Some functions reversing the order of positive operators

Josip Pečarić a,∗, Jadranka Mićić b

aFaculty of Textile Technology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
bElectrical Engineering Department, Polytechnic of Zagreb, Konavoska 2, 10000 Zagreb, Croatia

Received 18 April 2003; accepted 9 September 2004

Submitted by R.A. Brualdi

Abstract

As a complement to our previous results about the function preserving the operator order, we shall show the following reversing version: Let A and B be positive operators on a Hilbert space H satisfying $MI \geq B \geq mI > 0$. Let $f(t)$ be a continuous convex function on $[m, M]$. If $g(t)$ is a continuous decreasing convex function on $[m, M] \cup \text{Sp}(A)$, then for a given $\alpha > 0$

$A \geq B \geq 0$ implies $\alpha g(B) + \beta I \geq f(A)$,

where $\beta = \max_{m \leq t \leq M} \{f(m) + (f(M) - f(m))(t - m)/(M - m) - \alpha g(t)\}$. Our main result is to classify complementary inequalities on power means of positive operators. As a matter of fact, we determine real constants α_1 and α_1 such that

$\alpha_2 M^{[s]}(A; \omega) \leq M^{[r]}(A; \omega) \leq \alpha_1 M^{[s]}(A; \omega)$ if $r \leq s$, where $M^{[r]}(A; \omega) := (\sum_{j=1}^{k} \omega_j A_j^r)^{1/r} (r \in \mathbb{R} \{0\})$ is weighted power mean of positive operators A_j, $\text{Sp}(A_j) \subseteq [m, M]$ for some scalars $0 < m < M$ and $\omega_j \in \mathbb{R}_+$ such that $\sum_{j=1}^{k} \omega_j = 1 (j = 1, \ldots, k)$.

© 2004 Elsevier Inc. All rights reserved.

AMS classification: 47A63

Keywords: Operator order; Generalized Kantorovich constant; Mond–Pečarić method; Weighted power mean

∗ Corresponding author.
E-mail addresses: pecaric@hazu.hr (J. Pečarić), jmici@public.srce.hr (J. Mićić).
1. Introduction

The Löwner–Heinz theorem asserts that the function \(f(t) = t^p \) is operator monotone only for \(1 \geq p \geq 0 \) though it is monotone increasing for \(p > 0 \). Then

\[
A \geq B > 0 \quad \text{implies} \quad A^p \geq B^p > 0 \quad \text{for all} \quad 0 < p \leq 1,
\]

and consequently

\[
A \geq B > 0 \quad \text{implies} \quad B^p \geq A^p > 0 \quad \text{for all} \quad -1 \leq p < 0.
\]

For convenience we denote by \(C(J) \) the set of real valued continuous functions on an interval \(J \) and by \(\text{Sp}(A) \) the spectrum of an operator \(A \) on a Hilbert space \(H \).

Furuta [4] showed several extensions of the Kantorovich inequality and applied them to show the following order preserving operator inequalities.

Theorem A. Let \(A \) and \(B \) be positive operators on a Hilbert space \(H \) satisfying \(\text{Sp}(A) \subseteq [m, M] \) for some scalars \(0 < m < M \) (resp. \(\text{Sp}(B) \subseteq [n, N] \) for some scalars \(0 < n < N \)). If \(A \geq B > 0 \), then for each \(p > 1 \)

\[
\left(\frac{M}{m} \right)^{p-1} A^p \geq K(m, M, p) A^p \geq B^p
\]

(resp. \(\left(\frac{N}{n} \right)^{p-1} A^p \geq K(n, N, p) A^p \geq B^p \)),

where a generalized Kantorovich constant \(K(m, M, p)[1,4,6] \) is defined as

\[
K(m, M, p) := \frac{mM^p - Mm^p}{(p-1)(M-m)} \left(\frac{p-1}{p} \frac{M^p - m^p}{mM^p - Mm^p} \right)^p
\]

for all \(p \in \mathbb{R} \). (★)

Moreover, these extensions are discussed by many authors [2,3,5,7–9,13] and a distinction between the usual order and the chaotic one is clarified in the framework of Kantorovich type inequalities.

