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Epilepsy affects 65 million people worldwide, a third of whom have seizures that are resistant to anti-epileptic
medications. Some of these patientsmay be amenable to surgical therapy or treatmentwith implantable devices,
but this usually requires delineation of discrete structural or functional lesion(s), which is challenging in a large
percentage of these patients.
Advances in neuroimaging and machine learning allow semi-automated detection of malformations of cortical de-
velopment (MCDs), a commoncause of drug resistant epilepsy. A frequently asked question in thefield iswhat tech-
niques currently exist to assist radiologists in identifying these lesions, especially subtle forms ofMCDs such as focal
cortical dysplasia (FCD) Type I and lowgrade glial tumors. Belowwe introduce someof the common lesions encoun-
tered in patients with epilepsy and the common imaging findings that radiologists look for in these patients. We
then review and discuss the computational techniques introduced over the past 10 years for quantifying and auto-
matically detecting these imaging findings. Due to large variations in the accuracy and implementation of these
studies, specific techniques are traditionally used at individual centers, often guided by local expertise, as well as se-
lection bias introduced by the varying prevalence of specific patient populations in different epilepsy centers. We
discuss the need for a multi-institutional study that combines features from different imaging modalities as well
as computational techniques to definitively assess the utility of specific automated approaches to epilepsy imaging.
We conclude that sharing and comparing these different computational techniques through a common data plat-
formprovides anopportunity to rigorously test and compare the accuracy of these tools across different patient pop-
ulations and geographical locations. We propose that these kinds of tools, quantitative imaging analysis methods
and open data platforms for aggregating and sharing data and algorithms, can play a vital role in reducing the
cost of care, the risks of invasive treatments, and improve overall outcomes for patients with epilepsy.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
Incidence of different malformations of cortical development organized by groupings
(Barkovich et al., 2012). Group 1 includes malformations due to abnormal cell prolifera-
tion, Group 2 includes malformations due to abnormal cell proliferation, and Group 3 in-
cludes malformations due to abnormal cortical organization. These incidence data are
adapted from Papayannis et al. (2012).

Group I (49%)

Focal cortical dysplasia (Type I and II) 48%
Focal cortical dysplasia + glioneural tumors 14%
Dual or triple pathology: focal cortical dysplasia + tumors + hippocampal
sclerosis

14%

Glioneural tumors 10%
Tuberous sclerosis 10%
Hemimegalencephaly 1%
Focal hemimegalencephaly versus possible focal cortical dysplasia 3%

Group II (40%)
Periventricular nodular heterotopia 55%
Subcortical heterotopia 18%
1. Introduction

Epilepsy affects 65 million people in the world and has been esti-
mated to cost the US upwards of $12.5 billion annually, based on a
1995 epidemiology study (Schachter, 2015; Kwan et al., 2011; Begley
et al., 2000). Patients with drug resistant epilepsy (DRE) account for
only 20–40% of patients with epilepsy but contribute a large portion of
the epilepsy-associated cost due to risk of premature death, seizure-
related injuries, psychosocial dysfunction and general reduction in qual-
ity of life measures (Kwan et al., 2011).

Resective surgical therapy has been themainstay of therapy, but sur-
gical candidacy depends on the clinical team's ability to identify and
fully delineate structural and functional lesions, such as regions of dys-
plastic cortex. Overall, the odds of seizure freedom after surgery for ep-
ilepsy are 2–3 times higher in cases that exhibit an identifiable lesion on
histopathology or MRI (Téllez-Zenteno et al., 2010). Thus, the overall
goal of neuroimaging in epilepsy is to monitor therapy and identify bio-
markers of disease, candidates for surgery, and predictors of post-
surgical outcomes (Bernasconi and Bernasconi, 2014).

Currently, the gold standard for outlining lesions in epilepsy patients
is through identifying the epileptogenic zone, defined as the region re-
cruited to seize on EEG, either measured on the scalp or in conjunction
with invasive intracranial monitoring utilizing subdural strips, grids,
depth or stereo EEG electrodes (Najm et al., 2002). The irritative zone
is defined as the region near the structural or functional lesion that gen-
erates interictal epileptiform discharges identified by ECoG and fMRI
(Koepp andWoermann, 2005). In these cases, the location of the epilep-
togenic zone, determined by electrophysiology, is comparedwith the ir-
ritative zone, determined by possible lesions discovered on imaging, to
guide therapy. A majority of these are caused by malformations of cor-
tical development.
Mixed forms of heterotopia 10%
Dual pathology: periventricular nodular heterotopia + hippocampal
sclerosis

13%

Double cortex or subcortical band heterotopia 5%

Group III (11%)
Schizencephaly 37%
Polymicrogyria (bilateral) 26%
Polymicrogyria (unilateral) 37%
1.1. Malformations of cortical development

Malformations of cortical development (MCD), which describe a va-
riety of structural and metabolic abnormalities of brain arising during
gestation, were traditionally thought to cause a significant proportion
of epilepsy (~15%) (Sisodiya, 2000; Lerner et al., 2009). Some lesions
remain undetected, even at high resolution MRI, and are only discov-
ered on histopathology after resective surgery (Sisodiya, 2000). As a re-
sult, previous estimates of the incidence of MCD have been low, and
now at least 25% of all cases are thought to be due to MCD lesions. His-
topathology of resected lesions show that these aremostly focal cortical
dysplasias (45%), gliosis (22%), and hippocampal sclerosis (13%) (Wang
et al., 2013).

Table 1 shows the distribution of malformations of cortical develop-
ment and their incidence. Few studies have looked at the incidence of
the different possiblemalformations, but focal cortical dysplasias is con-
sidered to account for the majority of the cases (Wang et al., 2013;
Raymond et al., 1995). Focal cortical dysplasias (FCD) are a
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heterogeneous group of disorders that have are classified in three tiers:
FCD type I, FCD type II and FCD type III. FCD type I is caused by abnormal
neuronal migration, FCD type II is caused by abnormal neural prolifera-
tion or apoptosis, and FCD type III are dysplasias associated with hippo-
campal sclerosis, vascular malformations (1–2%), tumors (10%) and
other principal lesions (Barkovich et al., 2012; Jackson and Badawy,
2011). These tiers are listed in order of how readily they are visualized
on imaging. For instance, FCD type II, which histopathologically resem-
ble tuberous sclerosis lesions (Kumar et al., 2011), are more easily visi-
ble on conventional MRI imaging compared to the milder FCD type I
(Krsek et al., 2008). T1-weighted imaging (T1WI) is abnormal in FCD
type II showing altered cortical thickness and gray-white junction blur-
ring. Fig. 1 shows an example MRI from a patient with type II FCD. For
the other types of FCDs, structural MRI is insufficient to diagnose a sub-
stantial proportion cortical dysplasias, particularly those associated
with FCD type I (Hauptman and Mathern, 2012). Even within FCD
type II, MRI features may be insufficient to detect more specific histo-
pathological subforms, such as FCD type IIA (Colombo et al., 2012).
This makes delineating these lesions difficult.

