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KEYWORDS Abstract This paper presents the performance of a single horizontal conventional Impact Damper (ID)
Impact damper; in both wide range frequency and resonance excitations. The effects of the coefficient of restitution,
Robustness; e, mass ratio, i, and clearance, d, on the performance of ID are investigated. The optimal parameters
Resonance; are numerically found by discretely varying the clearance and excitation frequency. The performance
Coefficient of restitution; of optimal ID is discussed, with respect to different parameters, in both resonance and off-resonance
Uncertainty. modes. In addition, it is shown how the efficiency of the optimal conventional ID is deteriorated as a

result of mistuning in the amplitude and frequency of excitation. This is estimated by suggesting a new
criterion of post processing data. It is shown that an ID designed to resist high amplitude excitation is
able to perform well at lower amplitude. However, the opposite trend can significantly deteriorate the
efficiency of optimal ID. In regard to excitation frequency, the ID, optimized with respect to a wide range
of frequency, is less sensitive to frequency mistuning. Finally, the vulnerability of the optimized ID versus
uncertainties in structural parameters is clearly determined and it is illustrated that less robustness occurs
when the performance of the controller is more efficient.
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1. Introduction

In recent decades, the use of passive energy devices has
become more widespread in structural control, due to their
advantages, such as easy application to both existing and
new structures, easy maintenance and no energy supply
requirement [1]. An impact damper is a relatively temporary
passive control device, which has a free mass enclosed between
two barriers and is able to attenuate undesirable vibrations as a
result of transferring the structure momentum to the auxiliary
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mass, and changing the dynamic behavior of the controlled
system after each collision [2]. Because of the nonlinear
behavior of the impact damper, it is able to be effective over
a wide frequency range (unlike tuned mass dampers) and,
therefore, is potentially attractive for the protection of civil
structures against environmental disturbances, such as wind
and earthquake [3].

There are many advantages in using impact dampers over
traditional passive devices: They are inexpensive, simple in
design [4,5], robust, and effective in harsh environments with
a wide range of frequencies [6]. Several practical applications
of impact dampers, in addition to experimental and numerical
investigations, have been reported in literature to reduce
excessive vibrations of mechanical systems, such as turbine
blades, light poles, printed circuit boards, robot arms and high-
speed railway bridges [7-12].

Two main factors are important in the proper design of
impact dampers; firstly, tuning the characteristics of impact
dampers, such as the coefficient of restitution, e, the mass
ratio, u, and clearance, d, governing the impact pattern of
the auxiliary mass. The amplitude and frequency of load in
operational situations is the second factor to be considered.
Trigui et al. proved that with a particle damper, a very high
value of specific damping capacity can be achieved, compared
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Nomenclature

& Damping ratio

2 Frequency of the external sinusoidal acceleration

o Phase angle of steady response relative to the
excitation

wp Natural frequency of main system

X Velocity of main system

X0 Initial main system displacement

Xo Initial main system velocity

Y Absolute particle velocity

y Relative particle velocity

7 Mass ratio m/M

Xy Velocity of M just after impact

Vi Relative particle velocity after impact

Vv Relative particle velocity before impact

e Constant coefficient of restitution

X4 Velocity of M just after impact

X Absolute main system displacement

a Amplitude of external acceleration

X Absolute acceleration of main system

o Root mean square

M Mass of main system

K Stiffness of main system

C Viscose damping constant

g Gravity 9.81 m/s?

m Mass of particle

d Allowable particle travel

D Dimensionless of d divided by omax-uncontrolled
displacement

At Time increment

A($2/w,) Frequency increment

with the intrinsic material damping of the majority of structural
metals. The effect of clearance and acceleration on the evolution
of specific damping capacity was analyzed, and its dependence
on system parameters and excitation sources was revealed [13].
Certain studies have reported the effect of impact damper
parameters on its performance, versus the resonance condition,
and some others have demonstrated its efficiency against off-
resonance loading with inadequate optimization details.

Popplewell and Liao, in 1991, suggested a simple analytical
procedure to optimize the clearance of a rigid impact damper
under resonance conditions, and illustrated the effect of e and
i [5]. Bapat and Sankarin, in 1984, studied the performance
of impact dampers in resonance, and developed user oriented
charts to obtain rough estimates of key parameters [4]. Also,
they showed that the efficiency of the optimal impact damper
under resonance circumstances is not necessarily optimal at
other frequencies. It was observed that the effectiveness of
the impact damper deteriorates at other frequencies, compared
to its efficiency when the optimization is conducted in the
resonance frequency [3,4,14-17]. So, it is vital to predict the
operational situation of systems controlled by a single Impact
Damper (ID) to calculate the optimal parameters. Also, it is
essential to know how badly optimal impact dampers perform
in off-optimum and uncertain situations. In fact, there has
been little research undertaken on the performance of optimal
impact dampers over a variety of uncertainties.

Several researchers have also investigated the performance
of impact dampers in forced vibration with a wide band
frequency. Butt, in 1994, conducted a numerical research to

illustrate the performance of impact dampers at a discrete
range of frequencies, and showed that the effectiveness of
impact dampers depends on system amplitude, as well as
impact pattern [18]. However, only the effectiveness of impact
dampers in some cases has been estimated, not preferably, in
the comprehensive range of e, u and d. Like other research,
it has been shown that the impact damper produces a
negative effect at frequencies lower than the original natural
frequency [18,19].

