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In this paper we give a complete description of the linear groups over Fa 

generated by transvections and free of non-trivial unipotent normal sub- 
groups. Recall that for a trans-dection T, Ker(T - 1) is a hyperplane H and 
Im( T - 1) is a line (x); we call M the axis of T and (x} the center of T. 
If  T E G, we say His an axis for G, (x) is a center for G, (x} is a center for H, 

and H is an asis for {r). Recall also that a transformation T is zLnipotezt if 
T - 1 is nilpotent, and that a group of transformations is unipotent if each 
of its elements is. Suppose V decomposes into V, 0 V, with respect to a 
group G generated by transvections on V. Then if Gi is the subgroup of G 
generated by transvections centered in Vi , we see easily that G = Gr x G, , 

GS 1 Vj = 1 for j f  i, Gi z G / I/‘i and Gj is generated by transvections. 
Hence in the remainder of this paper we will assume that V is indecomposable 
with respect to G, unless it is explicitly designated otherwise. 

Our point of departure is the following theorem of J. E. McLaughlin [5]. 

THEOREM 1. Let V be a vector space of dimension n > 2 over a finite 
field K, and let G < SL( V) b e indecomposable on V, generated by transzrections, 
and free of unipotetzt normal subgroups f  {l}. Then there is a decomposition 
A @ TV1 @ --- @ IV,‘,, @ X of V such that with respect to this decomposition, 
T E G has the fom 

T(a) = a for all aE A 

T(wj) = &(T)(wJ + B,(T)(wJ for all wi E ?Vz 

q.4 = 4W) + z:z, #y(x) + 24 for all x E X, 

where the 6,(T) E Hom,(?V~ , A), the O,(T) E GL( W,), a(T) E Hom,(X, A), 
the q(T) E Hom,(X, FVJ and the 6, are irreducible representations generated 
by transsections. 

We indicate briefly the proof of this theorem. Let W be the subspace of V 
spanned by the centers for G and let A be the intersection of the axes for 6. 
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Then it may be shown that A < W. Write V = A @ W’ @ X where X 
is a complement for Win V and IV’ is a complement for A in IV. Then if 
T E G, T(a) = a for a E A, T(w) = S(T)w + Tw for w E IV’ and T(s) = 
a(T)% + c(T)x + f  x or x E X, where 7 E GL(w’), 6(T) E Hom,(W’, A), 
c?i(T) E Hom,(X, A) and c(T) E Hom,(X, IV’). The map from T E G to its 
associated T E GL( IV’) is a homomorphism, and its kernel is clearly unipotent, 
and so is trivial. Thus we may write S(T) = S(T), a(T) = a(T), and e(T) = 
c( 57). 

Now consider the transvections T on IV’ (IV E bV/A) induced by G. 

For <x) a center for G, let d(x) be the dimension of the intersection of all 
axes for (x). There is a natural action of G on its centers and axes, for if T 
has center (.v) and axis H, STP has center (Sx) and axis SH. Clearly, 
if (xi and (y) are centers in the same G-orbit, then d(x) = d(y). Let r, 
be a G-orbit of centers such that for (x) E r,, d(x) is minimal. Let Gr be 
the group on IV’ generated by the transvections centered in I’, , and let G,* 

be the group on TY’ generated by the transvections centered outside I’, . 
Then G = Gr x G,*. Let W, be the subspace spanned by the centers for G1 
and let A, be the intersection of the axes for Gr . Define IVr* and A,* 
similarly for G,*. Then IV, = Al*, A, = WI* and IV’ = WI @ -4, = 
WI* @ A,*. Moreover Gr acts faithfully on WI, Gr / A, = 1, and Gr is a 
group generated by transvections having no unipotent normal subgroups # 
(I}. Gr is now transitive on its centers and so is irreducible on WI . Iterating 

this construction we obtain the decomposition of the theorem. 
We observe further that if Gi is the subgroup of G consisting of those 

TEG for which O,(T)=1 forjfi, then G=G,x *--xG, and Gi 
induces an irreducible group Gi on Wi generated by transvections and free of 

unipotent normal subgroups f  (1). Moreover Gi E Gi and Gi [ IVi = I 
forj f  i. So ei ] Gi is an isomorphism, and for T E Gi , B;(T) determines a(T) 
and Sj( T), cj( T) for allj. 