There is strong evidence suggesting that patients with a focal le-
sion on MRI have a better outcome after epilepsy surgery compared
to patients with no abnormal findings onMRI. When complete resec-
tions are performed on patients with cortical dysplasias, 80% of the
patients become seizure-free compared to 20–50% in patients with
incomplete resections performed due to lack of imaging findings or
involvement of eloquent cortex (Lerner et al., 2009). The key to re-
ducing the extent of resection while optimizing clinical outcomes,
including minimizing side effects of surgery, is accurately mapping
the brain region to be resected and minimizing the resection of elo-
quent or uninvolved regions (Okonma et al., 2011). A different set
of studies of patients with FCDs and low grade neuroglial tumors
showed that determining the extent of the lesion is important,
since its complete removal correlates with good surgical outcome
(83% seizure-free (Engel class I) outcome) (Chassoux and Daumas-
Duport, 2013; Cossu et al., 2013; Rowland et al., 2012). This target re-
gion for resection can be defined by electrocorticography findings,
neuroimaging & computational identification of abnormalities
(Begley et al., 2000), histology and (Téllez-Zenteno et al., 2010) met-
abolic imaging in cases where structural imaging is normal (Okonma
et al., 2011). Function of these targets can be difficult to assess a-
priori. Patient risk of deficits from surgery is minimized by
electrical stimulation testing, functional imaging, and advanced
structural imaging (such as HARDI-DTI) though these techniques
may not adequately image fibers of passage through the zone of re-
section (Okonma et al., 2011). Thus, it is important for current
Fig. 1. Sample T1-weighted (left) and T2-weighted (right) axialMRI images taken from a 21-yea
white contrast on T1-weighted imaging as well as a hyperintensity on T2-weighted imaging.
imaging and computational techniques to identify, assess and delin-
eate epileptogenic lesions.

Despite recent improvements in imaging technology and computa-
tional methods (Madan and Grant, 2009), the ability to detect focal le-
sions has significant room for improvement. MRI findings are
abnormal in only 50–70% of patients with MCD. Some modalities such
as PET imaging become sensitive only when fused with MRI (Lerner
et al., 2009). In addition, re-examination of MRI images demonstrated
lesions that were missed during initial interpretation in some cases.
This highlights the urgent need for advances in imaging and computa-
tional techniques that can detect subtle epileptic pathologies in MRI-
negative epilepsies (Rosenow and Lüders, 2001). Standard clinical im-
aging protocol is limited in its efficacy.

In the next two sections, we discuss important radiological features
and the latest computational techniques used to identify and delineate
lesions in patients with epilepsy.

2. What are features radiologists look for in imaging?

Neuroradiologists look for certain distinct image biomarkers in order
to diagnose the focal lesion contributing to a patient's refractory epi-
lepsy.Most epilepsy centers use an imaging protocol, typically involving
fluid attenuated inversion recovery (FLAIR), T2W, T1W, and
hemosiderin/calcification-sensitive sequences. The T1W image should
be acquired in three-dimensional technique at 1 mm isotropic voxels
size. For T2W and FLAIR, at least two slice orientations are needed to
image at an angulation perpendicular to the long axis of the hippocam-
pus (Wellmer et al., 2013). Slice thickness for T2W and FLAIR must not
exceed 3mm in order to best visualize this angulation. In addition, some
institutions use different imaging modalities such as FDG-PET, SPECT of
ictal-interictal cerebral blood flow (SISCOM), and MEG to isolate the
focus of the seizure. Higher field imaging can also improve detection
of key image findings in MCD (Mellerio et al., 2014a). This section
gives an overview of these different imaging modalities and image
used in the diagnosis of MCD.

2.1. T1W/T2W imaging

Neuroradiologists look for the following common findings to assist
them in the diagnosis of MCD in epilepsy patients:

• Abnormal signal hyperintensity/hypointensity
• Subcortical presence of abnormal gray matter (see Fig. 2)
• Increased cortical thickness/pseudo-thickness
• Gray-white junction blurring
r oldmale epilepsy patient. The focal cortical dysplasia (red arrows) present as loss of gray-



Fig. 2. Sample T1-weighted (left) and T2-weighted (right) axial and sagittal images taken from a patient with a smaller right hemisphere and periventricular nodular heterotopia (red
arrow). Note that the heterotopia is located on the temporal horn and has subcortical abnormal gray matter in areas where usually only white matter is found.
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• Sulcal abnormalities such as increased sulcal depth
• Structural/lobar atrophy – this includes hippocampal sclerosis and at-
rophy

• Abnormal gyrification pattern
• Abnormal asymmetry in structural patterns
• Diffuse or multifocal occurrence of any of the above features

In MRI images of patients with cortical dysplasia, 60% will show
thickening or pseudo-thickening of graymatter, 74% will show blurring
of the gray-white junction, 63% will have increased T2W signal in white
matter, 19%will have structural atrophy visible, and 34%will have other
signal changes (Lerner et al., 2009). These changes include the
transmantle sign, which is a hyperintensity (on T2-weighted images)
of subcortical white matter often tapering towards the ventricle
(Colombo et al., 2003). These features occur together and make the le-
sionmore visible. A combination of cortical thickening, gray-white junc-
tion blur, and transmantle sign were found in 64% of patients with FCD
type II (Mellerio et al., 2012). In fact, there is a significant association be-
tween the presence of cortical thickening (p = 0.002) and the
“transmantle sign” (p b 0.001) and a correct MRI diagnosis (Colombo
et al., 2012).

FCD type I lesions, on the other hand, tend to have regional reduction
of the white matter (Krsek et al., 2009). For instance, lobar hypoplasia/
atrophy are reported to be most frequent (Freeman et al., 2004). Mild
blurring at the GM (gray matter)/WM (white matter) junction with
normal cortical thickness and abnormal gyral/sulcal patterns can also
be present (Krsek et al., 2008).

Some FCDs can have abnormal sulcal patterns, such as a cleft dimple
with CSF or an unusual central sulcal pattern that resembles a “power”
button symbol (Bronen et al., 2000;Mellerio et al., 2014b). These lesions
have been shown to be located near deep sulci where the mean and
maximum depth of sulci is higher than that of the corresponding sulci
in controls (Besson et al., 2008a). These deep sulcal dysplasias often
have a positive transmantle sign, hyperintensity on T2/FLAIR, and ab-
normal gyral patterns (Hofman et al., 2011).

Sometimes, they can present as a multifocal occurrence (Fauser
et al., 2009). Neuroradiologists aim to identify any abnormal imagefind-
ings in all regions of the cortex and subcortical volumes. New imaging
sequences such as double inversion recovery and MP2RAGE have been
proposed to reduce signal from CSF and provide high T1 weighting,
allowing for improved contrast in the cortex and detection of subtle le-
sions (Rugg-Gunn et al., 2006; Winston et al., 2014; Pardoe and
Kuzniecky, 2014).

These radiological features manifest because of the way tissue mi-
crostructure is affected byMCD. In FCD type II, thesemicrostructural ab-
normalities include neuronal hypertrophy with compromised cell
motility (Thom et al., 2005), presence of immature balloon cells, and
pathologic myelin arborization (Shultz et al., 2014). In addition, patho-
physiologic mechanisms such as gliosis and edema manifest as
hyperintensities on T1WI and T2WI (Shultz et al., 2014). These features
have been validated through histopathological studies of neuronal den-
sity, count, and aberrant neuronal patterns that contributed to gray-
white blurring (Mühlebner et al., 2012). Some of the other MCDs, such
as periventricular nodular heterotopia (PNH), have similar histopatho-
logical findings but present with gray matter signal in CSF and white
matter regions on imaging.

Neuroglial tumors such as DNETs often have different imaging find-
ings: the lesion is supratentorial, often well demarcated, and usually
found in the temporal or frontal lobe (Velez-Ruiz and Klein, 2012).
The characteristic MRI finding is increased signal on T2WI and de-
creased signal on T1WI. Contrast enhancement has been described in
up to one-third of patients and is often located adjacent to a FCD
(Velez-Ruiz and Klein, 2012). Certain subtypes often have cystic-liked
appearance, are well-delineated, and are strongly hypointense on T1
(Chassoux and Daumas-Duport, 2013).

