine whether $u v$ is an edge of $G_{B^{\prime}}$ using only information from G_{B}. All we can say in this case is that, $u v$ is an edge of $G_{B^{\prime}}$ if and only if $\{x, y, u, v\}$ is a feasible set of (M, B).

A set $X \subseteq E(M)$ is a twirl of (M, B) if $G_{B}[X]$ is an induced circuit and X is feasible; it is easy to check that if X is a twirl, then $M[X, B]$ is a whirl. We are only interested in 4-element twirls; these are precisely visible $U_{2,4}$-minors.

Connectivity and fundamental graphs: The following results help us identify 1- and 2-separations using fundamental graphs. In each of the these results, B is a basis of a matroid M.

Lemma 7.3. Let $Y \subseteq E(M)$. Then, $\lambda_{M}(Y)>0$ if and only if there exists an edge $u v$ of G_{B} with $u \in Y$ and $v \in V-Y$.

Corollary 7.4. M is connected if and only if G_{B} is connected.
A partition $\left(X_{1}, X_{2}\right)$ of $E(M)$ is called a split of G_{B} if $\left|X_{1}\right|,\left|X_{2}\right| \geqslant 2$ and the edges of G_{B} connecting X_{1} to X_{2} induce a complete bipartite graph; that is, there exist $Y_{1} \subseteq X_{1}$ and $Y_{2} \subseteq X_{2}$ such that each vertex in Y_{1} is adjacent to each vertex in Y_{2}, and these are the only edges between X_{1} and X_{2}.

Lemma 7.5. If $\left(X_{1}, X_{2}\right)$ is a 2-separation in M, then $\left(X_{1}, X_{2}\right)$ is a split of G_{B}.
A partial converse is given by the following result.
Lemma 7.6 (See [4, Proposition 4.12]). Let $\left(X_{1}, X_{2}\right)$ be a split in G_{B} and let $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$ where x_{1} and x_{2} are adjacent in G_{B}. Then, $\left(X_{1}, X_{2}\right)$ is a 2 -separation in M if and only if there is no twirl $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$ in (M, B) with $y_{1} \in X_{1}$ and $y_{2} \in X_{2}$.

Series and parallel elements: Suppose that x and y are parallel in M. We may assume that $y \notin B$. If $x \in B$, then y is pendant to x in G_{B}; that is, x is the only neighbour of y. On the other hand, if $x \notin B$, then x and y are twins in G_{B}; that is, x and y have the same neighbours. Similarly, if x and y are in series in M and $y \in B$, then either x is pendant to y in G_{B} or x and y are twins. The converse need not be true. If x and y are twins in G_{B}, then x and y need not be in series or in parallel. However, by 7.6 , if x is pendant to y in G_{B}, then either x and y are in series (when $x \in B$) or x and y are in parallel (when $x \notin B$).

8. 3-Connected sets and fundamental graphs

In this section we prove various connectivity results, most of which concern 3-connected sets in a matroid with a fixed basis. Let X be a 3-connected set in a connected matroid M. Now let $\mathcal{F}_{M}(X)=\left\{Z \subseteq E(M): \lambda_{M}(Z) \leqslant 1\right.$ and $\left.|X \cap Z| \leqslant 1\right\}$ and let $\Pi_{M}(X)$ be the collection of maximal sets in $\mathcal{F}_{M}(X)$.

Lemma 8.1. If X is a 3 -connected set in a connected matroid M and $|X| \geqslant 4$, then $\Pi_{M}(X)$ is a partition of $E(M)$.

Proof. Note that, for each $v \in E(M)$, we have $\{v\} \in \mathcal{F}_{M}(X)$. Thus it suffices to prove that, if $Z_{1}, Z_{2} \in \mathcal{F}_{M}(X)$ and $Z_{1} \cap Z_{2} \neq \emptyset$, then $Z_{1} \cup Z_{2} \in \mathcal{F}_{M}(X)$. By submodularity, $\lambda_{M}\left(Z_{1}\right)+$ $\lambda_{M}\left(Z_{2}\right) \geqslant \lambda_{M}\left(Z_{1} \cap Z_{2}\right)+\lambda_{M}\left(Z_{1} \cup Z_{2}\right)$. Since $Z_{1}, Z_{2} \in \mathcal{F}_{M}(X)$, we have $\lambda_{M}\left(Z_{1}\right), \lambda_{M}\left(Z_{2}\right) \leqslant 1$. Moreover, since $Z_{1} \cap Z_{2} \neq \emptyset$ and since M is connected, we have $\lambda_{M}\left(Z_{1} \cap Z_{2}\right) \geqslant 1$. Therefore $\lambda_{M}\left(Z_{1} \cup Z_{2}\right) \leqslant 1$. Now $\left|\left(Z_{1} \cup Z_{2}\right) \cap X\right| \leqslant 2$ so $\left|X-\left(Z_{1} \cup Z_{2}\right)\right| \geqslant 2$. Hence, since X is a 3-connected set, we must have $\left|\left(Z_{1} \cup Z_{2}\right) \cap X\right| \leqslant 1$ and, so, $Z_{1} \cup Z_{2} \in \mathcal{F}_{M}(X)$, as required.