McLaughlin has determined all the irreducible subgroups of SL,(F,) 
generated by transvections [4]. SL,(F,) is itself irreducible and generated by 
transvections. For n 3 4 and even we also have the sympletic group Sp,(F,), 
the orthogonal group of maximal index O,(l, F,) for n f  4, the orthogonal 
group of non-maximal index 0,(--l, F,), and the symmetric groups S,,, 

and S,,, . We know [2, Lemma 4, p. 441; 6, sections 13 and 14; 7, sections 
4 and 51 that for each of these groups G, the F,-dimension of the first cohomo- 
logy group HI(G, V) is at most one, where V is an n-dimensional Fa-space. 
(Here, as in [3, p. 130-1311, H1(G, V) is represented as Der(G, V)/Inn(G, V), 
where Der(G, V) = (6 : G ---f V 1 S( TS) = T(S(S)) + S(T) for all T, S E G} 
is a vector space under pointwise addition and scalar-multiplication, and 
Inn(G, V) = {S E Der(G, V) j there exists ‘I E V with S(T) = (T - 1)~ for all 
T E G] is a subspace of Der(G, V). The elements of Der(G, V) are ~erivatioq 
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and the elements of Inn(G, V) are inner derivations.) From this point we will 

always assume the ground field is F, . 
Continuing the notation of Theorem 1, let b, ,..., b,,. be a basis for A. For 

T E Gi and w E IV{ , Tw = Tw + Cj’=, Gji(T)(w)bj , where T E Gi and 
S,<(T) E IVi*. We check easily that Sji E Der(Gi, IV,*). Suppose Nl(G<, lVi*) = 
(P)). Then forj = I,..., T, Sji(T) = hjiW(T) + &(T - 1) for each T E Gi , 
where hji E F, and #jlii E ?Vi*. Let IVi’ = (w + x:j &(zL’)~~ 1 w E IVI,). Then 
IV<’ is a complement for A @ Cj+ @ IV, @ X in I’3 and B,‘i = IV{ modulo 
A. Let wr E II’;, say w’ = w + C &(zu) bj for w E I$.‘+ . Then for T E Gi , 
T(w’) = % -j- Cj #ji(Tw)bj + W(T)(w) xj hjibj . For T E Gi , define 
T’ E GL(Wi) by T'(w + C #ji(W) bj) = TW + C #ji(Tw)bf for w E IVi , 
and define Pi)’ E Der(G$ , IV:*) by P)‘(T)(w + C &(w)bj) = W)(liii)(w) for 
T E Gi and w E ?I’$ . Let a, = C iljibj . Then T(w’) = T’(w’) f  W)‘(T)(w’)u, 
for T E Gi and .w’ E IVi’. (Note that if the Sji are inner for allj, then ni = 0.) 

Change notation by omitting the “primes”. Then (a, ,..., a,) @ I%> @ 0%. 

@ IVm @X is stable for G and has a stable complement in I’, namely the 
complement for (al ,..., a,) in A. Since V is indecomposable, A = (ar,.. *, a, j 

and dim A < nz. 
Now, for x E X and T E Gi , TX = x + cl(T)(x) modulo A, where 

Q(T) E Hom(X, IVi). Let Q(T) = c,(T)(m). Then Q induces a derivation 

from Gi to mi = (IV2 + ,4)/A. Suppose H1(Gi , Ii) = (P)), and suppose 
thatfor TiEGi,xEXandi = l,..., m, Q( Ti) = &(x)&)( Ti) + ( Fi - I)(w~(x)) 
modulo A, with & E X* and zui E Hom(X, IVJ. Let 

X’ = (x - 2 Wj(X) / x E x). 
j=l 

Then for x’ E x’, say x’ = x - C wj(x) for x E X, and for Ti E G< , T,(x’) = 
x’ + #i(x) &)(TJ modulo A. Define & E X’* by &‘(x + C w?(x)) = &(x) 
for x E X. Then T,(x’) = x’ + $i’(x’) &(TJ modulo A. (Note that if the 

E~,~ are inner for all x E X, q!~ = 0.) 
Again change notation by omitting the “primes”. Suppose x E ny=r Ker $i m 

Then (T - I)(x) E A for every T E G. If  A contains the center of a transvec- 
tion R, then (R - l)(v) E A and (R - 1)” = 0, so R is unipotent. Since 
G / A = 1, G centralizes every transvection centered in A, and (R) is a 
unipotent normal subgroup. Hence R = 1 and A contains no centers. Thus 
(T - l)(x) = 0 for all T E G and x E X n A = (01. Therefore X* = 

64 ,‘.‘, +,,J and dim V/W = dim X < m. Thus we see that if we know the 

G, , i = I,..., nl, we have an upper bound on the degree of the representation 
of G. To summarize, 

THEOREM 2. Under tlze hypotheses of Theorem 1 and modifying the choices 
of the FVi and X as above, there exist spanning sets a, ,..., a,m and $r ,...? && 
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for A and X* rsspectively SUCK that Ti(wi) = T~(wJ + 8’i’(Ti)(wJa, and 
Ti(x) = x +&(x) &)(TJ module A, where H1(ci , Wi*) = @Pi)) and 
Hl(ci , Wi) = (P)), for wi E Wi , x E X and Ti E Gi . 