Despite this extensive list of findings, MRI is only moderately sensi-
tive in detecting these lesions regardless of histopathological subtype.
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No MRI abnormalities are found in 31–41% of patients with FCD type I
and 21–33% of patients with FCD type II (Velez-Ruiz and Klein, 2012).
In a retrospective study of all histopathologically confirmed FCDs at a re-
gional pediatric comprehensive epilepsy center, the majority of cases
(58%) did not have anyMRI abnormalities highlighting the need for bet-
ter imaging techniques (Leach et al., 2014).

2.2. Electrophysiology

Electrophysiology is the current gold standard for isolating the epi-
leptic networks and the seizure onset zone(s) during presurgical evalu-
ation, especially invasive electrocorticography through the use of
subdurally placed electrodes. This, in combination with imaging, is
used to determine the resection zone. Additional studies such asmagne-
toencephalography (MEG) may be used to localize the epileptogenic
zone, focusing primarily on interictal epileptiform activity, and to map
eloquent cortex (Widjaja et al., 2008). In one study the surgical outcome
following complete removal of areas containing clustered MEG sources
and MR lesions were same, indicating MEG was approximately equally
sensitive to MRI (Wilenius et al., 2013). It is important to note that the
epileptic network, as defined by electrophysiology, may not exactly cor-
respond to lesions on MRI, but also involve their microstructure and in-
terface with more normal brain tissue. These border zones have been
identified, by intracranial electrophysiology, to be at the border or just
outside of the border of lesions defined by imaging, where microscopic
pathology is often present (Mukae et al., 2014).

2.3. PET imaging

Positron emission tomography (PET) uses radiotracers to identify
pathological metabolic and neuroinflammatory processes (Shultz
et al., 2014). Local decrease and increase in radiotracer uptake are po-
tential biomarkers for these processes. The most common radiotracer
that is used is (Okonma et al., 2011)FDG-PET, though other radiotracers
have been shown to beuseful in imaging inflammation ((11C)-PK11195
PET (Butler et al., 2013)), abnormal metabolism of amino acids (Alpha-
[11C]methyl-L-tryptophan (Natsume et al., 2008)) and epileptogenic
tubers (CAMt (Asano et al., 2000, Kumar et al., 2011)). Cerebral glucose
hypometabolism is associatedwithmitochondrial dysfunction in intrac-
table epileptic patients (Tenney et al., 2014).

Many studies have shown that FDG-PET/MRI coregistration im-
proves detection of cortical dysplasia in patients, especially those
where the MRI is read as normal (Salamon et al., 2008). FCDs visualized
on MRI usually coincide with the epileptogenic zone but the full extent
is not visible. This can be resolved by fusing together PET images with
MRI (Colombo et al., 2009). The presence of regional interictal
hypometabolism can help radiologists guide their search for a lesion
(Velez-Ruiz and Klein, 2012). It is important to note that FDG-PET can
show normal or even hypermetabolic regions corresponding to FCD
for unclear reasons. This has been attributed by some investigators to lo-
calized epileptiform activity (Colombo et al., 2009).

2.4. Cerebral blood flow imaging

Another standard imaging modality is SPECT imaging, which mea-
sures cerebral blood flow during ictal and interictal periods. The differ-
ence of these blood flow maps, termed SISCOM when co-registered to
MRI, is used to isolate the seizure onset zone. Studies have shown that
complete resection of onset regions identified by SISCOM is at least as
good as MRI and EEG in terms postsurgical outcome, though this re-
quires rapid injection of tracer proximate to seizure onset and focal up-
take of the SPECT tracer (Krsek et al., 2013). This technique is variably
employed in academic centers due to the cost and technical challenges
of having the radioactive tracer on hand waiting for spontaneous sei-
zure onset in inpatient epilepsy monitoring units.
Some institutions also use arterial spin labeling (ASL) imaging
fused with 3D FLAIR sequences in order to measure relative cerebral
blood flow in regions of interest and their contralateral counter-
parts. This helps demarcate primary lesions such as glial tumors
and vascular malformations associated with FCDs, though perfusion
abnormalities are not always consistent across patient groups, espe-
cially those with mesial temporal sclerosis (Toledo et al., 2013).
More generally, interictal ASL findings in focal epilepsy resemble
those of PET; that is, focal hypoperfusion in ASL resemble
hypometabolism on PET (Toledo et al., 2013).

2.5. Diffusion imaging

Unlike conventional structural MR imaging that provides im-
ages resulting from magnetic relaxation parameters, diffusion im-
aging (DWI and DTI) provides contrast images based upon the
extent, directionality and organization of the motion of free (un-
bound) water (Colombo et al., 2009). Malformations of cortical de-
velopment often affect the microstructure of underlying white
matter tracts (Colombo et al., 2009). In addition, presence of het-
erotopic neurons, abnormal myelination (myelin pallor on histol-
ogy), edema, axonal injury and gliosis affect the diffusion
properties of tracts originating from the lesion (Colombo et al.,
2009; Shultz et al., 2014). Often, there is significant increase in per-
pendicular diffusivity, increased apparent diffusion coefficient and
a significant reduction in anisotropy within the white matter near
the lesion (Eriksson et al., 2001; Rugg-Gunn et al., 2001; Lee
et al., 2004; Gross et al., 2005; de la Roque et al., 2005; Widjaja
et al., 2007). There is also a decrease in the volume of white matter
bundles, even in patients who have shown normal T2W MRI (Lee
et al., 2004; Gross et al., 2005). These features can also be found
when compared with the contralateral hemisphere (Princich
et al., 2012).

Newer diffusion imaging sequences have the potential to better
characterize lesions. High angular resolution diffusion imaging
(HARDI-DTI), which resolves multiple intravoxel fiber populations
(Tuch et al., 2002; Behrens et al., 2003), can more accurately perform
fiber mapping and allow for the evaluation of white matter abnormali-
ties near lesions. Advanced methods such as NODDI can give maps of
neuronal density, though few studies have looked at the accuracy of de-
tecting epileptogenic lesions (Winston et al., 2014). Other diffusion
techniques such as diffusion kurtosis imaging (DKI) provides improved
GM–WM contrast, and is sensitive to changes in GM (unlike DTI, as the
apparent diffusion coefficient in GM is essentially isotropic) (Feindel,
2013).

2.6. Functional imaging using MRI and EEG

Functional MRI methods image temporal changes in blood flow
(blood-oxygenation-level-dependent [BOLD] contrast imaging)
(Kwong et al., 1992). Clinically, EEG is acquired during fMRI acquisition,
and the timed EEG events are used to simultaneously map or signal av-
erage BOLD changes (Pardoe and Kuzniecky, 2014). These events are
usually interictal epileptiform discharges, or spikes, because of the diffi-
cult logistics associated with recording seizures and ictal events in the
MRI scanner. Studies have shown that BOLD response in EEG-fMRI can
help delineate the epileptogenic zone and can quantify network
changes in the brain (Pardoe and Kuzniecky, 2014; Zijlmans et al.,
2007). The sensitivity of these techniques have ranged from 55% - 88%
(Pardoe and Kuzniecky, 2014; Moeller et al., 2009). There are extensive
studies that have used EEG-fMRI to help with lateralization of seizure
onset, detection of lesions as well as assessment of neurocognitive bat-
tery tests. A combination of EEG-fMRI with other imaging modalities
can potentially uncover structural and functional lesions that are often
missed on standard imaging alone.
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2.7. Network analysis using functional (fMRI/EEG/MEG) and structural im-
aging (DTI)

Brain networks in epilepsy have been increasingly investigated in re-
cent years. Network analysis characterizes the organization of brain net-
works, either structural or functional, and studies the evolution of these
networks interictally, preictally and ictally (Bullmore and Sporns, 2009;
Ponten et al., 2007; van Diessen et al., 2013). There are other reviews
geared towards clinicians as well as network scientists that introduce
this paradigm of research and discuss future applications (van Diessen
et al., 2013). Different modalities of brain mapping, including DTI,
fMRI, EEG and MEG are used to correlate network characteristics of pa-
tientswith epilepsy, such as thosewith FCDs (Bandt et al., 2014;Holmes
and Tucker, 2013; Jeong et al., 2014; Caciagli et al., 2014; Bernhardt
et al., 2011; Guye et al., 2010; Pedersen et al., 2015; Thornton et al.,
2011; Englot et al., 2015). These connectivity measures have promising
potential as an adjunctive tool to aid in identifying the epileptogenic
zone as well as the extent of lesions in epilepsy patients being consid-
ered for resective surgery (Weaver et al., 2013). The questions remain
as towhat constraints exist between functional and structural networks
and how this interplay guides seizure initiation and propagation. More
studies need to consider network characteristics of structural networks
(DTI, cortical thickness or gray matter derived graphs), and correlate
them to network characteristics of functional networks, regional and
global, derived from ECoG and fMRI. Highly informative network fea-
tures will serve as predictive biomarkers for surgery outcome to
clinicians.