For any $\pi \subseteq E(M)$, we let $\partial_{(M, B)}(\pi)$ be the elements of π that have a neighbour in $E(M)-\pi$ in G_{B}. For a partition Π of $E(M)$, we let $\partial_{(M, B)}(\Pi)$ denote $\left(\partial_{(M, B)}(\pi): \pi \in \Pi\right)$. Where there is no fear of ambiguity we denote $\partial_{(M, B)}$ by ∂_{B}. Now suppose that B is a basis of M and that (X_{1}, X_{2}) is a 2-separation of M. Then, as noted in the previous section, $\left(X_{1}, X_{2}\right)$ is a split of G_{B}. Now let $x_{1} \in \partial_{B}\left(X_{1}\right)$ and $x_{2} \in \partial_{B}\left(X_{2}\right)$. It is straightforward to prove that M is the 2 -sum of $M\left[X_{1} \cup\left\{x_{2}\right\}, B\right]$ and $M\left[\left\{x_{1}\right\} \cup X_{2}, B\right]$ (identifying x_{1} with x_{2}) and that, up to isomorphism, these matroids do not depend on the particular choice of x_{1} and x_{2}. Decomposing across each of the 2-separations given by the parts of $\Pi_{M}(X)$, we obtain the following lemma.

Lemma 8.2. Let B be a basis of a connected matroid M and let X be a 3-connected set of M with $|X| \geqslant 4$. If T is a transversal of $\partial_{B}\left(\Pi_{M}(X)\right)$, then $M[T, B]$ is 3-connected. Moreover, if N is a 3-connected minor of M with $X \subseteq E(N)$, then $M[T, B]$ has a minor isomorphic to N.

Lemma 8.2 provides a way of recognizing that certain minors are 3-connected; we also need to recognize that certain minors are stable.

Lemma 8.3. Let B be a basis in a connected matroid M and let $X \subseteq E(M)$ be a 3-connected set in M with $|X| \geqslant 4$. If $S \subseteq E(M)$ where $S \cap \pi \neq \emptyset$ for each $\pi \in \Pi_{M}(X)$ and each component of $G_{B}[S \cap \pi]$ is a tree containing exactly one element of $\partial_{B}(\pi)$, then $M[S, B]$ is stable.

Proof. Note that, there is a transversal $T \subseteq S$ of $\partial_{B}\left(\Pi_{M}(X)\right)$. By Lemma 8.2, $M[T, B]$ is 3-connected. Moreover, we can obtain $M[T, B]$ from $M[S, B]$ by repeated simplification and cosimplification. Thus $M[S, B]$ is stable.

We need the following elementary fact about bipartite graphs; the easy proof is left to the reader.

Lemma 8.4. If $G=(V, E)$ is a connected bipartite graph and $u, v, w \in V$, then there exists $A \subseteq V$, such that $u, v, w \in A$ and $G[A]$ is a tree.

Lemma 8.5. Let B be a basis in a connected matroid M and let $X \subseteq E(M)$ be a 3-connected set in M with $|X| \geqslant 4$. If $\pi \in \Pi_{M}(X)$ and $Z \subseteq \pi$ with $|Z| \leqslant 2$, then there exists $S \subseteq \pi$, such that $Z \subseteq S$ and each component of $G_{B}[S]$ is a tree with exactly one vertex in $\partial_{B}(\pi)$.