Suppose that G satisfies the hypotheses of Theorem 1. Continuing our 
earlier notation, a transvection T E G induces a transvection T on T47/A. 
Since, by our construction, T is centered in JVi + A for some i, T must be 
in Gi for some i. Each of the groups Gi has a single conjugacy class of trans- 
vections. so every transvection in Gi comes from a transvection in G, and so 

from a transvection in Gi . Hence if Ti E Gi is a transvection, then Ti E G-; 
is a transvection. 

Consider the group Gi acting on the subspace J; = A @ JJTi @ X. 
Dropping the subscripts, with respect to this decomposition of V, T E G has 
the matrix 

Modifying the choices of W and X as above and choosing appropriate bases 
for A and X, we may assume that 6(T) h as at most one nonzero row and c(T) 
has at most one non-zero column for all T E G. If  dim Hl(C?, W) = 0, we can 
choose E = 0 and 6 = 0, so V decomposes with respect to G. Since we have 

assumed that V is indecomposable, G must be one of the irreducible groups 
over F, having non-inner derivations. By [2, Lemma 4, p. 441; 6, sections 13 
and 14; 7, sections 4 and 51, G must be one of SL,(F,), Sp,,(F,) for n > 3, 
or ,$ for n > 6, even. 

Suppose one of 6, E is identically zero, say E is. Then every T E G has the 

form 

with 6 E Der(G, W*) non-inner. Since whenever T is a transvection, T is, 
we must have al(T) = 0 for every transvection T. But since G is generated by 
transvections and since cx(TS) = a(T) + a(s) for T, S E c, 01 = 0. 

Suppose G E SL,(F,). In [2, Lemma 4, p. 4411, a derivation from SL,(F,) 
to its standard module is found to have one of two forms. One of these is 
shown to be inner. The other, call it S, is not shown to be inner (or non-inner); 
but it is described so explicitly that it is clear that there are transvections 
T E SL,(F,) for which 1 i “‘T) 1 is not a transvection. Hence G g SL,(F,) 
cannot occur. 

Suppose G g Sp,,(F,) for rz > 3, so G is isomorphic as a linear group to 
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the group G’ of transformations on the (211 + 1)-dimensional F,-space 
<a> @ W having matrix representations of the form / i ‘(F) 1 for T E G = 

Sp(MJ) and 6 E Der(Sp(W), W*), non-inner. By [6, Theorem 10.4, p. 43; 
7, Corollary to Theorem 1 .lO], we may assume S(T)(w) = t/(Q(T(w)j $- Q(w)) 
for w E IIT, where Q is a quadratic form associated with the bilinear form B 
on lY defining Sp( II;). I f  T is a transvection with center v  E l;V, choose a basis 
v  = VI ,..., v‘& of W such that B(vi , vj) = Bi,2n--i.+l . Then, by [6, Theorem 
4.8, p. 13; 7, Theorem 1.61, for w E Iv, 8(T)@) = d/(1 +Q(v)j B(a, zu)? 
30 with respect to the fni>, 

1 0 0 *.* 0 41 +Q(v>> 
1 0 ..* 0 1 

T= 1 . . . 0 0 . 
1 0 

1 

Clearly the rank of T - 1 is one, so T is a transvection whenever 7i is. 

Hence G’ is a group generated by transvections. In fact, G g G’ g Q,,(F,j 
[6, Theorem 10.1, p. 411. 

Now suppose G E A’,-, for n > 8, even. A’,-, is regarded as a linear group 
in the following way [l]. Viewed as a permutation group on the letters 

~3,..., a>, S,-, faithfully induces a linear group on an (fz - 2)-dimensional 
F,-space <xa ,..., x~> by ~(a$ = xnck) . I f  71 is a linear functional defined by 
&& h,.x,) = x.“,=, A, , and if x0 = CT=, xk , then x0 E Ker q and S,-, acts 
faithfully on Ker ~/(x0). We take W to be Ker y/(x0) and G to be the group 

on kk’ induced by S,-, . (Note that if 11 = 8, G = Q(W).) Then we may 
suppose G is isomorphic as a linear group to G’, the group of transformations 
on the (2n + 1)-dimensional F,-space W @ (N) having the matrix representa- 
tions 1 ,’ E(T) / for TE G and E E Der(G, W), non-inner. By [6, p. 81; 7, 

Theorem 5.21, we may assume that e(T) = (T - 1)~s , where %a is the coset 
of xa in Ker 7/(x0) and T E G. Write xij = xi + X~ I and write “qij for the 

coset of xij in Ker q/(x0). Then %a4, g&g ,..., j~;z-~,+~ is a basis for Ik’. S,-, is 
generated by the transpositions (i, i + l), i = 3,..., ~2. If  T is induced by 
(i, i + 1), i > 3, E(T) = 0 and T is clearly a transvection. If  T is induced 
by (34), then T(Q = %aJ, T&s) = %a, + & , and E(T) = &nq , so T has 

the matrix 
1 1 0 -*- 0 1 

1 0 -.a 0 0 
10’ 