Although there have been many numerical investigations
about traditional impact dampers, only a few of them have ex-
tensively shown its performance at a wide range of frequencies.
Popplewell et al. [17] and Bapat and Sankar [4], showed that the
optimum parameters of impact dampers in resonance can vary
under off-resonance conditions. Masri and Ebrahim [20] and Se-
mericigael and Popplewell [21] studied the effectiveness of im-
pact dampers subjected to random vibrations. They expressed
that the effectiveness of impact dampers increases when an
equi-spaced-impact/cycle occurs. Papalou and Masriin, in 1996,
presented the results of an experimental and analytical study
of the performance of granular impact dampers under wide
band random excitation [2], and investigated the influence of
system parameters and the intensity of the excitation. In ad-
dition, some researchers have tried to study the effect of wide
band disturbances, such as earthquakes [16,22,23]. Park et al.,
in 2009, observed deterioration in the performance of impact
dampers in some frequencies less than the natural frequency
of the primary system [15]. Butt studied the impact-damped
harmonic oscillator by obtaining the time-history solution for
primary and auxiliary masses at different frequencies to inves-
tigate the effect of impact damper parameters, especially in
resonance [18]. Duncan et al. numerically investigated the
damping performance of the single particle vertical impact
damper over a wide range of excitation frequencies and ampli-
tudes, to study the influence of key parameters, such as mass
ratio, clearance, coefficient of restitution and structural damp-
ing ratio [6]. Adiscrepancy has also been discovered in regard to
how the coefficient of restitution affects damper performance
in the natural frequency of a system, but this discrepancy re-
mains unclear when considering all frequencies. Lu et al. [24]
evaluated the effects of a large number of system parameters,
such as number, size and particle material, mass ratio, excita-
tion frequency and amplitude level, coefficient of restitution,
damping ratio of the primary system, and the coefficient of
friction, using high-fidelity simulations based on the discrete-
element method. It should be mentioned that these researchers
have not compared optimal parameters and effectiveness un-
der both resonance and off-resonance conditions. Besides, they
have not included finding the optimal parameters of the impact
damper and estimating the effect of amplitudes and frequen-
cies in the deterioration of their performance in off-optimal cir-
cumstances. The first major part of this paper, thus, studies the
optimal parameters of a traditional impact damper subjected to
harmonic excitations with resonance and off-resonance consid-
erations.

Another major part of this investigation is dedicated to
the numerical estimation of the negative effects of different
uncertainties on the performance of an optimal impact damper
in order to provide a general insight into the robust design
of impact dampers. In practice, structures are subjected to
uncertainty in three main areas. First, there is an uncertainty in
the dynamic characteristics of structures such as mass, damping
ratio and, particularly, stiffness. This kind of uncertainty may
present as a result of an inadequate modeling of boundary
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conditions at the structural joints, the effect of non-structural
elements, degradation due to aging, and a fluctuation in
structural mass [25]. Furthermore, the dynamic characteristics
of structures change as a result of earthquake and wind
excitations. Second, there are some uncertainties in the
characteristics of impact dampers, especially the coefficient of
restitution, because of destroying collisions [2]. The third and
most inevitable, is the uncertainty in environmental loadings,
such as intensity, dominant frequency, and wide or narrow
band characteristics of excitations. To appropriately design
impact damper parameters, it is essential to take uncertainties
into account. Few, if any, researchers have investigated the
reliability of optimal impact dampers. Certain studies have
reported the vulnerability of impact dampers to efficient
clearance. Bapat and Sankar indicated that changing the
optimal clearance causes deterioration in the performance of
impact dampers, due to changing the impact pattern [4]. They
also showed the sensitivity of impact dampers exposed to
frequencies less than the natural frequency of the controlled
system. Papalou and Masriin, in 1996, demonstrated that
utilizing granular impact dampers leads to less sensitivity
in changes of parameters [2]. Chatterjee et al. illustrated
the ‘jump’ region of performance, in which the amount of
clearance is optimal. In other words, the effectiveness of
an optimized impact damper is drastically worsened after a
small change in clearance [26]. Duncan et al. illustrated the
reduction in damping of a vertical impact damper by increasing
the damping ratio of the structure and the amplitudes of
excitations [6]. Masri and Ibrahim reported less sensitivity of
impact dampers to changes in system parameters, compared
to the conventional dynamic vibration absorber [22]. Shaw,
in 2006, attenuated vibrations of flexible blades in a bladed
disk assembly using impact absorbers tuned slightly below
the excitation order. They expressed that, during impact
operation, the absorber performance is highly insensitive
to the tuning order, but dependent on absorber mass and
impact properties [27]. Dehghan-Niri et al. demonstrated the
significant robustness of a single impact damper subjected to
3% error in structural stiffness [28]. The particle damper is
more robust when considering arbitrary levels of excitation in
different directions [29]. Lu et al. showed the behavior of the
particle damper is compared to a multi-unit impact damper to
enhance an understanding of the two passive control devices. A
systematic investigation of the performance of particle dampers
(vertical and horizontal) attached to primary single-degree-of-
freedom and multi-degree-of-freedom systems under different
dynamic loads (free vibration, stationary random excitation,
as well as non-stationary random excitation with single
component or multi-component) was also conducted, and
the optimum operating regions were all determined [30]. As
mentioned, none of these researchers clearly addressed the
performance of the optimal single impact damper subjected to
different kinds of uncertainty.