In our previous result [9] we showed the function order preserving operator inequalities under a general setting.

Theorem B. Let \(A \) and \(B \) be positive operators on a Hilbert space \(H \) satisfying \(\text{Sp}(B) \subseteq [m, M] \) for some scalars \(m > M > 0 \). Let \(f \in \mathcal{C}([m, M]) \) be a convex function and \(g \in \mathcal{C}(J) \), where \(J \supseteq [m, M] \cup \text{Sp}(A) \). Suppose that either of the following conditions holds (a) \(g \) is increasing convex on \(J \), or (b) \(g \) is decreasing concave on \(J \). If \(A \geq B > 0 \), then for a given \(\alpha > 0 \) in the case (a) or \(\alpha < 0 \) in the case (b)

\[
\alpha g(A) + \beta I \geq f(B)
\]

holds for \(\beta = \max_{m \leq t \leq M} \{ f(m) + \mu(t - m) - \alpha g(t) \} \), where \(\mu = \frac{f(M) - f(m)}{M-m} \).
Next we consider the weighted power means of positive operators as follows. Let A_j be positive operators on a Hilbert space H satisfying $\text{Sp}(A_j) \subseteq [m, M]$, for some scalars $0 < m < M$ and $\omega_j \in \mathbb{R}_+$ such that $\sum_{j=1}^k \omega_j = 1$ ($j = 1, \ldots, k$). We define

$$M_k^{[r]}(A; \omega) := \left(\sum_{j=1}^k \omega_j A_j^r \right)^{1/r} \quad \text{if } r \in \mathbb{R} \setminus \{0\}.$$

We proved in [12–Theorem 1] that

$$A^{-1} M_k^{[s]}(A; \omega) \leq M_k^{[r]}(A; \omega) \leq A M_k^{[s]}(A; \omega)$$

holds if $r \leq s$, $s \notin (-1, 1)$, or $1/2 \leq r \leq 1 \leq s$ or $r \leq -1 \leq s \leq -1/2$ and

$$A^{-1} M_k^{[s]}(A; \omega) \leq M_k^{[r]}(A; \omega) \leq A M_k^{[s]}(A; \omega)$$

holds if $s \geq 1$, $-1 < r < 1/2$, $r \neq 0$ or $r \leq -1$, $-1/2 < s < 1$, $s \neq 0$, where

$$A = \left\{ \frac{r(k^r - k^s)}{(s - r)(k^r - 1)} \right\}^{1/7} \left\{ \frac{s(k^r - k^s)}{(r - s)(k^s - 1)} \right\}^{-1/7}, \quad \kappa = \frac{M}{m}.$$

The object of this paper is to pursue further the study of reversing Kantorovich type operator inequalities under a general setting. As our main result, we determine real constants α_2 and α_1 such that

$$\alpha_2 M_k^{[r]}(A; \omega) \leq M_k^{[r]}(A; \omega) \leq \alpha_1 M_k^{[r]}(A; \omega)$$

holds if $r \leq s$, $r, s \neq 0$.

2. Functions reversing the operator order

First we show the function order reversing operator inequalities under the operator order.

The following theorem is similar to Theorem B but for reversing order.