1 

Clearly the rank of T - 1 is one, so T is a transvection. Thus G’ is generated 
by transvections. In fact, if we let S, act on Ker q’/(xo, where 7’ is a linear 
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functional on the F,-space <x1 ,..., x,) defined by q’(&i XsJ = ~~=, hl, 

and x,,’ = z;==, xk , then S, preserves the bilinear form B defined on 

Ker T’/(x,,‘) by B(CF=, hixj, Cr==, ,uLxK) = &+i hjpg . By [6, p. 79; 7, 
Theorem 5.21, (&s , ss z )” and Ware isomorphic as $,-s-modules and we see 

that G E G’ E (S,),la ] (z&l as linear groups. 
Suppose now that neither 6 nor S is zero, so every element of G has the form 

with T E G, an irreducible group generated by transvections, 6 E Der(G, s/V*) 

non-inner, and E E Der(G, IV) non-inner. 
Suppose first that G s SL,(F,). I f  8 is the derivation from S&(V) to V* 

of [2, Lemma 4, p. 4411 referred to earlier, and E E Der(SL,( V), V) is its dual, 
then we see again that there are transvections T E SL,(F,) for which 

cannot be a transvection. Hence G s SL,(F,) cannot occur in this situation 

either. 
Now suppose G g S’,,(F,) with n 3 3. Then G is isomorphic as a linear 

group to the group G’ of transformations on the (2n + 2)-dimensional space 

(a> @ W 0 (x> having the form 

1 S(T) a(T) 
0 T 4n 
00 1 

where T E Sp( W) an d we may assume by [6, Theorem 10.4, p. 43; 7, Corollary 
to Theorem 1.101 that 6(T)(w) = d(Q(T(zu)) +Q(u)) =B(u(T), T(U)) 
and E(T) = u(T) E W. As before, Q is a quadratic form associated with the 
bilinear form B on IV defining Sp(W). We see that oz(TS) = al(T) + a(S) + 
B(u( T), Tu(S)) for T, S E G. If  d is the extension of the Dickson Invariant on 

O(Q) to S&B) defined in [6, Theorem 6.1, p. 28; 7, Theorem 1.111, then 
L = d + a is a homomorphism from Sp(W) to the additive group of F, . 
Since Sp(IV) is simple, L = 0 and z = d. Hence G’ G O,f,+,(F,)(,> for ZJ 
non-singular in V, and G’ is not generated by transvections. We should note 

that ~2n+2~Q~w~ is generated by transvections, but it contains the unipotent 
normal subgroup generated by the orthogonal transvection with center (v). 
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Now suppose G g S,, for TL >, 8, even. Then again, G E G’, a group 

on (a) @ W @ (x) whose elements have the form 

with T E G, the group induced by S,-, on W = Ker ~/(ns>, 6 E Der(G, W*) 
non-inner, and E E Der(G, W) non-inner. As noted before, 1%’ is isomorphic 
as an &-,-module to U = (J& , Q1 (< Ker q’/(q,‘)). To be more explicit, 

suppose #J : W+ U is defined by +(%i,i+l) = B~,+~ , i = 3,..., n - 2, where 
za4 = %$a $ 2% and z~,~+~ = s~,(+~ , i = 4 ,..., n - 2. The .z~,~+~ form a basis 
for U. U is not stable for S,,+, = (S&.,~Z but (g&P = ‘;gr%j @ U is. 
However U may be regarded as an S,-,-module via T : u 4 T*(u), where 

T(u) = ~,JT)(u)z& + T*(u), and T* E GL(U) for T E S,-, , u E U. Then 

~(%,i;d = T*(.qi+d. BY F, Th eorem 14.2, p. 78; 7, Theorem 5.21, we may 
assume S(T) = S,(T) and c(T) = E~( T), w h ere q, is defined by (T -t l)(4) = 
c+,( ~~~~~ + e,(T). The n we see that L = 01 + 01~ is a homomorphism from 
S,-, to the additive group of F, , so either L = 0 or KerL = A,, . I f  
L = 0, then 01 = 01s and G s G’ s (S,),,, , where we identify a E A with 
.%& and x E X with zZ;zn . I f  I? E G is induced by a transposition in S,-, fixing 

3, e(T) = 0, S(T) = 0 and ol(Tj = 0, so T is clearly a transvection. If  T is 

induced by (34), then T(.sM) = zal , T(Zdsj = fls + Zig + ;+, , and 
(T $ lj(Q = gPe + xa8 , so the matrix of T is 

11 0 1 0 0.. 0 
( 

11 
1 1 0 **a 0 11 

1 0 *** 0 0 
1 0 

1 I 

with respect to the decomposition (%& @ U @ (~~a) and the basis .Q+~ , 
i = 3,..., n - 2, for U. Clearly the rank of T - 1 is one, so T is a transvection 
and G is generated by transvections. If  Ker L = &-, , then for every trans- 

vection in G (induced by a transposition in Snd2j, L(T) = I. Referring to the 
above discussion we see that T cannot then be a transvection, so G is not 
generated by transvections. 