The paper begins by briefly introducing the mathematical
model of a traditional impact damper. Section 3 is dedicated
to studying the optimal parameters of an impact damper.
This is followed by Section 4, studying the effect of different
uncertainties on the performance of an impact damper with
optimal parameters. Finally, the conclusion is given in Section 5.

2. Mathematical model

A numerical simulation was carried out using MATLAB soft-
ware in order to study the performance of the impact damper
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Figure 1: Schematic view of SDOF equipped by impact damper.
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Figure 2: Flowchart of calculating the states of each mass [18].

considering its different parameters. This was accomplished by
obtaining time history displacement responses for the primary
mass. The primary system (SDOF) consists of a base oscillating
harmonic acceleration with amplitude, a, and radian frequency,
£2. Asingle degree of freedom structure is attached to the oscil-
lating base by means of a spring, which has stiffness K, and a
dashpot which has damping C. The single conventional impact
damper with its container is mounted on the structure. Proper-
ties of the impact damper are clearance, d, coefficient of resti-
tution, e, and auxiliary mass, m. A schematic view of the system
is shown in Figure 1.

The main assumptions and formulations in this section are
adopted from [18,19] and summarized in this section. When
the excitation is applied to the structure, the free particle is
assumed to be resting against the left wall of the container and
pressed against the wall. As the velocity of the primary mass
decreases, the particle starts moving relative to it. It is assumed
that the container’s surface area that comes in contact with the
particle is frictionless. Consequently, the absolute velocity of
the particle stays constant between two collisions. The initial
displacement and velocity values for the primary and auxiliary
masses are assumed to be zero. The motion of the structure,
subjected to a sinusoidal based acceleration between impacts,
is given in Egs. (1)-(3)[18,19,31]. A flowchart of calculating the
states of each mass is shown in Figure 2.
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B Xo + (xg — Usin (2t — «)) wq tan wgt + (xo — U sin (2t — ) Ew, — U2 cos (2t — ) (32)
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a
U= - (30)
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« =tan_1<4;iJ145> . (34d)
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Box I:
X+ 2& a)nx + a),fx = asin £2t, (1) Table 1: Characteristics of benchmark SDOF structure.

where, wq = wy+/(1 — &2) and the solution of the differential
equation (1) is:

x(t) = 5" (Acos wgt + Bsinwgt) + Usin (2t —a).  (2a)

() = 5“nt (—Awy sin wgt + Bwg oS wgt)
— Ewne® "t (A cos wgt + Bsin wgt)
+ U2 cos (2t — ). (2b)

Using initial conditions, x = x(t) and X, = x(t), the
constants, A and B, are obtained (see equations in Box I).

After each collision, constants A and B are updated by using
the values of displacement and the velocity of the primary mass.

The relative velocity of the auxiliary mass at time t is defined
in Eq. (4).

J(t) =Y —x(b), (4)

where Y is the absolute velocity of the auxiliary mass after the
previous impact and x(t) is the velocity of the primary mass at
time t.

The total displacement s(t) traveled by the particle since the
previous impact is expressed as:

s(t) =Y s(t—1)+s(1). (5)

The total displacement of the particle in each time step is equal
to Y_s(t — t), except for the last time step, which would be
equal tos (7). Each collision occurs when the total displacement
of the particle equals the allowable clearance. The time of the
impact and the velocity before the impact can be determined
within a reasonable error range by utilizing a very small time
interval (7) less than 10~ s, and a linear interpolation between
two points of displacement in the time history (immediately
before and after the barrier).

As far as the equations at the event of the impact are
concerned, the relative velocity of the auxiliary mass after
each collision is expressed in Eq. (6), based on the restitution
model:

Vi =—ey_. (6)

Considering the conservation of momentum [18,26], Eq. (7) is
obtained:

Xp+nXe+y4) =X +n(Xo+y-). (7)

After substituting Eq. (6) into Eq. (7), the velocity of the primary

mass after each collision is determined as:

. . 1+e)y

%, = x 4 rUrey (8)
1+ w

M (kg) Damping K (N/m) Omax-uncontrolled Omax-uncontrolled
ratio & (%) fora = fora =
0.3g (cm) 0.5g (cm)
1.35 2.16 865 7.29 12.15

o': Root mean square.

By summation of the relative velocity of the auxiliary mass and
that of the primary mass, the absolute velocity of the auxiliary
mass can be stated as:

Y =k + 4. 9)

It is assumed that the impacts are instantaneous; each has zero
duration, and the coefficient of restitution, e, is independent
of impact velocity. This assumption might seem more realistic
if there is no nonlinear behavior of the material during each
impact, and the impact duration is short enough to be neglected.
These assumptions were considered in most previous analytical
and computational research studies [6,18]. The velocity and
displacement of the primary mass right after a previous
collision are used to update the initial conditions to obtain the
time-history until the next impact occurs.