Proof. Let $v \in E(M)-\pi$ be a vertex of G_{B} that has a neighbour in π. By Lemma 8.4, there exists $S \subseteq \pi$, such that $Z \subseteq S$ and $G_{B}[S \cup\{v\}]$ is a tree. Since v is adjacent to every vertex in $\partial_{B}(\pi)$, each component of $G_{B}[S]$ is a tree with exactly one vertex in $\partial_{B}(\pi)$.

Lemma 8.6. Let e be an element of a connected matroid M and let N be a 3-connected non-binary minor of $M \backslash e$. If $M \backslash e$ is stable but M is not stable, then there exists $\pi \in \Pi_{M \backslash e}(E(N))$ such that $\lambda_{M}(\pi \cup\{e\})=1$.

Proof. If M is not stable, then M can be expressed as the 2 -sum of two non-binary matroids M_{1} and M_{2} on ground sets $X_{1} \cup\{z\}$ and $X_{2} \cup\{z\}$ respectively. By symmetry, we may assume that $e \in X_{1}$. Moreover, since $M \backslash e$ is stable, $M_{1} \backslash e$ is binary. It follows that $\left|X_{1} \cap E(N)\right| \leqslant 1$. Thus there exists $\pi \in \Pi_{M \backslash e}(E(N))$ such that $X_{1}-\{e\} \subseteq \pi$. Now, since $\lambda_{M}\left(X_{1}\right)=\lambda_{M \backslash e}\left(X_{1}-\{e\}\right)$, we have $e \in \operatorname{cl}_{M}\left(X_{1}-\{e\}\right)$. Then $e \in \operatorname{cl}_{M}(\pi)$ and, hence, $\lambda_{M}(\pi \cup\{e\})=1$.

We conclude this section with two easy connectivity results.
Lemma 8.7. Let (X, D, Y) be a partition of the ground set of a matroid M where D is coindependent in M. Then, $\lambda_{M}(X)=\lambda_{M \backslash D}(X)$ if and only if $D \subseteq \mathrm{cl}_{M}(Y)$.

Proof. Note that,

$$
\begin{aligned}
\lambda_{M}(X)-\lambda_{M \backslash D}(X)= & \left(r_{M}(X)+r_{M}(D \cup Y)-r(M)\right) \\
& -\left(r_{M}(X)+r_{M}(Y)-r_{M}(X \cup Y)\right) \\
= & \left(r_{M}(X)+r_{M}(D \cup Y)-r(M)\right) \\
& -\left(r_{M}(X)+r_{M}(Y)-r(M)\right) \\
= & r_{M}(D \cup Y)-r_{M}(Y) .
\end{aligned}
$$

Thus, $\lambda_{M}(X)=\lambda_{M \backslash D}(X)$ if and only if $D \subseteq \operatorname{cl}_{M}(Y)$.
Lemma 8.8. Let X and Y be disjoint sets of elements of a matroid M and let B be a basis of M. If $\lambda_{M}(X)>\lambda_{M[X \cup Y, B]}(X)$, then there exists $e \in E(M)-(X \cup Y)$, such that $\lambda_{M[X \cup Y \cup\{e\}, B]}(X)>$ $\lambda_{M[X \cup Y, B]}(X)$.

Proof. Let $C=(E(M)-(X \cup Y)) \cap B$ and let $D=E(M)-(X \cup Y \cup C)$. By using duality, we may assume that D is not empty. Now let $N=M / C$; thus $N \backslash D=M[X \cup Y, B]$. Suppose that $\lambda_{N}(X)>\lambda_{N \backslash D}(X)$. Then, by Lemma 8.7, there exists $e \in D$ such that $e \notin \operatorname{cl}_{N}(Y)$. Then, again by Lemma 8.7, $\lambda_{M[X \cup Y \cup\{e\}, B]}(X)=\lambda_{N \backslash(D-\{e\})}(X)>\lambda_{N \backslash D}(X)=\lambda_{M[X \cup Y, B]}(X)$, as required. Therefore we may assume that $\lambda_{N}(X)=\lambda_{N \backslash D}(X)$. Then, by Lemma 8.7, $D \subseteq \mathrm{cl}_{N}(Y)$. However, since $N=M / C$, we have $D \subseteq \operatorname{cl}_{M}(Y \cup C)$. So, by Lemma 8.7, $\lambda_{M \backslash D}(X)=\lambda_{M}(X)>$ $\lambda_{(M \backslash D) / C}(X)$. But $D \neq \emptyset$, so by replacing M with $M \backslash D$ the result follows inductively.