To summarize, we have 

THEOREM 3. If  G = Gl x *** x G, is a linear group on the F,-space 

Y = A @ W, @ -*- 0 WTn @ X satisfying the hypotheses of Theorem 1, thm 
either G, E Sp,,(F,) for n > 3 and Gi s Oz,+l(Fz); UY Gi E S,-,(F,) for 
n > 8, even, and Gi c (.$Ja,, 1 (%$,jl or Gi e (S.&, . Equivalently, if for 
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Ti E Gi , wi E Wi , and x E X, Ti(wi) = ?+,:(w~) + S(Q(T,)(w,)a, and T,(r) = 

x + c$~(x)&)(T~) nzodulo A, with H1(e.; , Wi*) = (8’)), H1(cz , Wi) = (&)), 
ai E A and & E X* as in Theorem 2, then either C?i s Sp,,(F,) (n > 3) azd ai 
and q$ are Fzeither both zero nor both non-zero; or C?i z S, (n 3 6, even) and 
ai and r+$ are not both zero. 

Clearly a group G = G1 x -.* x G, , with the Gi as in Theorem 3, 
is generated by transvections. However, one may still ask, when is such a 
group indecomposable ? 

THEOREM 4. Using the notation of Tlzeorem 3, V decomposes with respect 
to G if and om’y ;f there is a partition I, J of (I ,..., m} such that 

and 

A = (ai 1 iEI) @(aj lj~ J> 

Proof. First we show that if V decomposes into U @ W with respect 

to G, then for each i, i = l,..., m, Wi @ (ai> < U or W5 @ (a,) < W. 
Suppose T E Gi is a transvection f  1. Then since U and Ware stable for T, 
the center of T must lie in U or in TV say the center is u E U. Then for all 
SE G, STS-1 is centered in U. Since the transvections in Gi form a single 

conjugacy class in Gi , U must contain all centers for Gi . Since T stabilizes 
Wi 0 (ai> and T f  1, zl E T/t’i @ (a,), .u $4. Suppose first that u E Wi . 
Then since Wi is spanned by the centers for ci , Wi < U and so (ai) @ Wi < 
U. Now suppose that u = zui + ai , zui E Wi . For S E G, , STS-1 has center 
Swi + ai, so the space Wi’ spanned by the centers for Gi is (w + a, 1 w a 
center for ci). Clearly if w and v  are centers for ci , w + v  E WC’. By 
Theorem 3 we need consider only two cases. 

(a) If  ei s Sp(Wi) (dim Wi > 6), then every non-zero line (vector) of Wi 
is a center, so Wi < Wi, and Wi’ = Wi @ (ai) < U. 

(b) If  (?i s S, (PZ > 6, even), the centers are the 4.j , i # j. Clearly 
gij = Y~~ + T,~~ , k f  i, j. So again Wi, = Wi @ (a& < U. 

Thus if V decomposes into U @ W with respect to G, there is a partition 
I, Jof {I,..., m> such that Cd&W> @ (a,)) < U and J& ( W, @ (ai)) < W. 
Clearly A = (A n U) @ (A n W) = (ai / i E 1) @ (aj 1 j E J>. Likewise, 
x=(xnU)@(xnW).ForT~G,T-1mapsXnUintoUandmaps 
X n Winto W. But if T is centered in U, Im(T - 1) < U, so for x E X n 747, 
(T- l)x~ Un W=(O}andxEn.,Ker$i.HenceXn W<fiiarKer&. 
Similarly, X n U < njEJ Ker & . Since fi& Ker &+ = (0}, X = 

fiiEI Ker +i @ fijsJ Ker q$ , and SO X” = (q$I j E J) @ (& / i E I). 
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For the converse, suppose the partition I, J exists and let U = 

X&l (Wi 0 (4)) 0 fhd hr 41j , W = La (Wj 0 Caj>) 0 &I F&r 6 . 

COROLLARY. IfG = G1 x -0. x GW1 satisfies the hypotheses of Theorem 1, 
then the following values of Y = dim A and s = dim X cannot OCCUP: 
(i) Y  = s = m, (ii) Y  = nz, s = 0, (iii) r = 0, s = riz, (iv) y  = s = 0. 

Finally, we have the question: suppose G and G’ are linear groups on V 

satisfying the hypotheses of Theorem 1; under what conditions are they 
isomorphic as linear groups ? 