Because of the nonlinear behavior of the impact damper,
it was inevitable to choose a benchmark system to initiate
the parametric study. A SDOF system was selected based on
previous research work experience [14]. The characteristics of
the SDOF system are summarized in Table 1.

The Route Mean Square (RMS) of the displacement of the
primary mass is assumed to be representative of the response
of the system. To consider the effect of transient motion, it
is suggested that the performance of the impact damper be
calculated from the beginning of the motion. The auxiliary mass
and main structure states were collected for 100 cycles. The
number of cycles was increased from 100 to 200 cycles in
separate runs of the model, where the calculated performance
varied less than five percent. Two different values of a equal to
0.3 and 0.5g, were applied to study the effect of the amplitude
of the sinusoidal base acceleration. The dimensionless value of
clearance after 100 cycles is defined as:

D = d/0max-uncontrolled> (10)

where Omax-uncontrolled 1S the maximum RMS value of the
uncontrolled primary mass after 100 cycles with swiping the
excitation frequency. Two criteria are utilized for performance
evaluation of the impact damper:

0< 2 < oo, (11)
Q/w, =1, (12)

J1 = Omax-controlled / Tmax-uncontrolled »

J2 = Omax-controlled / Tmax-uncontrolled »
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Figure 3: Frequency response function of structure.

where omax-controlled 1S the maximum RMS of the primary mass
displacement response, due to the sinusoidal base acceleration
of the controlled system after 100 cycles. J; is able to evaluate
the performance of the impact damper when excitation is more
likely to be broadband, such as earthquakes and mechanical
tools with varying operational speeds. To obtain the value of J;,
the frequency increment of A2 = 0.0253 Rad/s(A (§2/wn) =
0.001) is used. Figure 3 illustrates two values that are used in J;
and J, calculations in Egs. (11) and (12).

To study the characteristics of the impact damper, © =
[0.02 0.04 0.08 0.1],e=1[0.2 0.4 0.6 0.8]and the
clearance increase of Ad = 5 mm are used. Some of these
values and the assumptions of the mathematical model are not

always practical. The results may not be practically achievable
but are included to show theoretical insight.

3. Numerical search for optimum point

To find the optimum parameters of ID, based on criteria J;
and J,, a vast search in a meshed domain of ID parameters is
undertaken.

Figure 4(a) and (b) show the criteria (J;) and (J») versus D for
different mass ratio ¢ and e = 0.8. It is evident in these figures
that the effectiveness of the impact damper, with respect to
both criteria, increases initially with D, reaches the optimum
point at each value of mass ratio () and, afterward, starts
decreasing. The reasons for this trend are:

(1) Atvery low values of D, the relative velocity of the auxiliary
mass is so small that a small amount of energy is absorbed;

(2) Atlarge values of D, few impacts occur. This behavior agrees
with that of Bapat and Sankar, in 1985 [4]. Figure 8 in Lu
et al. [30] shows this trend more clearly.

Although the larger mass ratio shows greater performance,
it seems to be more sensitive to clearance. This can be
demonstrated in Figures 4 and 5; the small change in optimal
clearance can reduce the optimal efficiency of the higher mass
ratio more than that of the lower mass ratio. It is noticeable
that a little increment in optimal clearance has a more negative
effect than a large reduction in it. This considerable drop in
performance after the optimum point, especially when the
amount of e is large, was also noticed in [26] as a ‘jump’
area. This observation is really important and needs taking into
account in the design procedure, since in practice, just the
values of clearance become larger because of some degradation

b 1.0 a=0.3 and e=0.2
0.94
0.8
0.7
0.6
o
]
0.4
0.3 + 1=0.02
¢ 1=0.04
0.2 « 1=0.08|1
0.1 w p=0.10
0 2 4 6 8 10

Figure 4: (a) Variation of J;, and (b) variation of J, versus D for e = 0.2.
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Figure 5: (a) Variation of J;, and (b) variation of J, versus D for e = 0.8.
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Figure 6: (a) Efficiency of optimized points, and (b) optimized clearance D for
Jianda = 0.3.

of the barriers due to many collisions. Thus, for the designer,
it is recommended to choose a value of D less than Dgp. All
preceding results are similar to those of amplitude a = 0.5g
with e = 0.4 and 0.6.

3.1. User-oriented charts

After an extensive numerical search with two previous
criteria, the values of Doy, were determined and different useful
design charts were obtained (Figures 6 and 7).

3.1.1. Effect of e in optimized points

Figure 6(a) shows the variation of J; versus e values in
optimal points; it is illustrated that an increase in e results in
a decrease in the efficiency of the optimal ID. On the other
hand, as shown in Figure 7(a), the efficiency of optimal ID, with
respect to J,, is enhanced with e. There has been a discrepancy,
where some researchers, unlike others [32], believe in an
escalation in the damping of the controlled system due to an
increase in the value of e in the resonance mode [5,33]. Duncan
et al. [6] demonstrated that larger values of the coefficient of
restitution of e increase the damping of the system only where
the maximum damping value occurs (optimal points). This fully
agrees with results shown in Figure 7(a). On the contrary, this
study, for the first time, demonstrates that under off-resonance
conditions, the efficiency of optimum points is decreasing as e
values increase (Figure 6(a)). This can be another reason for the
mentioned discrepancy.