Theorem 2.1. Let A and B be positive operators on a Hilbert space H satisfying $\text{Sp}(A) \subseteq [m, M]$ for some scalars $M > m > 0$. Let $f \in \mathcal{C}'([m, M])$ be a convex function and $g \in \mathcal{C}(J)$, where J be any interval $J \supseteq \{m, M\} \cup \text{Sp}(B)$. Suppose that either of the following conditions holds: (a) g is decreasing convex on J, or (b) g is increasing concave on J. If $A \geq B > 0$, then for a given $\alpha > 0$ in the case (a) or $\alpha < 0$ in the case (b)

$$\alpha g(B) + \beta I \geq f(A)$$

holds for $\beta = \max_{m \leq t \leq M} \left\{ f(m) + \mu(t - m) - \alpha g(t) \right\}$, where $\mu = \frac{f(M) - f(m)}{M - m}$.

Proof. Though the proof is quite similar to the proof of Theorem B in [9], we give proof for the sake of convenience. Let $x \in H$ be any unit vector. By the convexity of αg, it follows from Jensen’s inequality that
\[\alpha(g(B)x, x) \geq \alpha g((Bx, x)). \]

By the decrease of \(\alpha g \), we have
\[\alpha g((Bx, x)) \geq \alpha g((Ax, x)). \]

Next, it follows from complementary inequality to Jensen’s inequality [10—Theorem 4] that for any real number \(\alpha \in \mathbb{R} \), a function \(g \in \mathcal{C}([m, M]) \) and a convex function \(f \in \mathcal{C}([m, M]) \) the following inequality
\[\alpha g((Ax, x)) + \beta \geq (f(A)x, x) \]
holds, where \(\beta = \max_{m \leq t \leq M} \{ f(t) + \mu(t - m) - \alpha g(t) \} \). Therefore, combining the three inequalities above we have
\[\alpha(g(B)x, x) + \beta \geq \alpha g((Bx, x)) + \beta \geq \alpha g((Ax, x)) + \beta \geq (f(A)x, x). \]
\[\square \]

The following theorem is a complementary result to Theorem 2.1:

Theorem 2.2. Let \(A \) and \(B \) be positive operators on a Hilbert space \(H \) satisfying \(\text{Sp}(B) \subseteq [m, M] \) for some scalars \(M > m > 0 \). Let \(f \in \mathcal{C}([m, M]) \) be a convex function and \(g \in \mathcal{C}(J) \), where \(J \supseteq [m, M] \cup \text{Sp}(A) \). Suppose that either of the following conditions holds: (a) \(g \) is decreasing concave on \(J \), or (b) \(g \) is increasing convex on \(J \). If \(A \geq B > 0 \), then for a given \(\alpha > 0 \) in the case (a) or \(\alpha < 0 \) in the case (b)
\[f(B) \geq \alpha g(A) + \beta I \quad (2) \]
holds for \(\beta = \min_{m \leq t \leq M} \{ f(t) + \mu(t - m) - \alpha g(t) \} \), where \(\mu = \frac{f(M) - f(m)}{M - m} \).

Remark 2.3. If we put \(\alpha = 1 \) in Theorems 2.1 and 2.2, then we have the following: Let \(A \) and \(B \) be positive operators on a Hilbert space \(H \) satisfying \(\text{Sp}(A) \subseteq [m, M] \) (resp. \(\text{Sp}(B) \subseteq [m, M] \)) for some scalars \(M > m > 0 \). Let \(f \in \mathcal{C}(J) \) be a convex (resp. concave) function and \(g \in \mathcal{C}(J) \) an decreasing convex (resp. concave) function, where \(J \supseteq [m, M] \cup \text{Sp}(A) \cup \text{Sp}(B) \).

If \(A \geq B > 0 \), then
\[g(B) + \beta I \geq f(A) \quad (\text{resp. } f(B) \geq g(A) + \beta I) \]
holds for \(\beta = \max_{m \leq t \leq M} \{ (f(t) + \mu(t - m)) - g(t) \} \) (resp. \(\beta = \min_{m \leq t \leq M} \{ (f(t) + \mu(t - m)) - g(t) \} \)), where \(\mu = \frac{f(M) - f(m)}{M - m} \).

