PATIENTS TREATED WITH PACLITAXEL-ELUTING STENTS WITH BIOSTABLE POLYMER VERSUS BIORESORBABLE POLYMER. LONG-TERM FOLLOW UP

ACC Poster Contributions
Ernest N. Morial Convention Center, Hall F
Monday, April 04, 2011, 3:30 p.m.-4:45 p.m.

Session Title: Endovascular Therapy - Outcomes and Innovations
Abstract Category: 13. Endovascular Therapy
Session-Poster Board Number: 1112-123


Background: The release of paclitaxel from a stent with biostable polymer reduces the restenosis after a PCI. The persistence of polymer in the arterial wall could have negative long term effects, like stent thrombosis. We assessed the hypothesis that paclitaxel-eluting stents with biodegradable polymer (BDP) release could offer better results than paclitaxel-eluting stent with biostable polymer (BSP) release in novo PCIs.

Methods: We studied all patients who consecutively underwent a PCI with paclitaxel-eluting stents between January 2007 and December 2008. Average follow up was 23 months. The end points were: death, myocardial infarction, stroke, new target lesion revascularization and need of coronary artery bypass graft surgery during the follow-up period.

Results: 110 patients were included in the paclitaxel-eluting stents with BSP release arm and 45 patients in paclitaxel-eluting stent with BDP release arm. During the follow-up there were 6 deaths in the first group and 3 in the other, all of which were non-cardiovascular in origin (6% versus 7.8%, respectively, NS). There was no STEMI in either group. Restenosis was found in 7 patients in the first group and in 3 patients in the second group (6.3% versus 6.6%, respectively, NS). Progression of disease was observed in 5 patients of the first group and 2 of the second (4.5% versus 4.4 %, respectively, NS). None of the studied patients underwent revascularization surgery. At the end, there were no incidents in 98 patients of the BSP release group and 40 patients BDP release group (89% versus 88%, respectively; NS).

Conclusions: Based in our clinical analyses, paclitaxel-eluting stent with biodegradable polymer release provided a combined profile of safety and efficacy that was noninferior to paclitaxel-eluting stent with biostable polymer release, considering diameter and length.