Figures 6(b) and 7(b) illustrate Do for two previous criteria
and show the variation of Dop; with e and w. In terms of J,, The
values of Dqp¢ increase with e especially for smaller value of
w; if pois large (u > 0.08), Doy is mostly constant between
D = 1.7 and 2.0 (Figure 7(b)). This trend remains the same
for J;, especially for smaller e. Referring to Figures 6(b) and
7(b), it is concluded that there is less difference between the
values of Dy, which are obtained from optimization of J;
and J,, when the values of the coefficient of restitution are
approximately less than 0.4. This can also be proved by referring
to Figures 8(b) and 9(b) and shall be argued in Section 5 as

a resonance for a=0.3

—f— u=0.02

Dopt

0.2 0.4 06 0.8

Figure 7: (a) Efficiency of optimized points, and (b) optimized clearance D for
Joanda =0.3.

a o6 J1 and Dgpt, a=0.3
—e—c—02
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. s €= (.6
e e = (.8
< 04l ]
0.3 |
0.2
0.10 0.12
"
b 10
ol ]
b 6 |
o
Q al 1
o ]
0

0.02 0.04 006 008 0.10 012

Figure 8: (a) Efficiency of optimized points, and (b) optimized clearance D for
Jianda =0.3.

the reason for the existence of lower performance deterioration
of an optimal impact damper with respect to smaller e (e <
0.4). The previous results are similarly achieved, considering
the amplitude of 0.5g.

3.1.2. Effect of u in optimized points

It is predictable that the efficiency of an impact damper is
improved by utilizing larger values of w [6]. This improvement
is demonstrated in Figures 8(a) and 9(a). The performance of
an impact damper is improved rapidly at small values of y, for
each value of e, and gradually, performance is saturated at large
values of . This result can also be observed in Figures 6(a)
and 7(a).
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Figure 9: (a) Efficiency of optimized, and (b) optimized clearance D for J, and
a=0.3.

Inboth criteria, the Do, decreases with respect to mass ratio,
. For small values of e (e < 0.4), these figures are mostly
similar; it means that consideration of mostly exact operational
conditions (J; or J,) for optimization with smaller values of e is
not as important as that for larger values of e.

It can be inferred from Figure 9(b) that for all values of e, the
values of D are almost equal for large values of i (1 = 0.1)
under the resonance circumstance. This also will be argued in
Section 5.

4. Uncertainties

The only certainty in all branches of science is that no entity
is certain. Thus, designers have to consider the negative effect
of uncertainties on the reliability of control devices. Otherwise,
it can cause irreparable damage to structures. In this research,
deterioration in the performance of each optimized impact
damper subjected to off-optimal situations (mistuning), such as
the frequency and amplitude of load, and errors in structural
dynamic parameters, such as stiffness and the damping of the
structure, shall be illustrated.

4.1. Uncertainties in environmental situations (frequency and
amplitude of excitation)

Disturbance is considered one of the environmental uncer-
tainties and its effect should be taken into account for accurate
design of impact dampers. Because of the nonlinear behavior
of the system controlled by ID, the intensity and dominant fre-
quency of the disturbance play a great role in the effectiveness
of ID. Therefore, for optimal design of ID, the approximate inten-
sity of the load and its dominant frequency should be estimated
and considered. This, however, may become difficult, if not im-
possible, in the presence of unpredictable vibrations, such as
earthquake excitations. So, we should estimate robustness, and
design the impact damper as robust as possible. For this rea-
son, the new post processing factor is suggested to determine

the robustness of the impact damper by comparing the perfor-
mance of optimized ID under certain conditions and exposed
to greater or lower amplitudes and resonance or off-resonance
situations with the controller, which must have been designed
appropriately for the specified uncertain condition. In other
words, this criterion can show the difference in effectiveness of
the optimized system based on pre-assumed (unreal) excitation
(frequency or amplitude), compared with that of an optimized
system based on real excitation. Eqs. (13) and (14) are suggested
to estimate the deterioration in the performance of the con-
trolled structure in the presence of uncertainties in the vibra-
tion amplitude.

PA1oft.res A to B = J1a8 — J1BB» (13)
PAares 4 to B = Joas — Joss- (14)

Joap indicates the performance of the system that is
optimized in a resonance situation under A (for example a =
0.3g) condition, and encounter B condition (for example a =
0.5g). The Post Processing Amplitude index, PA, can estimate
the effect of disregarding the dominant amplitude of vibration
on the optimization of ID.

For example, the performance and dp of the system in
resonance for e = 0.4 and i = 0.04, subjected to a = 0.3g, are
28.3% and 20.5 cm, respectively. Now, the performance of this
system should be determined when the system encounters a =
0.5g in resonance. With this consideration, the performance is
changed to 43.7%. After that, this performance is compared with
the effectiveness of a system optimized by considering a =
0.5g, u = 0.04 and e = 0.4, whose dq; is equal to 34.53 cm
and whose performance is 28.32%. By subtracting these two
recent performances (according to Eq. (14), PA3 ¢.3.05 = 43.7 —
28.32 = 15.38% refer to Figure 10(b)), we can find out,
in the system optimized incorrectly, how much can change
for the worse if, from the beginning of optimization, we did
not consider the exact situation. In these two criteria, the
impact damper is optimized for situation A and then exposed
to situation B, and its performance compares with a system
optimized considering situation B. For convenience, these
criteria numerically estimate the consequences of dismissing
the real/operational excitation in optimization of such a
nonlinear system. These criteria are versatile, not only for
impact dampers, but also for nonlinear systems optimization,
having uncertainties in some properties of excitation that may
have a profound effect on the behavior of nonlinear systems.
The Post Processing Frequency PF index shall be introduced as
well.