9. Proof of Lemma 5.5

Recall that M, M^{\prime}, and N are matroids, B is a basis of $M, u, v \in E(M)-B$, and $a, b \in B$ sayisfying
(1) M^{\prime} is a $\mathrm{GF}(q)$-representable matroid on the same ground set as $M, M^{\prime} \backslash u=M \backslash u, M^{\prime} \backslash v=$ $M \backslash v$, and $(B-\{a, b\}) \cup\{u, v\}$ distinguishes M from M^{\prime};
(2) N is a uniquely $\operatorname{GF}(q)$-representable stabilizer for $\operatorname{GF}(q)$ and N is a minor of $M \backslash u, v$; and
(3) $E(N) \cup\{a, b, u\}$ is 3-connected in $M \backslash v$ and $E(N) \cup\{a, b, v\}$ is 3-connected in $M \backslash u$.

We will need that N is non-binary. It is straightforward to show that a binary matroid can only be a stabilizer over $\mathrm{GF}(2)$ or $\mathrm{GF}(3)$. On the other hand, Lemma 5.5 is straightforward when $q \in\{2,3\}$. Therefore we may assume that N is non-binary.

Note that $G_{(M, B)}$ and $G_{\left(M^{\prime}, B\right)}$ are the same; we denote this graph by G_{B}. Since $E(N) \cup\{u, a, b\}$ is 3-connected in $M \backslash v$, the set $E(N) \cup\{a, b\}$ is connected in $M \backslash u$, v. Thus $E(N) \cup\{a, b\}$ is contained in a component, say H, of $G_{B}-u-v$. Now it is easy to check that the hypotheses of Lemma 5.5 are satisfied when we replace M and M^{\prime} by $M[V(H) \cup\{u, v\}, B]$ and $M^{\prime}[V(H) \cup$ $\{u, v\}, B]$, respectively. Thus we may assume that $M \backslash u, v$ is connected.

A set $F \subseteq E(M)$ distinguishes (M, B) from $\left(M, B^{\prime}\right)$ if F is a feasible set of exactly one of (M, B) and $\left(M, B^{\prime}\right)$. Thus $\{a, b, u, v\}$ distinguishes (M, B) from $\left(M, B^{\prime}\right)$. Since $M \backslash u=M^{\prime} \backslash u$ and $M \backslash v=M^{\prime} \backslash v$, both u and v are contained in any set that distinguishes (M, B) from $\left(M, B^{\prime}\right)$. During the proof we change our choice of a, b, and B; however, we are careful that a, b, and B are chosen such that they satisfy the following four conditions:

9.1. B is a basis of M with $u, v \notin B$ and $a, b \in B$;

9.2. $\{a, b, u, v\}$ distinguishes (M, B) from $\left(M^{\prime}, B\right)$;
9.3. no two of a, b, and u are in the same part of $\Pi_{M \backslash v}(E(N))$; and
9.4. no two of a, b, and v are in the same part of $\Pi_{M \backslash u}(E(N))$.

Conditions 9.1 and 9.2 are trivially satisfied by our initial a, b, and B. Moreover, since $E(N) \cup$ $\{a, b, u\}$ is 3-connected in $M \backslash v$ and, $E(N) \cup\{a, b, v\}$ is 3-connected in $M \backslash u$, conditions 9.3 and 9.4 are also satisfied.

Let $\Pi=\Pi_{M \backslash u, v}(E(N))$. For each $e \in E(M)-\{u, v\}$, we let π_{e} denote the set in Π that contains e. In this section we abbreviate $\partial_{(M \backslash u, v, B)}$ to ∂.
9.5. If X is a transversal of $\partial(\Pi)$, then $M[X, B]$ is 3-connected, uniquely $\mathrm{GF}(q)$-representable, and is a stabilizer for $\mathrm{GF}(q)$.

Proof. By Lemma 8.2, $M[X, B]$ is 3 -connected and contains an N-minor. Then, since N is uniquely $\mathrm{GF}(q)$-representable and is a stabilizer for $\mathrm{GF}(q), M[X, B]$ is uniquely $\mathrm{GF}(q)$-representable and is a stabilizer for $\mathrm{GF}(q)$.