2.8. Other modalities: CEST/MTI/MRS

Other imaging acquisition sequences have been studied in epilepsy
patients but very few of them are used routinely for clinical purposes.
Magnetic resonance proton spectroscopy (MRS) can image metabolite
concentrations throughout the brain and is sensitive to neuronal dys-
function by showing reduced NAA (nacetylaspartate) levels, increase
in choline and other heterogeneous metabolic biomarkers in focal
areas (Mueller et al., 2005). These image findings can also be asymmet-
ric between hemispheres and can help lateralize the epileptogenic zone
(Krsek et al., 2007). These act as biomarkers indicating mitochondrial
dysfunction, total compartmental neurotransmitter concentrations,
neuronal death and glial activation (Kuzniecky, 2004; Shultz et al.,
2014). These can also separate etiologies since some such as FCD dem-
onstrate metabolic abnormalities whereas heterotopias and
polymicrogyrias do not often demonstrate these biomarkers
(Kuzniecky et al., 1997). Other lesions, such as hypothalamic
hamartomas tend to have reduced NAA and increased myo-inositol
(Freeman et al., 2004). Another study has shown that postsurgical out-
come was better if resected tissue was metabolically abnormal com-
pared to resected tissues that were metabolically normal (Pan et al.,
2013).

Other imaging sequences such as magnetization transfer imaging
(MTI) can be very sensitive to detecting MCDs, though the specificity
of MTI has not beenwell studied (Rugg-Gunn et al., 2003). Chemical ex-
change saturation techniques (CEST) can study specific neurotransmit-
ter and macromolecular concentrations, such as glutamate (Cai et al.,
2012). Areas with increased extracellular glutamate and with decrease
glutamate-glutamine cycling have been associated with increase sei-
zure likelihood, such as in areas of hippocampal sclerosis (Pan et al.,
2008; Davis et al., 2015).

2.9. Summary

Current clinical epilepsy imaging protocols are primarily structural
and diffusion imaging modalities. Specifically, T1W, T2W, FLAIR, DWI
and sometimes MRS sequences are used to identify possible epilepto-
genic lesions, usually malformations of cortical development. In
addition, many institutions combined these structural images with
functional imaging using PET, MEG, and SPECT. There have been many
studies that have looked at quantitative MRI techniques, such as T2
mapping, HARDI-DTI, DKI, DIR and MP2RAGE, as possible ways to im-
prove contrast-to-noise ratios especially in the gray matter but few
studies have been able to improve sensitivity/specificity or correlate
image findings with postsurgical seizure outcome.

3. How are features computed by machine?

In recent years, improvements in imaging technology such as paral-
lel imagingMRI and high field scanners have improved the detection of
malformations of cortical development, a large proportion of which can
lead to epilepsy. However, visual analysis of these images by radiolo-
gists is a challenging task and there is considerable variability in the in-
terpretation of these images. Recent trends in medical computer vision
have tried to semi-automate the computation of these features and de-
tection of these lesions, primarily through the use of voxel-based mor-
phometry (VBM) as well as surface-based morphometry. Some
methods attempt to detect them using textural features. Most methods
compute these features with respect to a nominal distribution (z score)
or with respect to the contralateral hemisphere (asymmetry analysis
(Yang et al., 2011)). An exhaustive list of the image features used by dif-
ferent papers is laid out in Table 2.

Each of the above techniques has strengths and limitations, but the
combination of such techniques could improve the detection of dysplas-
tic lesions that are undetectable by MRI (Zhang et al., 2014). Still, some
of them are easily missed, and the use of computational techniques is
often not sufficient to detect them (Zhang et al., 2014). This section sur-
veys the different methods that have been developed to outline the
common image findings listed in the previous section. In most studies,
sensitivity is defined as the fraction of patients who had lesions identi-
fied using computational analysis that went on to be resected. Specific-
ity is defined as the fraction of normal healthy controls that failed to
elicit any detection by these automated tools.

3.1. Signal intensity change and subcortical presence of abnormal gray
matter

The most common image finding is an abnormality like a hyper- or
hypo-intensity on standard imaging sequences (T1W, T2W, FLAIR).
The most common method to detect these abnormalities is a voxel-
wise approach which involves calculating z- or t-score statistical maps
using a nominal distribution from normal healthy controls
(Bernasconi, 2004; Colliot et al., 2005; Colliot et al., 2006b; Colliot
et al., 2006c; Colliot et al., 2006a). Scores are computed either on the in-
tensity itself or, more often, on a computed relative intensity score
(Colliot et al., 2005; Colliot et al., 2006c; Besson et al., 2008b; Colliot
et al., 2006b). Another common method to detect signal abnormalities
is a type of surface-based method. A recent surface-based approach
computed surface-based features of FCD morphology and was able to
detect abnormal gray matter in patients initially read as MRI-negative
with high sensitivity and specificity (Hong et al., 2014). Other methods
detect hyperintensities by calculating the difference between voxel in-
tensities and voxels on the gray and white boundaries to find signal ab-
normalities at the gray-white junction (Antel et al., 2002).

These techniques can be adapted to identify other malformations,
such as subcortical band heterotopia (“double cortex” syndrome)
(Huppertz et al., 2008) or periventricular heterotopia, where ventricle
masks are used to look for abnormal graymatter outlining the ventricles
(92.5% sensitivity and 91.5% specificity) (Pascher et al., 2013). In addi-
tion, these methods have been sensitive to detecting co-occurring neo-
plasia with focal cortical dysplasia (87% sensitivity) (Bruggemann et al.,
2007).

Some important caveats to using voxel-based morphometry are:
(Schachter, 2015) statistical maps depend on the control population



Table 2
List of features and samplemethods used to compute the features. Different combinations
of these features were used to isolate and identify lesions (usually focal cortical
dysplasias).