4.1.1. Uncertainties in amplitude

As far as amplitude is concerned, the PA is estimated for
two opposite situations. Firstly, the system is optimized for low
amplitude and, then, in an operational situation, is exposed
to high amplitude. Secondly, the reverse trend (Figure 10(a)
and (b)) depict the deterioration of system performance when
the system is optimized, considering low amplitude and
encountering high amplitude under two conditions (resonance
and off-resonance optimization). It is obvious that by increasing
e, the effect of accuracy in choosing the exact amplitude in
optimization gets worse. This means that if designers use
low amplitude to design an impact damper, in cases of low
e and a, the difference between the performance extracted
from assumed and real/operational amplitudes is not as large
as if they use an exact amplitude for optimization from the
beginning. So, it is preferable to use low e, or the concern is
not important when e is less and the system may be exposed to
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Figure 10: Variation of PA index in exposing optimized system according to low amplitude to high amplitude versus e. (a) Off-resonance, and (b) resonance.
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Figure 11: Variation of PA index in exposing optimized system according to high amplitude to low amplitude versus e. (a) Off-resonance, and (b) resonance.

larger amplitude than was expected under both resonance and
off-resonance conditions. The logical reason for this behavior is
that by increasing the amount of e, the difference between dgp
for low amplitude and d,p for high amplitude grows drastically,
and this leads to a significant change in the impact pattern of
optimal ID.

For example, in cases of off-resonance, the dop s for ID with
properties of e = 0.2 and n = 0.1 for two different intensities
ofa=0.3and a = 0.5 are 9 cm and 15.01 cm, respectively. So,
the difference between them is 6 cm. This difference increases
dramatically to 14.53 cm in cases where e = 0.8 and u© = 0.1.
As shown in Figure 5(a) and (b), a small increase in values
of D leads to a large reduction in the performance of optimal
ID, caused by changing the optimal impact pattern. It can be
obtained from Figure 10(a) that in off-resonance optimization
mode, the sensitivity of the system to transitions from low to
high amplitude is higher when u increases. This trend is the
reverse when it comes to the resonance condition. It should be
mentioned that in the latter situation, the significance of the
effect of e is more important than that of .

Now, we shall argue the opposite trend, i.e. designing based
on large amplitude (here 0.5g) and comparing its efficiency
with effectiveness, according to a practical condition (in this
case, low amplitude of 0.3g). Figure 11(a) and (b) depict the
dependency of the optimal design on the accuracy of using
practical amplitude, when ID may encounter low intensity in
resonance and off-resonance optimization. The post processing
criterion, PA,, varies steadily with e. Comparing Figures 10 and
11, the low to high amplitude may have a more negative effect
than that in high to low cases. Also, it can be inferred that a
larger value of w is not only better for efficiency (referring to
Figures 8(a) and 9(a)), but is also much more reliable in terms
of uncertainties in the intensity of harmonic loads.

The reason for the reliability of large values of w in this
trend can be justified from Figures 8(b) and 9(b). We can see
the variety of dp is decreased, due to growth in the value
of u, and so, the difference decreases between the dp; of a
system subjected to the amplitude pre-designed for 0.5g and
the d,p; of a system subjected to a = 0.3g to which the system
is practically exposed. For instance, under an off-resonance
condition, if e = 0.4 and u = 0.02 fora = 0.5g and
a = 0.3g, dqp is 50.5 cm and 30.5 cm, respectively; accordingly,
the difference is 20 cm. But, when u increases to u = 0.1,
this difference becomes 6.5 cm. Here, it can be concluded
generally that it is more advantageous for both robustness and
effectiveness to choose large amounts of ¢« and small amounts
of e (if possible).

4.1.2. Uncertainty in frequency of excitation

As mentioned in recent investigations, optimality at the
special frequency never ensures the efficiency of the system at
other frequencies. But, in most cases, there has been a lack of
estimation of this vital sensitivity, especially when considering
optimality. This section aims at a numerical discussion of
systems controlled with optimized IDs and then exposed to
different frequencies, for which they are not designed. Two
cases will be considered: first, if the system is optimized with
the J; criterion but encounters only resonance, and second, if
the system is optimized for the J, criterion and the excitation
frequency consists of different frequencies.

In Figure 12, the J; values are shown for IDs optimized
according to J,. Figure 12 clearly shows that the efficiency of
ID can worsen up to 75%, for high values of e, and increase
from 20% to 60% for lower values of e, related to u = 0.1
and © = 0.02. To find out the sensitivity of the system in
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this regard, one should compare Figure 12 with Figure 7(a),
from which, it can be figured out that for e < 0.4, the worst
response at all frequencies is approximately equal to that in the
resonance mode and, as mentioned before, the associated Dop
s do not vary. This trend is more accurate if the value of u is
high. It can also be demonstrated according to Figure 13. Also, as
shown in Figure 13, another reason for this behavior is that the

critical frequency is close to the natural frequency of structure,
where the value of e decreases. The critical frequency is the
frequency at which the response maximizes. On the other hand,
when it comes to high values of e, the gap between efficiency in
resonance and at critical frequency varies exponentially.