THEOREM 5. Suppose G = Gl x a-- x G,% and G’ = G,’ x --* x G,’ 
aye &decomposable groups on Tr and V’ respectively, generated by transvections 

and having no unipotent noTma subgroups f  (11, and suppose dim V = dim V’ 
and ci E Gi’ as linear groups, i = I,..., m. Suppose further that the spanning 
sets a, ,..., arrc and t$1 ,..., & (resp. a,‘,..., a,’ and altr . . . . c+~‘) for A and X” 
(yesp. 4’ and x’*) are chosen as in Theorem 2. Then G and 6’ are isomorphic 
as linear groups if and only if 

(i) c’y?, &a,(,) = 0 if and only if cbl X,ai’ = 0, and 

(ii) cy=, hi$,(i) = 0 ;f alzd only ifc’:, hi&’ = 0, for all Ai E F, , where 
i-r is a permutation of I,..., m such that r(i) = j only if Gi E e?j’. 

The proof of Theorem 5 requires several lemmas. 

LEMMA 1. Let V be an F,-space of dimension at least 6 with a ?zondegeneyate 
alternate bilinear form B, and let 6 E Der(Sp(V), V), 8 non-inner. Then d = uQ 
for some quadratic form Q associuted with B, where uQ is defined by 

B("Q(T)~ T(v)) = 2/(Q(T(z’)) + !&>> 

for all v  E V. In particular, there is an element T E Sp(V) with T + 1 non- 
singular and S(T) = 0. 

Proof. Choose O(E, Q) < Sp( V), where E = 1 if the index of Q is maximal 
and E = -1 otherwise. By [6, Section 13; 7, Section 41 dim EP(Sp(V), V) is 

one and ug is non-inner, so there is ‘zrO E I/such that S(T) = uQ(T)+(T+l)(v,) 
for all T E Sp( V). Suppose first that v,, is singular. Let S be the symplectic 
transvection centered at so (i.e.: S(V) = ZI + B(v, , v)q,), so Q(S) = 

d(Q(qJ + lhi = 74) . Since uo / O(Q) = 0, T E O(Q) implies u&STSF) = 
(STS-1 + 1) zlo(S), and so 6 / O(Q)” = 0 (OS = SOS-l). Let U’ = uasU1. 
zi is also non-inner, so there exists zuo E T/ such that 6(T) = u’( T)+( T+i)(u,) 
for all T E Sp(V). Then 6 1 O(Q)s = 0 and u’ / O(Q)” = 0 imply that zu,, 
is a fixed point of O(Q)“. But O(Q)” is irreducible, so ‘w. = 0 and 6 = u’. 
QS-r is then the quadratic form appearing in the statement of the lemma. 

481/16/4-7 
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Now suppose that z~s is non-singular. There are two cases to consider. 

(a) E = +l. Choose wa E P’ such that (era , w,,) is a hyperbolic plane. 
Since E = 1, the index of Q 1 cr.+, , zu,) is one, so we may assume v, = us + w, , 

where u,, , zus is a hyperbolic pair of singular vectors. Choose a symplectic 

basis of singular vectors xi = 21s ,..., X, , yr = w,, ,..., yn for V, with 
B(x, , yJ = Sij . Define a quadratic form Q’, associated with B on V, by 
Q’(q) = Q’(yJ = 0, i = 2,..., n and Q’(xJ = Q’(yJ = 1. Let u’ = uo, . 

Then there exists v  E V such that ~o( T) + u’( ?) = (T + l)(a) for all 
T E Sp(V). I f  T is a symplectic transvection with center xi (resp. y,), 
i = 2,..., n, then u,(T) = u’(T), so (T + l)(v) = 0. That is, B(v, xi) = 
B(v, yi) = 0, i = 2 ,..., n. I f  T is a symplectic transvection with center or 
(resp. yr), then u’(T) = 0, Q(T) = ~r (resp. yi). Thus B(x, , v) = 
B(y,,v)=l.Soweseev=x,+y,=u,+w,=v,,andsoS=~’and 
Q’ is the quadratic form specified by the lemma. 

(b) E = - 1. Again form the hyperbolic pair vs , ws and let tcs = va + ws . 
Since O(Q) is irreducible we may choose ws to be non-singular, so Q ] (v,,, w,,)l 

is of maximal index. Form the symplectic basis x1 = us ,..., X, , y1 = w, ,..., yn 
with B(:q , yj) = Sij and xi , yi singular for i = 2,..., n. Define Q’ associated 
with B on V byQ’(.rJ = Q’(yJ = 0 for i = l,..., n, and let U’ = nor. As in 
(a) we find that u’(T) + u,(T) = (T + l)(v,), so S = u’. 

Now, by [6, Theorem 10.3, p. 43; 7, Theorem 1.101, if Q is the form 
specified in the lemma, there is T E O(Q) such that T + 1 is non-singular. 