Since $\{a, b, u, v\}$ distinguishes (M, B) from $\left(M, B^{\prime}\right)$, we see, by Lemmas 7.1 and 7.2, that:
9.6. $G_{B}[\{u, v, a, b\}]$ is a circuit.
9.7. If x is adjacent to both a and b in G_{B}, then $\{x, a, b, u\}$ and $\{x, a, b, v\}$ are both twirls of (M, B).

Proof. Suppose that $\{x, a, b, v\}$ is not a twirl of (M, B). Then x and v are in parallel in $M[\{x, a, b$, $u, v\}, B]$ and, hence, also in $M^{\prime}[\{x, a, b, u, v\}, B]$. Thus, $\{a, b, u, v\}$ is feasible in (M, B) if and only if $\{x, a, b, u\}$ is feasible in (M, B). Similarly, $\{a, b, u, v\}$ is feasible in $\left(M^{\prime}, B\right)$ if and only if $\{x, a, b, u\}$ is feasible in $\left(M^{\prime}, B\right)$. Then, since $\{a, b, u, v\}$ distinguishes (M, B) and $\left(M^{\prime}, B\right)$, the set $\left\{a, b, u, v^{\prime}\right\}$ also distinguishes (M, B) and $\left(M^{\prime}, B\right)$. This contradicts the fact that $M \backslash v=$ $M^{\prime} \backslash v$ 。

We rely on the following result to prove that M is not $\mathrm{GF}(q)$-representable.
9.8. Let X be a transversal of $\partial(\Pi)$ and let $S \subseteq E(M)-\{u, v\}$ with $X \cup\{a, b\} \subseteq S$. If $M[S \cup\{u\}, B]$ and $M[S \cup\{v\}, B]$ are stable and $M[S, B]$ is connected, then M is not $\mathrm{GF}(q)$ representable.

Proof. Let $M_{1}=M[S \cup\{u, v\}, B]$ and $M_{2}=M^{\prime}[S \cup\{u, v\}, B]$. Note that $M_{1} \backslash u=M_{2} \backslash u$ and $M_{1} \backslash v=M_{2} \backslash v$. However, $M_{1} \neq M_{2}$ since $\{a, b, u, v\}$ distinguishes (M, B) from $\left(M, B^{\prime}\right)$. Moreover, $M_{1} \backslash u$ and $M_{1} \backslash v$ are stable and $M_{1} \backslash u, v$ is connected. Then, by Lemma 5.4, M_{1} is not $\mathrm{GF}(q)$-representable.

Henceforth, we assume that M is $\operatorname{GF}(q)$-representable, and, hence, there does not exist a set S satisfying the hypotheses of 9.8 . By 9.8 we can exclude an easy case.

9.9. No transversal of $\partial(\Pi)$ contains both a and b.

Proof. Suppose that there is a transversal X of $\partial(\Pi)$ with $a, b \in X$ and let $S=X \cup\{u, v\}$. By $9.5, M[S-\{u, v\}, B]$ is 3-connected. Thus $M[S-\{u\}, B]$ and $M[S-\{v\}, B]$ are both internally 3-connected, and, hence, stable. Thus we have a contradiction to 9.8 .

Currently a and b play interchangeable roles in the proof. By possibly swapping a and b we may assume that:

9.10. If $b \in \partial\left(\pi_{b}\right)$, then $a \in \partial\left(\pi_{b}\right)$.

Proof. Suppose that $b \in \partial\left(\pi_{b}\right)$. By the symmetry between a and b we may also suppose that $a \in \partial\left(\pi_{a}\right)$. If $\pi_{a}=\pi_{b}$, then the assumption holds. On the other hand, if $\pi_{a} \neq \pi_{b}$, then there is a transversal X of $\partial(\Pi)$ that contains both a and b, contradicting 9.9.
9.11. Suppose that $b^{\prime} \in \partial\left(\pi_{b}\right)$ such that if $a \in \partial\left(\pi_{b}\right)$ then $a=b^{\prime}$. Now let $v^{\prime} \in E(M)-(\{u, v\} \cup$ $\left.\pi_{b}\right)$ be a neighbour of b^{\prime}. Then $\lambda_{M\left[\left\{b, b^{\prime}, v, v^{\prime}\right\}, B\right]}\left(\left\{b, b^{\prime}\right\}\right)>1$.