In Figure 14, the J, values are shown for IDs optimized
according to J;. In terms of off-resonance (J;) optimization,
Figure 14 demonstrates that systems designed according to J;
are more reliable when they encounter a resonance operational
situation. So, it is preferable to use J; in the optimization
of traditional ID parameters, when more uncertainty in the
frequency content of excitation exists. This also can be proved
by comparing Figure 14 to Figure 6(a).

Figures 13 and 14 show how efficiency of a controlled
system can change for the worst in different off-optimality at
frequency of excitation. It is evident in Figure 13 that if the
system, designed based on J,, is excited with lower frequencies
than resonance, it may perform more inefficiently; this is more
significant when the higher restitution coefficient, e, is used.
Comparing Figures 7(a) and 6(a) with Figures 12 and 14 shows
how the effectiveness of optimized ID, according to J; and J5,
worsens. Although Figures 12 and 14 can demonstrate the effect
of off-optimality and uncertainty in the frequency content of
excitation, they do not show the sensitivity to accuracy in
the presumed frequencies that were set in the optimization.
This leads to coming up with a new idea to introduce another
post processing criterion, which can estimate this sensitivity
numerically.

PFies. to off-res. :]21 _]117 (15)
PFoft_res. to res. :]12 _]22~ (]6)

The first subscript indicates the optimization condition and
the second indicates the operational condition. For example,
J>1 indicates the performance of the system optimized under a
resonance condition and exposed to all frequencies.

This post processing frequency criterion, PF, is proposed to
estimate the sensitivity of the optimal design of a particular ID
in terms of the frequency content of excitation. This criterion is
able to find out how big the difference is between the efficiency
of the system designed based on resonance, but exposed to
all frequencies, and that of a system designed according to
off-resonance, but exposed to natural frequency. For example,
assume that a particular ID is designed according to the
resonance condition, but in reality is exposed to a wide range
of frequencies with similar amplitude; it is useful to see how
much improvement is made if it had been optimized initially
based on exact reality (wide range of frequencies). Indeed, this
factor is able to show the vulnerability of optimal ID due to
the presence of uncertainty in frequency. To simply understand
how Figure 15(a) and (b) are extracted from Egs. (15) and (16),
Figures 12 and 14 should be compared to Figures 7(a) and 6(a),
respectively.

Figure 15(a) and (b) demonstrate that the assumed fre-
quency applied to the design should be close to reality (op-
erational situation), especially at higher e values and lower u
values. These figures are extracted from a = 0.5g. This trend is
similar to a = 0.3g.

4.2. Uncertainty in dynamic characteristics of structure

In this section, the effect of £10% error in two dynamic
parameters of the structure (damping and stiffness) on the
efficiency of optimal designed impact dampers is investigated.
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Figure 16: Deterioration of performance of optimized ID due to £10% error in
C of structure with considering J.

4.2.1. Uncertainty in C

Figure 16 shows that in cases of an off-resonance condition,
10% negative error in the damping of the structure causes
disability in the optimized system, which is worse than
that of 10% positive error. The two main reasons for this
behavior are: first, both negative and positive errors can
lead to off-optimality, but negative error results in a larger
displacement than the displacement for which the impact
damper is designed; and second, negative error in the damping
of the structure inherently increases the harmonic response
of the primary system. In some cases, such as © = 0.02,
in Figure 17, the negative effect of off-optimality dominates
the inherent positive reduction due to increasing C, especially
at large e values. This behavior can be justified physically,
when C increases for small u, the number of collisions with
an inappropriate direction may increase, so that the reduction
of response, due to an increase in C, is dominated by an
accumulation of these undesirable collisions.

When a system is subjected to negative error in damping,
the natural response of the system is magnified, so that dop
is no longer appropriate and is less than the suitable dop:. So,
according to Figures 3 and 4, this deterioration is reasonable.
It can be seen from Figure 16 that this deterioration gradually
grows at large values of e, in off-resonance mode. Thus, it is
again preferable for the designer to choose the material that has
less coefficient of restitution, especially when the uncertainty
in the frequency of the harmonic load is high, and the
system should be controlled against the resonance excitation.

a=0.3, £p=0.02,0.04,0.08,0.10, 10% error C
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Figure 17: Deterioration of performance of optimized ID due to +10% error in
C of structure with considering J,.

Figure 17 demonstrates that as far as the optimal design of
a conventional impact damper subjected to a wide range of
frequencies is concerned, the negative effect of an uncertainty
of C under the resonance condition can be neglected.

Large values of p cause the ID to become more robust,
especially in cases of less amounts of e. This trend is similar
under both resonance and off-resonance conditions. Figures 16
and 17 also prove that the sensitivity of a system to an increase
in the displacement of the primary system, due to a reduction in
C, decreases by increasing the value of w. In this regard, it must
be expressed that uncertainty in the value of C has less negative
influence on the effectiveness of conventional ID than that due
to uncertainty in the value of stiffness K (as will be shown in the
following section).