LEMMA 2. Under the hypotheses of Lemma 1, if 6 E Der(Sp( V), V) is 
non-inner, then (S(T) / T E Sp( V)> = V. 

Proof. By Lemma 1 we may assume 6 = uo for a suitable Q. Thus if T 
is a symplectic transvection whose center v  is singular with respect to Q, 
6(T) = V. Therefore (6(T) 1 T E Sp( V)) contains all singular vectors. Since 
O(Q) is irreducible, Lemma 2 follows. 

LEMMA 3. In OUY earlier notation, if 6 E Der(S, , H/(x,)) is non-imer 
(n > 6, ezm), then there is T E S, with T + 1 non-singular on H/<xJ and 
S(T) = 0. 

Proof. Recall that S, acts on (x1 ,..., x,> by T(xJ = xTc,) for T E S, . 
I f  v  is the linear functional on (x1 ,... , x,J defined by 7(x &xi) = C Xi, then 
x0 = C xi E H = Ker q. S, acts faithfully on H/(x,). Let 6 E Der(S, , H/(x,,)) 
be non-inner. As in the proof of Theorem 3, we may assume that there is 
@,, E H/(x,) (vO E H) such that 6(T) = S,(T) + (T + l)(v,) for all T E S,, , 
where S,(T) is the coset of (T + 1)(x1) in H/<q,c,). Thus S(T) is the coset of 
(T + l)(x) in H/(x,,,), where x $ H. Clearly 6 1 (S,), = 0. Suppose .X = Ciel ẑ i . 
Write I = (ii ,..., i,) and let J = (jr ,..., j,} be the complement Ic of I in 
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il,..., n). Let T = (il -0. is)(jl e--j,) E (S,), , so S(T) = 0. Since ?* 4 H, 
s is odd, and so s + t = IZ implies t is odd. Suppose y  E H with T(y) z y 
modulo (x0); say y  = xkEK sk , with #K even. Let T1 = (il ... i,), TJ = 
(jr -**jt). T(y) = y  module (.Q> implies T,(y) = y or y f x0, T,(y) = y 
Or Y + xo. If T,(Y) =Y +X0 =&@k, then T,(K) = KC, so KC < I 
and K < 1. But then 1 = {l,..., n} and x = ~a E H, which is impossible. 
Similarly T,(y) = y  + x,, implies J = (I,..., n3 and x’ = OE H. So we 
must have T,(y) = T,(y) = y, and thus either I n K = 4 or I < K, and 

either J A K = 4 or J < K. Since s and t are odd and #K is even, either 
K=IuJandy=x,, or K = 4 and y  = 0. In any case y  E 0 modulo 

(a$ and T + 1 is non-singular on H/(x,,). 

LEMMA 4. Under the hypotheses of Lemma 3, if 6 E Der(S, , H/(x,)) is 
non-inner, then Q(T) / T E S,> = H/(x,,). 

Proof. Let S E Der(S, , H/(x,,)) b e non-inner, and let r+’ = (6(T) j T E S,). 
As before, we may suppose S(T) is the coset of (T + l)(x) in H/(x,), with 
.̂ r = z cyixi $ H. Since 32 # x0, there is an i with 01~ = 0. If  q f  0, j f  i, 
then ((@) + l)(x) = .Q , SO Q E W. If aj = 0, (ok f  0, ((jk) + I)(X) = xje 
and sja E E’, ((3~) + l)(x) = .qp and .F~?: E FV, and so .Q E FE Thus gii E W 
for allj and so IV = H/(x,,). 

Now we return to the proof of Theorem 5. Let G and G’ be as in the state- 
ment of the theorem. Referring to the construction of the spanning sets 
a, ,..., a,, and & ,..., 45, for A and Xc in the proof of Theorem 2, we note 
that if A has basis b, ,..., b, then q = ‘& Xjibj where hji f  0 if and only if 
Sj, E Der(Gi, lVi*) is non-inner. Also $j(x) f  0 if and only if Ej,a E Der(Gj, EVj) 
is non-inner. Thus if .vr ,..., x, is a basis of X and x1 ,..., xs is the dual basis 
of X”, then +j = xi=, pfirxs where pkj f  0 if and only if cj,,: = 
E~,~, E Der(G$ , FVJ is non-inner. 