Computable features for detection of epileptogenic lesions

Feature Algorithms to compute feature
Image intensity Voxel-based morphometry

(Ashburner and Friston, 2000),
difference maps (Wilke et al.,
2003), laplacian intensity
gradient (Colliot et al., 2006a),
other statistical measures (mean,
median, variance, skewness,
kurtosis, energy, entropy)

Cortical thickness Diffeomorphic registration based
cortical thickness (Tustison et al.,
2014), distance between
gray/white and pial isocontour
surfaces (Dale et al., 1999; Besson
et al., 2008b)

Gray-white blur Gradient map using gaussian
smoothing, identify areas with
highest cortical thickness (Qu
et al., 2013), MAP (Wagner et al.,
2011), iterated local searches on
neighborhood (Xiaoxia et al.,
2014)

Sulcal reconstruction Graph matching (Rivière et al.,
2002), gyrification index (Dale
et al., 1999), spherical wavelets
(Yu et al., 2007; Nain et al., 2007)

Lobar or volume atrophy/enlargement Deformation based
morphometry, jacobian of heat
equation vector field applied to
spherical harmonics with a point
distribution model (Kim et al.,
2005; Bernhardt et al., 2015)

Curvature Gaussian intrinsic curvature (Kim
et al., 2013; Pienaar et al., 2008),
extrinsic curvature (Pienaar et al.,
2008), integral measures of
curvature (Van Essen and Drury,
1997), orientation fields from
gradient structure tensors (Rieger
and van Vliet, 2002; Rieger et al.,
2004), area-minimizing flows to
spherical registration (Besson
et al., 2008b)

Asymmetry analysis (Goffin et al., 2010) Asymmetry index, asymmetry
analysis on cortical folding (Van
Essen et al., 2006)

Other cortical measures Fractal analysis of the cortex
(Bernasconi, 2004), metric
distortions on spherical
registration (Wisco et al., 2007)

Texture analysis
3D texture
analysis

Directional Riesz wavelets
(Jiménez Del Toro et al., 2013)

Gray-level
co-occurrence

Contrast, homogeneity,
inverse difference, energy,
entropy

Haralick et al. algorithm

Gray-level
run-length

Short/long run emphasis,
gray level distribution,
run-length distribution

Haralick et al. (Haralick et al.,
1973) algorithm (Haralick et al.,
1973)
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used for analysis (Kwan et al., 2011), the results of VBM depend on the
accuracy of intrasubject registration and normalization (Bookstein,
2001; Begley et al., 2000), there have been studies that showed a lack
of correlation between gray matter probability values and the cortical
neuropathological measures in normal-appearing graymatter, suggest-
ing that intrinsic neuropathological cortical changes do not necessarily
influence gray matter probability maps used for VBM analyses
(Eriksson et al., 2009).

Othermethods of detecting intensity change and abnormal presence
of gray matter in white matter include computation of difference maps
(Wilke et al., 2003), fractal analysis of the cortex (Bernasconi, 2004),
analysis of intensity gradients (Colliot et al., 2006a), asymmetry analysis
of intensities (Goffin et al., 2010), and analysis of textures (Bernasconi,
2004; El Azami et al., 2013). Studies using texture analysis compute
cubic volume sampling around each voxel to calculate second and
third order textural features, and compare them to the contralateral
side (Yang et al., 2011; Jiménez Del Toro et al., 2013). These methods
were able to easily identifiable lesions in 85% of patients in one study.

Signals can also be abnormal in other modalities, such as DTI ADC,
when compared to controls. For instance, VBM on T2 mapping had
87% sensitivity (Rugg-Gunn et al., 2005) and VBM on FLAIR imaging
had 88% sensitivity/96% specificity (Focke et al., 2008) in detecting
hyperintensities. One study identified a lesion in a test patient using
7 T VBM (Speck et al., 2009). The few studies that have applied VBM
to DTI found reduced fractional anisotropy, increased trace of tensor ei-
genvalues, and elevation in perpendicular eigenvalues in lesional voxels
(Widjaja et al., 2007). Another study looked at probabilistic reconstruc-
tion of PET-MR data using asymmetry as a way to detect hypo-/hyper-
metabolic regions (Goffin et al., 2010). This study was able to detect le-
sions correctly in 71% of the patients though specificity was hard to de-
termine since the other positive findings could not be verified as false
positives. Fewer studies have reported segmentation accuracy in
terms of coverage of lesional voxels but the study with the best results
has reported 73% segmentation accuracy (Bergo et al., 2008). More re-
search needs to be done in applying morphometric methods to newer
modalities of imaging.

3.2. Increased cortical thickness

Cortical thickness measures the radial distance between white and
gray matter surfaces (Thesen et al., 2011). Increased cortical thickness
is a sensitive finding in malformations of cortical development, specifi-
cally FCDs (Thesen et al., 2011). In past studies, increased cortical thick-
ness has been reported in 91% of patients (Bernasconi and Bernasconi,
2011). Early studies focused on cortical thickness computed as the dis-
tance between isosurfaces corresponding to the gray-white junction
and the gray-CSF junction, utilizing Laplace's equation to identify
these intensity-based contours (Antel et al., 2002; Bernasconi, 2004;
Colliot et al., 2005; Colliot et al., 2006b). Currently, the most commonly
used cortical thickness tools include Civet-CLASP (MacDonald et al.,
2000; Kim et al., 2005), Freesurfer (Dale et al., 1999) and diffeomorphic
registration based thickness measures (Tustison et al., 2014; Das et al.,
2009).

Cortical thickness can be measured through a voxel wise approach
or by utilizing tools that compute it using surface-based morphometry.
A recent study that utilized surface-based morphometry showed that
with cortical thickness as a feature, “a surface-based detection method
identified 92% of cortical lesions (sensitivity) with few false positives
(96% specificity), successfully discriminating patients from controls
94% of the time” (Thesen et al., 2011).

3.3. Gray-white junction blurring

Another important image finding sensitive to malformations of cor-
tical development is blurring of the junction between outer gray matter
and inner white matter, which contributes to a pseudo-thickening of
the cortex (see Fig. 1). Up to 72–96% of lesions will have this finding
on MRI (Bernasconi and Bernasconi, 2011). In addition, the majority of
patients (up to 83%)whohave FCDs but no imagingfindings have subtle
GW junction blurring that is initially missed by the neuroradiologist.

Techniques used to model GW blur include computing a gradient
map after convolution with a Gaussian kernel (Antel et al., 2002;
Colliot et al., 2005; Colliot et al., 2006b) and computing VBM of GM in-
tensity across a nominal distribution from healthy controls (Huppertz
et al., 2005). Another technique approximated areas of blur by finding
regions with the highest cortical thickness, which would find pseudo-
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thick regions of the cortex as a result of GWblur. This technique has 70%
sensitivity in detecting blurred regions (Qu et al., 2013).

The most well-studied and successful technique is the MAP tech-
nique (Huppertz et al., 2005) which creates a “junction” image. Junction
images are calculated by computing the histograms of classified gray
and white matter voxels. Next, those with intensities that fall in be-
tween the two histogrammeans are isolated. These are used to identify
voxels that are not definitively gray or white matter. The resulting bi-
nary image is convolvedwith a smoothing kernel, revealing areas of am-
biguous gray voxels. This image is subtracted from similarly created
junction images from a nominal distribution of healthy controls, show-
ing areas of abnormal “junction” (Huppertz et al., 2005). One study that
used theMAP techniquewas able to identify a lesion in onepatient's im-
aging that was initially read as normal. This led to resection of the iden-
tified abnormal tissue and the patient has been seizure-free post
surgery (Wang et al., 2012). Another study similarly found subtle le-
sions in the orbitofrontal region of a patient with FCD and gliosis
(Wang et al., 2013). This technique helps in redirecting the reviewer
to suspicious areas rather than generating new diagnostic information
for clinicians (Wang et al., 2012; Wang et al., 2015).

Other more advanced methods exist to quantitatively measure GW
blur. For instance, a recent study utilized an “iterated local searches on
neighborhood” technique to improve the specificity of these ap-
proaches, specifically the gradient method, by measuring the GW bor-
der width and creating a potential map based on the probability
distributions of GMandWM in each voxel (Xiaoxia et al., 2014). This po-
tential map is then converted into a distancemap between the gray and
white matter surfaces using an iterative optimization approach that op-
timally searches in a cubic neighborhood to find the shortest distance.
This distance metric represented the GW junction width and
highlighted abnormally thickened regions of the cortex (Xiaoxia et al.,
2014).