If we choose \(\alpha \) such that \(\beta = 0 \) in Theorems 2.1 and 2.2, then we have the following corollary:

Corollary 2.4. Let \(A \) and \(B \) be positive operators on a Hilbert space \(H \) satisfying \(\text{Sp}(A) \subseteq [m, M] \) (resp. \(\text{Sp}(B) \subseteq [m, M] \)) for some scalars \(M > m > 0 \). Let
$f \in \mathcal{C}(J)$ be a convex (resp. concave) function and $g \in \mathcal{C}(J)$, where $J \supseteq [m, M] \cup \text{Sp}(A) \cup \text{Sp}(B)$. Suppose that either of the following conditions holds:

(i) g is decreasing convex (resp. concave) on J, $g > 0$ on $[m, M]$ and $f(m) > 0$, $f(M) > 0$,
(ii) g is decreasing convex (resp. concave) on J, $g < 0$ on $[m, M]$ and $f(m) < 0$, $f(M) < 0$,
(iii) g is increasing concave (resp. convex) on J, $g > 0$ on $[m, M]$ and $f(m) < 0$, $f(M) < 0$,
(iv) g is increasing concave (resp. convex) on J, $g < 0$ on $[m, M]$ and $f(m) > 0$, $f(M) > 0$.

If $A \succeq B > 0$, then

$$\alpha_+ g(B) \geq f(A) \quad \text{(resp. } f(B) \geq \alpha_- g(A))$$

holds for

$$\alpha_+ = \max_{m \leq t \leq M} \left\{ \frac{f(m) + \mu(t - m)}{g(t)} \right\}$$

(resp. $\alpha_- = \min_{m \leq t \leq M} \left\{ \frac{f(m) + \mu(t - m)}{g(t)} \right\}$),

in case (i) and (iii), or

$$\alpha_+ = \min_{m \leq t \leq M} \left\{ \frac{f(m) + \mu(t - m)}{g(t)} \right\}$$

(resp. $\alpha_- = \max_{m \leq t \leq M} \left\{ \frac{f(m) + \mu(t - m)}{g(t)} \right\}$),

in case (ii) and (iv), where $\mu = \frac{f(M) - f(m)}{M - m}$.

As applications of Theorems 2.1, 2.2 and Corollary 2.4 for $f \equiv g$ we can obtain the function order reversing operator inequalities under operator order similarly to [9–Section 6] for the function order preserving operator ones. In particular, if we put $f(t) = g(t) = t^p$ for $p < -1$ in Theorem 2.1 and Corollary 2.4, then we have the following corollaries which we need in next section.

Corollary 2.5. Let A and B be positive operators on a Hilbert space H satisfying $\text{Sp}(A) \subseteq [m, M]$ for some scalars $M > m > 0$. If $A \succeq B > 0$, then for a given $\alpha > 0$

$$\alpha B^p + \beta I \succeq A^p \quad \text{for all } p < -1,$$

where
\[\beta = \begin{cases}
\alpha(p - 1) \left(\frac{1}{\alpha p} \frac{M^p - m^p}{M - m} \right)^{\frac{1}{p-1}} + \frac{Mm^p - M^p - m^p}{M - m} & \text{if } \frac{pm^p - m^p}{\alpha (M - m)} < pM^p - m^p, \\
\max \{M^p - \alpha M^p, m^p - \alpha m^p\} & \text{otherwise.}
\end{cases} \]

The following theorem is similar to Theorem A but for reversing order.

Corollary 2.6. Let \(A \) and \(B \) be positive operators on a Hilbert space \(H \) satisfying \(\text{Sp}(A) \subseteq [m, M] \) for some scalars \(0 < m < M \) (resp. \(\text{Sp}(B) \subseteq [n, N] \) for some scalars \(0 < n < N \)). If \(A \succeq B > 0 \), then for each \(p < -1 \)
\[K(m, M, p)B^p \succeq A^p \quad \text{(resp. } K(n, N, p)B^p \succeq A^p), \]
where a generalized Kantorovich constant \(K(m, M, p) \) is defined as (\(\star \)).