With respect to the decompositions F7 = A @ FVr 0 a-* 0 Fl;;, @ X and 
F” = A’ @ &Vi’ @ **. @ FVm’ @ X’ of V and Y’ respectively, choose bases 
93 and 8 of V and V’ respectively such that if Gi z Gi as linear groups, 
then Gi = Gj’ as matrix groups with respect to the bases of F& and Wj' 
respectively. Suppose a non-singular C E Horns&V, V’), written as a matrix 

with respect to the bases g and 97, intertwines the elements of G and G’. 
That is, suppose CT = SC for T E G, S E G’. As matrices, C= (Cij)i,i=, ,...,, n+l, 

T= 

1 S,(T) -.* S,(T) a(T) 
Tl 4T) 

TIII 4 T) 
1 

s= 

1 S,‘(S) *.e S,,‘(S) a’(S) 

Sl %‘(S> 

S, %L’(S) 
1 
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Then CT = SC gives the matrix relations 

tn. 
c Sk’(S) Ck, + I’ cn,l,O = 0 

k=l 
(1) 

C,,&(T) + f h’(S) CI~-i = Co&-i + 11, i = l,..., m (2) 
k=l 

Relation (4) and Lemmas 1 and 3 imply Cj, = 0, j = l,..., m. Likewise, 
(7) implies Cm+rsi = 0, i = l,..., m. Lemmas 2 and 4 and relation (4) (or (7)) 

imply C?n+r,, = 0. If  Cji is of rank Y, then relation (5) implies ej’ has a stable 

subspace of dimension Y. Since the ejj’ are irreducible, Cii must be non- 
singular or zero. Again using (5), Cj, is non-singular only if Gi g Gj’. Since 
we’ve assumed that for pi z ej’, ci = Gj’ as matrix groups, Cji non-singular 
implies Cj, = 1. Suppose Cii = 1, Clik = 1, k 1 i. Then (5) implies TE = 
SiCjk = Sj and Ti = S,C,, = Sj, so Ti = Tk. But for TEG,, Tf 1, 
Ti f  1 and T, = 1 when k f i. So Cji = 1 implies Cjk = 0 for k # i. 
Similarly Cji = I implies Cki = 0 for k # j. Thus (Czc,o)~~,o=l ,..., m is a 
“permutation matrix” with Cji = 1 only if (?i g Gj’. 

I f  we modify the choice of the basis B by changing the bases for A and X 
and permuting the Wi , we may assume Cii = 1 for i = O,..., m + 1 and 
Cij = 0 for if j, i,j = l,..., m. So finally we have the relations 

(Si + Si’)(T) = ‘XT, + 11, i = I,..., m (2’) 

4T) + +‘7 = f COkEk(T) + 2 Sk’(s) Ck,m+~ (3’) 
k=l k=l 

(cj’ + c,)(T) = (T j  + 1) Cj,nL+l, j  = l,..., m  (6’) 
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Write 

and 

Cli 

coi = 
I! 

for i = l,..., m; 

CTi 

hi + s;i 

(Si + Si’)(T) = 

I I 

; 0-1 

%i + s;i 

and (E’~ + cJ(T) = ((& + E&., (c;, + Q))(T) and Cj,m+l = (cjr ,..., cis) 
for j = I,..., m, where T = dim A and s = dim X. Then we have the rela- 
tions (Sk, + S{,)(TJ = ~~~(2’~ + 1) for k = l,..., Y, i = I ,..., m, and. 
(& + Ejk)( Tj) = (Tj + l)cj, for k = l,..., S, j = l,..., m, where S,, , 
S& E Der(Gi, IV**), q.. E IV{*, and cl: tk , cjk E Der(Gj , IV?), cIk E Wj . That is, 
SJci = SLi modulo Inn(Gi, IVi*) and •3~ = cjk modulo Inn(Gi , IVJ. Hence 
if (a,}, {&> and (a,‘}, {&‘} are the spanning sets for A, X* and A’, X’” chosen. 
as in Theorem 2, then up to a change of bases for -4 and X and a permutation 
of the indices I,..., m, a, = air and & = q$‘, i = l,..., m. Thus we have 
proved Theorem 5. 

COROLLARY. Under the hypotheses of TheoFern 5, ry dim A = dim A’ = 
m - I, 1, or 0 and dim X = dim x’ = I or 0, then G,ci, g Gi’, i = l,..., m, 

as linear groups for some permutation v  of l,..., m implies G E G’ as linear 
groups. Dually, ifdii A = dim A’ = 1 or 0 and dim X = dim X’ = m -1, 
1, or 0, theft G,,ci) s Gi’, i = l,..., m, as linear groups implies G s G’ as 

liltear groups. 

Note, however, that the proposition (stated as a conjecture in 16, p. 94]), 
“G, E Gi’ as linear groups for i = l,..., m, dim A = dim A’ and dim X = 
dim X’ implies G g G’ as linear groups” is false. For example, suppose 
m = 4, dim A = dim A’ = 2, dim X = dim x’ = 0, Gi g Gi’ for i = l,.,., 4 
and Gig Gi for i+j. Choose the ai satisfying A = (a1 , a,., aI = a3, 

a4 = a, + a, and the ai’ satisfying ,4’ = (ai’, as’), a,’ = a2’, a4’ = 
aI’ + a,’ f 0. Then Theorem 5 implies G and G’ cannot be isomorphic as 
linear groups since a1 + as = 0, a,’ + as’ f 0. 
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