Proof. By 9.10, $b^{\prime} \neq b$. Suppose to the contrary that $\lambda_{M\left[\left\{b, b^{\prime}, v, v^{\prime}\right\}, B\right]}\left(\left\{b, b^{\prime}\right\}\right)=1$. Thus $\left(\left\{b, b^{\prime}\right\}\right.$, $\left.\left\{v, v^{\prime}\right\}\right)$ is a split in $G_{B}\left[\left\{b, b^{\prime}, v, v^{\prime}\right\}\right]$. However, note that b is adjacent to v and b^{\prime} is adjacent to v^{\prime}. It follows that b and b^{\prime} are both adjacent to v and v^{\prime}. Moreover, $\left\{b, b^{\prime}, v, v^{\prime}\right\}$ is not a twirl in (M, B). Since b is adjacent to v^{\prime}, we have $b \in \partial\left(\pi_{b}\right)$. Then, by $9.10, a \in \partial\left(\pi_{b}\right)$. Hence, by our definition of b^{\prime}, we have $b^{\prime}=a$. Now v^{\prime} is adjacent to both a and b but $\left\{v^{\prime}, a, b, v\right\}$ is not a twirl in (M, B), contradicting 9.7.
9.12. Let $S \subseteq E(M)-\{u, v\}$ where $a, b \in S, M[S, B]$ is stable, and $S \cap \pi \neq \emptyset$ for each $\pi \in \Pi$. If $M[S \cup\{v\}, B]$ is not stable, then $\lambda_{M\left[\pi_{b} \cup\{v\} \cup S, B\right]}\left(\pi_{b} \cup\{v\}\right)=1$.

Proof. Let $\widehat{M}=M[S \cup\{v\}, B]$ and let $X \subseteq S$ be a transversal of $\partial(\Pi)$. By 9.5, X is a 3-connected set in $\widehat{M} \backslash v$, so $\Pi_{\widehat{M} \backslash v}(X)=(S \cap \pi: \pi \in \Pi)$. If $M[S \cup\{v\}, B]$ is not stable, then, by Lemma 8.6, there exists $\pi \in \Pi_{\widehat{M} \backslash v}(X)$ such that $\lambda_{\widehat{M}}(\pi \cup\{v\})=1$. It follows that $v \in \mathrm{cl}_{\widehat{M}}(\pi)$. Therefore, for any $\pi^{\prime} \in \Pi_{\widehat{M} \backslash v}(X)$ where $\pi \neq \pi^{\prime}$, we have $\lambda_{\widehat{M}}\left(\pi^{\prime}\right)=1$. However, by 9.11, $\lambda_{\widehat{M}}\left(\pi_{b} \cap S\right)>1$. Thus $\pi=S \cap \pi_{b}$. Suppose that $\lambda_{M\left[\pi_{b} \cup\{v\} \cup S, B\right]}\left(\pi_{b} \cup\{v\}\right)>1$. We know that $\lambda_{M[S, B]}(\pi)=1$. So, by Lemma 8.8, there exists $e \in\left(\pi_{b} \cup\{v\}\right)-\pi$ such that $\lambda_{M[S \cup\{e\}, B]}(\pi \cup\{e\})>1$. Since $\lambda_{M\left[\pi_{b} \cup S, B\right]}\left(\pi_{b}\right)=1$, it follows that $e=v$. But this contradicts the fact that $\lambda_{\widehat{M}}(\pi \cup\{v\})=1$.

Note that there is still symmetry between u and v. Thus, an analogous result holds with the roles of u and v swapped in 9.12.

Case 1: $\pi_{a}=\pi_{b}$.
By Lemma 8.5, there exists $S_{b} \subseteq \pi_{b}$ such that $a, b \in S_{b}$ and each component of $G_{B}\left[S_{b}\right]$ is a tree containing exactly one element of $\partial\left(\pi_{b}\right)$. Now let $b^{\prime} \in \partial\left(\pi_{b}\right) \cap S_{b}$ and let X be a transversal of $\partial(\Pi)$ that contains b^{\prime}. Finally, let x be a neighbour of b^{\prime} in $G_{B}[X]$. By $9.4, \lambda_{M \backslash u}\left(\pi_{b} \cup\{v\}\right)>$ $1=\lambda_{M\left[\pi_{b} \cup\{v, x\}, B\right]}\left(\pi_{b} \cup\{v\}\right)$. Then, by Lemma 8.8, there exists $e_{v} \in E(M)-\left(\pi_{b} \cup\{u, v, x\}\right)$ such that $\lambda_{M\left[\pi_{b} \cup\left\{e_{v}, v, x\right\}, B\right]}\left(\pi_{b} \cup\{v\}\right)>1$. Similarly, there exists $e_{u} \in E(M)-\left(\pi_{b} \cup\{u, v, x\}\right)$ such that $\lambda_{M\left[\pi_{b} \cup\left\{e_{u}, u, x\right\}, B\right]}\left(\pi_{b} \cup\{u\}\right)>1$.