3.4. Sulcal and gyral abnormalities

Patients with malformations of cortical development will show
many different sulcal and gyral abnormalities. For instance, some FCDs
are located in the deep sulcus (Besson et al., 2008a). Other
malformations, such as lissencephaly and polymicrogyria will have ab-
normally shaped sulci and gyral structure. Other radiological findings
include specific image findings when the cortical surface is recon-
structed, such as polymicrogyria, pachygyria and the power-button
sign,which occurs in 62% of FCD type II patients due to a particular elon-
gation of the precentral sulcus (Mellerio et al., 2014b).

Early methods of sulcal mapping used graph matching algorithms,
driven by minimization of a global cost function derived from
intensity-based potentials (Rivière et al., 2002). Voxel-based methods
have also been used to determine these abnormal gyration patterns
that stand out when compared to normal health control gyri (Wagner
et al., 2011). Similarly, surface based methods (e.g. Freesurfer) allows
for quantification of surface-based features such as gyrification index,
curvature and sulcal depth (Dale et al., 1999). Gyrification index quan-
tifies the gyral anatomy in a circular region around any surface vertex.
This surface-based featurewas found tobehelpful in detecting epilepto-
genic malformations but were not specific to this condition (Thesen
et al., 2011). More recent sulcal morphometric methods have been
used to identify regionswith deep sulci or broad gyri (Hong et al., 2014).

3.5. Diffuse/multifocal hyperintensities

Any of the above features can be present in different lobes of the
brain. There have been studies confirming multi-focal occurrence of
MCD (Fauser et al., 2009). Othermalformations of cortical development
such as periventricular heterotopia or subcortical band heterotopia can
have abnormal gray matter signal around the ventricles or near the
gray-white junction at multiple locations of the brain (see Fig. 2). All
the above methods be applied throughout the brain but suffer in
specificity.

3.6. Summary

Most of the imaging findings that radiologists look for in patients
with epilepsy can be computed and detected sufficiently well, though
with questionable specificity. The most common methods of computa-
tion and detection involved voxel-based morphometry or a statistical
mapping of features compared to a nominal distribution from normal
controls. Other surface-based morphometric techniques exist to com-
pute other anatomical features, such as gyrification, sulcal depth, and
cortical thickness. While many studies have combined some of these
features with variable success on FCD type II, future studies should
focus on identifying all malformations of cortical development like
low-grade glial tumors. In addition, future studies should combine
some of these features or compute these features across multiple imag-
ing modalities to gain better specificity. This can better identify epilep-
togenic lesions.

4. How well can computational analysis identify lesions based on
these features?

Automated analysis provides an effective way to simplify the analy-
sis and diagnosis of malformations of cortical development in epilepsy
patients. It can reduce the burden on radiologists in their practice and
improve diagnostic accuracy (Wang and Summers, 2012).Many studies
have attempted to fully automate the detection of MCDs, specifically
cortical dysplasias, by applying supervised and unsupervised learning
techniques based on the features discussed in the previous section.
Below we review the techniques tried as well as the accuracy of these
automated techniques.

4.1. Segmentation

Many studies attempted to segment cortical boundaries of lesions
based on changes in image gradients, especially in cases where they
caused significant gray-white blurring or increased cortical thickness.
Despotović et al. (2011) integrated Markov random field-based energy
functions with a graph cuts algorithm to more accurately segment cor-
ticeswith focal cortical dysplasias (Despotović et al., 2011). These inves-
tigators confirmed their accuracy through comparison to other
segmentation techniques, such as SPM and FSL, using Dice scores, a
common metric of overlap and similarity used with segmentation
algorithms.

Shen et al. (2011) used fuzzy c-means segmentation algorithm to
create a fuzzy index matrix that quantified degree of gray-white blur-
ring (Shen et al., 2011). This technique identified the lesion correctly
in 5 of 7 patients with FCDs. These positive results indicate further re-
search is needed to investigate the utility of advanced techniques in
segmentation.

4.2. Supervised learning

In supervised learning, each sample contains two parts: one is a set
of input features and the other is output observations or labels (Wang
and Summers, 2012). The purpose of supervised learning is to deduce
a functional relationship from training data that generalizeswell to test-
ing data (Wang and Summers, 2012). The following studies used differ-
ent forms of supervised learning to correctly classify voxels as lesional
or normal. They primarily looked at FCD type II.

El Azami et al. (2013) utilized multiple textural features to compute
symmetric textural patches taken from both hemispheres. These fea-
tures were trained using a reduced coulomb energy classifier that at-
tempts to fit the best hypersphere that would correctly classify each
voxel based on their feature set. Their training data was a small sample
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(1%) of voxels (from both healthy controls and patients) alongwith fea-
tures corresponding to each one. The test data was run using a leave-
one-out cross validation scheme. This was followed by outlier removal
via thresholding of cluster size and distance to nearby lesional clusters.
This resulted in 77% coverage of correctly identified lesional voxels that
were concordant with manually drawn ROIs in study patients.

Strumia et al. (2013) computed textural based features such as
image gradient, skewness of local cortical thickness histograms, and
spatial tissue probability maps on patients with FCDs and normal
healthy controls. These features were used in a Naive-Bayes classifier
to calculate probabilities at each voxel. The accuracy of classification of
this method was 51% with a dice score of 0.13. This was compared to
theMAP technique (Huppertz et al., 2005), which only had an accuracy
of 17%.

Antel et al. (2003) computed the following features: cortical thick-
ening, blurring of gray-white junction, gray-level hyperintensity
through image gradient, and textural features such as statistics on
gray-level co-occurrence matrices (angular second momentum, differ-
ence entropy, contrast). As a first step, the intensity-based features
were trained in a Bayesian classifier to classify as lesional or normal.
Voxels classified as lesional were then reclassified based on Fisher's dis-
criminant ratio using textural features. This boosting technique was
performedusing a leave-one-out cross validation approach and resulted
in an average sensitivity of 83% detection in the test patient population.
There were no lesions classified in the normal healthy control popula-
tion (100% specificity). There were some additional ones detected in
the patient population, though further study is required to determine
whether these correlated with clinical disease.

Another study, Besson et al. (2008b), took a similar approach but
used surfaced-based features, including cortical thickness, curvature
and sulcal depth. In addition, the authors of the study modeled voxel-
based features, such as gray-white blur and signal hyperintensity, on
these surface contours outlining the gray and white matter. They ap-
plied a four-layer feed forward neural network to classify each vertex
as lesional or healthy. To avoid overfitting, a cross-validation method
was used to optimize the neural networks. The mean and standard de-
viation of all surface features of clusters of vertices classified as lesional
were then reclassified using a fuzzy k-nearest neighbor to remove false
positives in healthy controls. The sensitivity of the first classifier, which
was 95%, reduced to 68% once the second classifier was implemented to
ensure no false positives were detected in healthy controls (100%
specificity).

Yang et al. (2011) computed statistical features on cortical thickness
and gradient vectors and applied them to a Naïve Bayes classifier. This
classifier resulted in 62% sensitivity, 81% specificity after parameters
were optimized.
4.3. Recent computational models

Recent methods have refocused the problem of detecting lesions as
an outlier detection problem. This follows from the idea that a lesion
is an outlier in the feature space when compared to the same region
across control populations. This outlier detection approach has been
successful in other fields (e.g. seizure prediction (Gardner et al.,
2006)) and overcomes the need to collect large amounts of training
data andfine-tune parameters of themodel. Themost recent supervised
algorithm (Ahmed et al., 2014) classified segmented patches of the cor-
tex, obtained using unsupervised segmentation of the flattened cortex,
which clusters regions with homogeneous feature values. As a result,
their study corrected their method for 3 issues: All voxels in previous
learning models are assumed to be independent of each other, most
learning models use a second reclassifier to improve specificity but in
the process lose sensitivity of the delineation of the epileptogenic lesion
and better models need to be able to detect lesions in patients who are
MRI negative instead of on imaging with visible lesions.
Another outlier detection method trained a one-class SVM (OC-
SVM) to classify voxels as normal based on 6 features (probability
maps of GM, WM, CSF, gray matter intensity, gray-white blurring).
Then, a test image was inspected using the classifier and a threshold
to the distance metric was applied to identify voxels that were “out-
liers”, or very different, compared to the normal distribution for these
feature values (El Azami et al., 2013). This method did similarly well
to previously described techniques, such as SPM and MAP (Huppertz
et al., 2005), andwas able to detect lesions that weremissed during ini-
tial reading. The authors concluded the study by saying that with better
and larger normal control population, theirmethodwould be able to de-
tect smaller lesions (El Azami et al., 2013).