4.2.2. Uncertainty in K

To investigate the vulnerability of an optimal conventional
ID subjected to uncertainty in stiffness of the primary system,
+10% error in stiffness is assumed.

Figure 18 illustrates the effect of error in stiffness on the
performance of optimal points in off-resonance situations.
It is noticeable that not only can a change in K lead to a
variation in system responses, inherently, but can also result
in deterioration in performance caused by the mistuning of
optimized ID. As discussed, all parameters that are able to
change the displacement response of the primary system can
have a profound effect on the efficiency of ID tuned to an intact
primary system. The most important issue that the designer
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Figure 18: (a)-(d) Performance deterioration of optimized ID due to £10% error in K of structure in off-resonance condition.

should pay more attention to is to utilize as large as possible
values of © and apply as low as possible values of e (e < 0.4).

Nevertheless, using less amounts of e is not optional, but
there are some developed kinds of ID with less inherent e, such
as granular, bean bag, and buffered ID, which allow us to avoid
the negative consequences of high values of e. In addition, it can
be stated that the improvement in effectiveness and robustness
of traditional ID, associated with these kinds of ID, is related to
the natural reduction in the value of e.

In Figure 19, it is obvious that in many cases, the effect of
mistuning can dominate the inherent reduction of response
caused by increasing values of K. Therefore, in the design
of conventional ID, both factors able to increase or decrease
the response of the primary system should be taken into
account. Again, the physical justification of this behavior is
that when displacement reduces, the number of collisions with
inappropriate directions may increase, so that the reduction of
response is dominated by an accumulation of these undesirable
collisions. Figure 19 can prove this statement by showing more
deterioration after increasing the value of K.

As a general expression, Figures 18(a)-(d) and 19(a)-(d)
demonstrate the negative variation of 5%-20% of the maximum
dynamic response of the primary system subjected to £10%
error in K, and this disability grows gradually by increasing the
value of e and decreases by increasing jt.

5. Conclusions

In this paper, the performance of conventional ID, due to two
major concerns: optimality (in resonance and off-resonance
situations) and the reliability of optimized ID due to different
kinds of uncertainty, is numerically studied. Firstly, the user
oriented charts of the optimal design of an impact damper are
gained according to a variety of parameters, such as u, e and d,
by a discrete numerical search in the selected design space.

Secondly, the deterioration of optimal effectiveness sub-
jected to various kinds of uncertainty with different factors,
such as impact parameters (i, e and d), primary system param-
eters (K and C) and excitation (frequency and amplitude), are
investigated, and the following conclusions are obtained:

1. According to initiative charts under both resonance and off-
resonance conditions, the larger the w, the more efficient
and reliable is the ID.

2. By using the maximum frequency response function of an
uncontrolled structure subjected to a particular amplitude
of harmonic based acceleration for making the dimension-
less response of the controlled primary system, the approx-
imately unique space, considering C, K, and the amplitude
of harmonic load, simultaneously, is established. Therefore,
there is no need to investigate the effect of various amounts
of amplitude vastly.

3. Not only is this paper helpful in explaining the reports of
apparent discrepancies in how the coefficient of restitution
affects the effectiveness of ID under a resonance condition,
it also shows that by increasing the value of e, the
performance of optimal ID is gradually worsened in off-
resonance circumstances. This trend is completely in conflict
with the behavior of optimal ID due to increasing the e value
at the optimal point of resonance.

4, The d value, at which maximum efficiency occurs, decreases
with increasing mass ratio and decreasing the coefficient
of restitution under both resonance and off-resonance
conditions.

5. This is a rare (if not first) investigation to consider
the influence of most uncertainties on conventional IDs.
Different kinds of uncertainty are numerically investigated,
according to the optimal design of ID. This leads to a general
observation that is invaluable to designers, helping them
to roughly estimate the effect of various uncertainties by
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Figure 19: Performance deterioration of optimized ID due to £10% error in K of structure in resonance condition.

regarding not only the resonance situation, but also a wide
range of frequencies.

6. In this paper, two novel criteria are proposed to calculate
the vulnerability of optimization to a precise consideration
of the initiative parameters of excitation (amplitude and
frequency). Accordingly, under both resonance and off-
resonance conditions, the optimization of ID with lower
values of e and large amounts of u is insensitive to
accurate assumption for excitation parameters (amplitude
and frequency). On the contrary, high values of mass
ratio may make the ID performance more sensitive to a
degradation in optimal clearance (increasing the clearance).

7. In terms of uncertainties in dynamic parameters of the
primary structure, the error in C can worsen the efficiency of
the optimized ID, but not as much as the error in K. Besides,
surprisingly, it is observed that by positive error in C and K,
the response of the controlled system in some cases changes
for the worse. The physical justification of this behavior is
that when displacement reduces, the number of collisions
with inappropriate directions may increase, so that the
reduction in response is dominated by an accumulation of
these undesirable collisions. Accordingly, it is advisable to
check the reliability of conventional ID in all cases, which
may cause any variation in the maximum uncontrolled
frequency response function of the primary system, even if
they lead to a reduction in response.
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