Case 1.1: e_{u} and e_{v} are not both contained in π_{x}.
By Lemmas 8.3 and 8.5 , there exists $S \subseteq E(M)-\{u, v\}$ such that $M[S, B]$ is stable, $e_{u}, e_{v}, x \in$ $S, S \cap \pi_{b}=S_{b}$, and $S \cap \pi \neq \emptyset$ for each $\pi \in \Pi$. Since $b^{\prime}, x, e_{u}, e_{v} \in S$, we have $\lambda_{M\left[\pi_{b} \cup\{u\} \cup S, B\right]}\left(\pi_{b} \cup\right.$ $\{u\})>1$ and $\lambda_{M\left[\pi_{b} \cup\{v\} \cup S, B\right]}\left(\pi_{b} \cup\{v\}\right)>1$. Therefore, by 9.12, $M[S \cup\{u\}, B]$ and $M[S \cup\{v\}, B]$ are both stable, contradicting 9.8.

Case 1.2: $e_{u}, e_{v} \in \pi_{x}$.
Since X is a transversal of $\partial(\Pi)$, the minor $M[X, B]$ is 3 -connected. Hence, $G_{B}[X]$ has no vertices of degree one. Therefore b^{\prime} has a neighbour x^{\prime} in $G_{B}[X-\{x\}]$. Note that, $\lambda_{M\left[\pi_{b} \cup\left\{x, x^{\prime}, u, e_{u}\right\}, B\right]}$ $\left(\pi_{b} \cup\{u\}\right)>1=\lambda_{M\left[\pi_{b} \cup\left\{u, x^{\prime}\right\}, B\right]}\left(\pi_{b} \cup\{u\}\right)$. Then, by Lemma 8.8, there exists $e_{u}^{\prime} \in\left\{x, e_{u}\right\}$ such that $\lambda_{M\left[\pi_{b} \cup\left\{u, x^{\prime}, e_{u}^{\prime}\right\}, B\right]}\left(\pi_{b} \cup\{u\}\right)>1$. Similarly, there exists $e_{v}^{\prime} \in\left\{x, e_{v}\right\}$ such that $\lambda_{M\left[\pi_{b} \cup\left\{v, x^{\prime}, e_{v}^{\prime}\right\}, B\right]}\left(\pi_{b}\right.$ $\cup\{v\})>1$. Note that, $e_{u}^{\prime}, e_{v}^{\prime} \in \pi_{x}$ and that $\pi_{x} \neq \pi_{x^{\prime}}$. Therefore replacing x, e_{u}, and e_{v} with x^{\prime}, e_{u}^{\prime}, and e_{v}^{\prime} returns us to Case 1.1.

Case 2: $\pi_{a} \neq \pi_{b}$.
We choose $S_{a} \subseteq \pi_{a}$ such that $G_{B}\left[S_{a}\right]$ is a path connecting a to some element $a^{\prime} \in \partial\left(S_{a}\right)$. Now we choose $S_{b} \subseteq \pi_{b}$ such that $G_{B}\left[S_{b}\right]$ is a path connecting b to some element $b^{\prime} \in \partial\left(S_{b}\right)$. Now let X be a transversal of $\partial(\Pi)$ containing both a^{\prime} and b^{\prime}, and let $S=S_{a} \cup S_{b} \cup X$. By Lemma 8.3, $M[S, B]$ is stable. By 9.8 and by possibly swapping u and v, we may assume that $M[S \cup\{u\}, B]$ is not stable. Then, by $9.12, \lambda_{M\left[\pi_{b} \cup\{u\} \cup S, B\right]}\left(\pi_{b} \cup\{u\}\right)=1$. Thus $\left(\pi_{b} \cup\{u\}, S-\pi_{b}\right)$ is a split in $G_{B}\left[\pi_{b} \cup\{u\} \cup S\right]$. Recall that u is adjacent to a in G_{B}. It follows that $a \in \partial\left(\pi_{a}\right)$ and that a is adjacent to b^{\prime} in G_{B}.