In unsupervised learning, there is only one set of features and no
label information for each sample (Wang and Summers, 2012). The
main purpose of unsupervised learning is to discover interrelationship
between the features to uncover latent variables behind the observa-
tions (Wang and Summers, 2012). One study used unsupervised tech-
niques to model multiscale cortical surface patches derived from
coarse to fine resolutions of the image. These patches were then fed
into a random forest, specifically a hierarchical conditional random
field, which considers patches that overlap with each other at all scales.
This method resulted in detection of lesions in 90% of MR+ images and
an impressive 80% of MR- images (Ahmed et al., 2014).

Very few studies have looked at extending these techniques to other
modalities. One study looked at the power of combining diffusion
weighted imaging with magnetic resonance spectroscopy. Using a lin-
ear discriminant analysis on images obtained from pediatric patients
with FCD, DNETs and gangliomas, the study found that combining fea-
tures from different modalities is more powerful than taken individu-
ally. When taken alone, none of the MRI parameters was able to
distinguish FCD from DNET and gangliomas. When apparent diffusion
coefficient variable was added to the model, one patient was still
misclassified. The complete separation of all three groups of patients
was possible only when conventional MRI, diffusion, and MRS were
combined together (Fellah et al., 2012).
4.4. Summary

This section surveyed a number of automated techniques that detect
and define areas ofMCD,mostly focal cortical dysplasia. Thoughmost of
the methods were supervised, all used different set of features, includ-
ing voxel-, surface- and texture-based features. Most studies applied
their techniques to standard imaging (T1W, T2W), and focused on
FCDs. It is important to note that studies applying these techniques
are almost all relatively recent, and some of the most promising are
published as machine learning or computer science conference papers,
speaking to the novel nature of the work. In addition, most of these
studies could be applied to other modalities as well.

There is a need to consider other data-driven approaches in the fu-
ture including dimensionality reduction, which decreases the number
of features and increases relevant information. This has shown promise
in complementing current clinical diagnostic tools. For instance, in a
study of asthmatics versus non-asthmatics, textural features and other
second order image features had higher predictive power of diagnosis
as compared to spirometry values (Tustison et al., 2010). Interestingly,
it was also found that spirometric values are relatively orthogonal to
these image feature values in terms of informational content (Tustison
et al., 2010). The same lesson can be applied to the problem of detecting
epileptogenic regions, where the current gold standard for seizure local-
ization is through electrophysiology, brain imaging, clinical information,
neuropsychological testing, and the physical examination; all felt to give
orthogonal information. Utilizing complementary information can help
narrow the solution space for search algorithms, so that the underlying
structural lesion can be best described through use of minimally-
redundant maximally-relevant image features.
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5. Discussion

A number of methods have emerged over the last decade to detect
malformations of cortical development, such as T2W hyperintensity,
T1W hypointensity, increased cortical thickness, increased blur of the
gray-white junction, and abnormal cortical folding patterns. Technolog-
ical innovations in imaging such as diffusion imaging and computing
techniques such as voxel-based morphometry have converged to
make this tremendous advancement. In addition, automated methods
like applyingmachine learning techniques, most commonly supervised
learning schemes, have shown impressive results in detecting the most
commons lesion that may be present in a patient with drug resistant
epilepsy.

5.1. Multi-centric data-sharing platform

The large variability in which lesion was detected across studies is
one of the drawbacks of this field. Another is our lack of knowledge as
to how much of the epileptic network must be removed to render pa-
tients seizure-free, as it may be that more focal resection of better-
localized regions would yield better overall outcome. Additionally, var-
iability in patients across studies and institutions, different protocols for
pre-surgical evaluation at different centers, different imaging equip-
ment used at each center, and the underlying pathology of the patients
included in each study (Zhang et al., 2014) are the contributing factors
to the varying accuracies of the different methods mentioned in this
review.

The authors of this review believe a multi-centric data-sharing plat-
formwith computational pipeline analysis (example in Fig. 3) is the nat-
ural next step in the line of research. Thiswill be critical to standardizing
neuroimaging data analyses across institutions, avoiding bias and
allowing algorithms to be improved to detect multiple types of lesions,
not just FCDs. This pipeline would ideally satisfy the following criteria:
Fig. 3. Sample outline of a pipeline to identify key features in mul
1. The pipeline should have the capability to analyze large-scale neu-
roimaging data across multiple modalities and time points utilizing the
most accurate algorithms to provide regions of interest for further
study.

2. The pipeline should be capable of identifying important radiolog-
ical features that are of interest to radiologists, such as cortical atrophy,
pseudothickening of the GM, ventricular abnormalities, etc.

3. The pipeline should be designedwith amodular structure to allow
easy plug-and-play of different machine learning algorithms in order to
serve as a benchmarking platform, where different algorithms can be
compared to “gold standard” training data. In addition, this will be im-
portant to clinically validate newer sequences and imaging technologies
that are discovered, such as ultrahigh field imaging (Madan and Grant,
2009) and advanced diffusion sequences (Winston et al., 2014).

4. Finally, the pipeline should also be able to take in other electro-
physiology and clinical metadata in order to better adapt to the
clinician's need. This would also allow researchers to study how well
their algorithms correlatewith electrophysiological and clinical findings
or to apply novel network analysis methods on ECoG-derived networks
as well as fMRI and DTI whole-brain networks.

Analyzing the amount of neuroimaging data collected at standard
epilepsy centers requires a substantial amount of computational re-
sources. Leveraging elastic cloud resources can be a cost effective solu-
tion to advance this field into one that is more collaborative and
transpires across multiple clinical institutions. There are multiple re-
sources in the neurology community that utilize these cloud resources,
such as http://ieeg.org (Kini et al., 2015), Human Connectome Project
(Van Essen et al., 2013), the European EEG database (http://epilepsy-
database.eu) (Klatt et al., 2012) and LONI IDA (Dinov et al., 2010).

Still, it is a challenge to implement such a multi-centric approach
without proper incentives (e.g. federal funding) or appropriate guid-
ance from clinical and scientific leadership. In addition, standardization
of imaging data can be a challenge in the clinical epilepsy domain
ti-modal imaging from patients with drug-resistant epilepsy.
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because of the large variability in clinical imaging sequences in the pa-
tient workup. All pipelines would have to ensure data format interoper-
ability, de-identification of protected health information (PHI), and
adherence to mandated government regulations. Imaging data would
have to be manually curated to remove any incomplete data that is of
poor quality (e.g. images with artifact distortions) before being
uploaded to data sharing platform used by these pipelines. Institutions
that would like to contribute would have to make sure they get appro-
priate consent from patients and have approval from their institutional
ethics board (e.g. IRB).

Over the past 4 years, our team of neuroscience and computer sci-
ence experts has established a cloud-based resource, http://IEEG.org,
thatwe believe can be a potential solution to these challenges. This plat-
form provides data sharing and analysis capabilities to the neuroscience
community, with additional imaging analysis tools planned for the near
future. This collaborative platform allows researchers to have tight con-
trol over data access and allows researchers to share algorithms and
data. We hope solutions like this platformwill address these challenges
and promote multi-centric work that can make significant impact on
clinical practice.