Now let $\widehat{a}=b^{\prime}, \widehat{b}=b$, and $\widehat{B}=B \Delta\left\{a, b^{\prime}\right\}$. Observe that \widehat{a} and \widehat{b} are in the same part of Π. We will show that \widehat{a}, \widehat{b}, and \widehat{B} satisfy $9.1,9.2,9.3,9.4$, and 9.9 ; thus reducing Case 2 to Case 1 . Note that, \widehat{a}, \widehat{b}, and \widehat{B} trivially satisfy 9.1. Moreover, as $\{\widehat{a}, \widehat{b}, u, v\}=\{a, b, u, v\} \Delta\left\{a, b^{\prime}\right\}$ and $\{a, b, u, v\}$ distinguishes (M, B) from $\left(M^{\prime}, B\right)$, the set $\{\widehat{a}, \widehat{b}, u, v\}$ distinguishes (M, \widehat{B}) from $\left(M^{\prime}, \widehat{B}\right)$. Thus \widehat{a}, \widehat{b}, and \widehat{B} also satisfy 9.2 . Note that, a and b^{\prime} remain adjacent in $G_{\widehat{B}}$, so $\widehat{a} \in \partial_{(M \backslash u, v, \widehat{B})}\left(\pi_{b}\right)$. Hence, \widehat{a}, \widehat{b}, and \widehat{B} satisfy 9.9.

It remains to prove that \widehat{a}, \widehat{b}, and \widehat{B} satisfy 9.3 and 9.4 ; suppose otherwise. By the symmetry between u and v, we may assume that there exists $\pi \in \Pi_{M \backslash v}(E(N))$, such that $|\pi \cap\{\widehat{a}, \widehat{b}, u\}| \geqslant 2$. However, by 9.3, π cannot contain both of $\widehat{b}=b$ and u. Thus $\widehat{a}=b^{\prime} \in \pi$. Again using 9.3 , since π contains one of u and b, we have $a \notin \pi$. Now $(\pi, E(M)-(\{v\} \cup \pi))$ is a split in $G_{B}-v$ and both of the edges $u b$ and $a b^{\prime}$ cross this split. It follows that $u, b^{\prime} \in \pi, a, b \notin \pi$, and that u and b^{\prime} are both adjacent to a and b. By 9.7, $\left\{b^{\prime}, a, b, u\right\}$ is a twirl of (M, B); this contradicts the fact that $\lambda_{M \backslash v}(\pi)=1$. This final contradiction completes the proof of Lemma 5.5.

Acknowledgements

This research was partially supported by grants from the Natural Sciences and Engineering Research Council of Canada and the Marsden Fund of New Zealand.

References

[1] E. Artin, Geometric Algebra, Interscience, New York, 1957.
[2] R.E. Bixby, A simple theorem on 3-connectivity, Linear Algebra Appl. 45 (1982) 123-126.
[3] R.A. Brualdi, Comments on bases in dependence structures, Bull. Austral. Math. Soc. 1 (1989) 161-167.
[4] J.F. Geelen, A.M.H. Gerards, A. Kapoor, The excluded minors for GF(4)-representable matroids, J. Combin. Theory Ser. B 79 (2000) 247-299.
[5] J. Geelen, B. Gerards, G. Whittle, Excluding a planar graph from GF(q)-representable matroids, Research Report 03-4, School of Mathematical and Computing Sciences, Victoria University of Wellington, 2003.
[6] S. Krogdahl, The dependence graph for bases in matroids, Discrete Math. 19 (1977) 47-59.
[7] J.G. Oxley, Matroid Theory, Oxford University Press, New York, 1992.
[8] J.G. Oxley, D.L. Vertigan, G. Whittle, On inequivalent representations of matroids over finite fields, J. Combin. Theory Ser. B 67 (1996) 325-343.
[10] W.T. Tutte, Menger's theorem for matroids, J. Res. Nat. Bur. Standards Section B 69 (1965) 49-53.
[11] W.T. Tutte, Connectivity in matroids, Canad. J. Math. 18 (1966) 1301-1324.
[12] G. Whittle, Stabilizers of classes of representable matroids, J. Combin. Theory Ser. B 77 (1999) 39-72.

[^0]: 0095-8956/\$ - see front matter © 2005 Elsevier Inc. All rights reserved.
 doi:10.1016/j.jctb.2005.09.005