For now, future studies should at least try to ensure proper feature
selection in their methods and include newer imaging modalities that
provide insight into pathophysiologic mechanisms. In addition, any re-
search study should attempt to make their computational pipelines
publicly available to scientists and clinicians so they can be applied in
a clinical setting.

5.2. Feature selection

Features that were used in most studies were more important than
the classifier itself because these were derived from important
knowledge-guided radiologicalmarkers. It is useful to carefully consider
which features should be used in any model because slight changes in
feature set can cause considerable variability in the resulting prediction
model. Proper feature selection will reduce the computation cost of in-
cluding irrelevant features as well as prevent overfitting.

The brute-forcemethod of feature selection is to exhaustively search
through all possible combinations of input features and find the best
subset. The computational cost associatedwith this is too highwith sig-
nificant danger of overfitting. Instead, methods that would allow for a
ranking of different computational image features in conjunction with
clinical values (e.g. radiological or electrophysiological) would yield
useful feature subsets that can greatly improve accuracy.

For instance, cortical thickness and gray-white junction blur are use-
ful features to predict cortical dysplasia. Thus, a straightforward ap-
proach for feature selection would be to choose features similar to this
whichbest characterize the observed data and agreewith expert clinical
classification of the target image. This would quantify to clinicians what
minimally-redundant information each feature uniquely provides. This
might additionally unveil key radiomarkers of disease extent that are
better indicators than standard radiological markers. This class of
methods is getting more traction in the field of epilepsy. For example,
experts in the computational imaging field have uncovered a surprising
subpopulation of temporal lobe epilepsy patients who have bilateral
hippocampal hypertrophy using surface-based volumetry (Bernhardt
et al., 2015). They found this subgroupwas high correlatedwith surgical
outcome (Bernhardt et al., 2015).

All future studies should also consider adding features obtained from
newer modalities such as 7 T T1 MRI or DTI. In addition, applying the
same features as before can uncover potentially important
radiomarkers in newer modalities that better explain the pathophysiol-
ogy. It would be intriguing to study how multi-modal imaging features
affect the prediction models of lesion localization.

It is important to note that othermore automated approaches to fea-
ture selection have been applied to EEG and other feature selection
problems and may have applicability here. These include the use of
genetic algorithms to search a feature space, including testing a range
of secondary features (i.e. features of features (D'Alessandro et al.,
2003)).

5.3. Gaps in knowledge of pathophysiologic mechanisms.

The pathophysiologic mechanisms and the full clinical spectrum of
syndromes associated with malformations of cortical development are
unknown. The fact that some lesions can be invisible in structural and
functional imaging means that imaging technology has not advanced
far enough to understand for investigators to understand MCD patho-
physiology. For instance, S.H. Eriksson et al. found that there is lack of
correlation between SPM derived gray matter probability values and
quantitative cortical neuropathological measures in normal-appearing
gray matter, which suggests that there are underlying intrinsic cortical
changes that are not reflected in the computed gray matter maps
(Eriksson et al., 2009). In addition, lesions in the seizure zone may not
be generating seizures, but may require interaction with normal cells
outside the seizure region of structural disorganization in order to initi-
ate a seizure (Schwartzkroin and Wenzel, 2012). This has been shown
to happen in the perituberal tissue in patients with tuberous sclerosis
complex (Sosunov et al., 2015). Thus, delineating the full extent of the
epileptogenic zone may be difficult, especially when imaging is incapa-
ble of rendering these interactions. Further, it may be necessary to com-
bine different modalities of imaging, including structural, functional,
metabolic and EEG to gain insight into the extent of the “critical mass”
of the lesion that should be resected (Schwartzkroin andWenzel, 2012).

Studies that have looked at lesion histopathology from patients
whose images were read as normal indicate that a majority of these le-
sions were mild forms of malformations (45% FCD, 22% gliosis, 13% ha-
martia and gliosis, and 9% hippocampal sclerosis). Thus, imaging
techniques need to improve in order to detect these milder forms of
malformation earlier in the clinical treatment phase.

5.4. Imaging technique challenges

Existing technological improvements in imaging have greatly im-
proved the sensitivity to malformations. For instance, the phased array
coil in high and ultra-high field MRI improves signal-to-noise ratio
(SNR) and allows for radiologists to more easily detect lesions (Knake
et al., 2005). The current state of 7 T MRI allows for improved contrast
to noise ratio, especially at the gray-white junction (Duyn et al., 2007).
This modality has been shown to correlate well with microscopic pa-
thology in hippocampal pathologies like sclerosis (Coras et al., 2014).
But, few studies have tested the benefit of this technique and correlated
with outcomes (Speck et al., 2009). As a result, even fewer studies have
combined images obtained at 7 T with other modalities of imaging.
These image techniques should be able to capture features visible on
histology such as cortical laminar disorganization and the presence of
dysmorphic neurons with/without characteristic “balloon cells (BCs)”
(Miyata et al., 2013).

5.5. Next steps: gold standard metrics for lesion localization and
quantification

The studiesmentioned in this reviewdiffer in theway they approach
quantifying accuracy of their methods. Currently, there is no gold stan-
dardmetric to assess if a lesion has been correctly identified. In addition,
there is no gold standard metric to quantify its extent. As a result, we
cannot be sure if currentmethods are correctly detecting their target re-
gions. In addition, if a lesion is detected, we cannot measure the accu-
racy of its estimated extent.

In most studies, sensitivity is defined as the proportion of patients in
which there is overlap between predicted lesions and surgical resection
volume in patients. These are measured in a patient cohort with favor-
able outcomes (e.g. Engel I). There is no confirmatory histopathology
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or electrophysiology for the other “positive” findings in volumes that
were not resected. Similarly, specificity is defined as the proportion of
healthy controls in which the method failed to find any “false positive”
lesion.

In order to ensure standardization of these definitions, all patients
should have exact lesion localization and seizure onset maps cross-
validated across different neuroimaging modalities, surgical histopa-
thology, surface/depth electrode recording and other clinical metadata.
The full spatial extent of the lesion pathology should be accurately
mapped to allow researchers to measure the volume overlap. These
standardizations should be set as guidelines by the clinical leadership
(e.g. similar to the ILAE histopathological classification system
(Blümcke et al., 2011)).

Any findings that do not overlap with these ground truth lesion and
SOZmaps should bemarked as false positives to get a better estimate of
specificity. This allows specificity to be measured at the voxel-level ver-
sus at theweaker subject-level (where normal healthy controls are used
as a test of specificity).

5.6. Next steps: make computational pipelines available to clinicians

Most current research methods use computational neuroimaging
pipelines to preprocess data, compute features and input into a super-
vised or semi-supervised classifier. These pipelines are useful for re-
searchers and clinicians alike. Researchers can use these pipelines to
improve on others work and apply these methods to other patient co-
horts. Clinicians can use these pipelines as part of the clinical decision
workflow, thereby uncovering lesions that might have been missed by
radiologists. Thus, it is important than any research study that builds
such a pipelinemakes the code easily available and usable for clinicians,
who are often not fully versed in the technical details of the image com-
putation. This will encourage clinicians to put these pipelines in their
clinical practice and study its impact on patient outcome.

5.7. Summary

In summary, this integrated data-sharing platform will serve as an
adaptable and powerful platform for clinicians and computer scientists.
We envision a future in which the use of such modular, clinically vali-
dated pipelineswill become commonplace in epilepsy centers alongside
the advances in imaging and electrophysiology. We strongly believe
that this big data approach to semi-automating the detection of subtle
lesionswill be an important ingredient of next-generation computer vi-
sion breakthroughs in epilepsy neuroimaging.
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