3. Weighted power mean

In this section we discuss the usual operator order among power means. First we have the following result:

Theorem 3.1. Let \(A_j \) be positive operators on a Hilbert space \(H \) satisfying \(\text{Sp}(A_j) \subseteq [m, M] \) for some scalars \(0 < m < M \) and \(\omega_j \in \mathbb{R}_+ \) such that \(\sum_{j=1}^k \omega_j = 1 (j = 1, 2, \ldots, k) \).

(I) If \(0 < p \leq 1 \), then
\[K(m, M, p) \left(\sum_{j=1}^k \omega_j A_j \right)^p \leq \sum_{j=1}^k \omega_j A_j^p \leq K(m, M, p) \left(\sum_{j=1}^k \omega_j A_j \right)^p. \]

(II) If \(-1 \leq p < 0 \) or \(1 \leq p \leq 2 \), then
\[\left(\sum_{j=1}^k \omega_j A_j \right)^p \leq \sum_{j=1}^k \omega_j A_j^p \leq K(m, M, p) \left(\sum_{j=1}^k \omega_j A_j \right)^p. \]

(III) If \(p < -1 \) or \(p > 2 \), then
\[\frac{1}{K(m, M, p)} \left(\sum_{j=1}^k \omega_j A_j \right)^p \leq \sum_{j=1}^k \omega_j A_j^p \leq K(m, M, p) \left(\sum_{j=1}^k \omega_j A_j \right)^p, \]
where a generalized Kantorovich constant \(K(m, M, p) \) is defined as (\(\star \)).

We need the following three theorems to prove Theorem 3.1.
Theorem C [10–Corollary 4]. Let A_j be positive operators on a Hilbert space H satisfying $\text{Sp}(A_j) \subseteq [m, M]$ for some scalars $0 < m < M$ $(j = 1, 2, \ldots, k)$. Let $f \in C([m, M])$ be a convex function and let x_1, x_2, \ldots, x_k be any finite number of vectors in H such that $\sum_{j=1}^k \|x_j\|^2 = 1$. If f satisfies either (a) $f > 0$ or (b) $f < 0$ on $[m, M]$, then

$$\sum_{j=1}^k (f(A_j)x_j, x_j) \leq \lambda f \left(\sum_{j=1}^k (A_jx_j, x_j) \right)$$

(3)

holds for $\lambda > 1$ in case (a) or $0 < \lambda < 1$ in case (b).

More precisely, a value of $\lambda = \lambda(m, M, f)$ for (3) may be determined as follows:

Let $\mu = \frac{f(M) - f(m)}{M - m}$. If $\mu = 0$, let $t = \bar{t}$ be the unique solution of the equation $f'(t) = 0$ ($m < \bar{t} < M$); then $\lambda = f(m)/f(\bar{t})$ suffices for (3). If $\mu \neq 0$, let $t = \bar{t}$ be the unique solution in (m, M) of the equation $\mu f(t) - f'(t)(f(m) + \mu(t_m)) = 0$; then $\lambda = \mu/f(\bar{t})$ suffices for (3).

In the next theorem, by virtue of Theorem C, we shall estimate the bounds of the operator convexity for convex functions.

Theorem 3.2. Let A_j be positive operators on a Hilbert space H satisfying $\text{Sp}(A_j) \subseteq [m, M]$ for some scalars $0 < m < M$ and $\omega_j \in \mathbb{R}_+$ such that $\sum_{j=1}^k \omega_j = 1$ ($j = 1, 2, \ldots, k$). If $f \in C([m, M])$ is a positive convex function, then

$$\frac{1}{\lambda(m, M, f)} f \left(\sum_{j=1}^k \omega_j A_j \right) \leq \sum_{j=1}^k \omega_j f(A_j) \leq \lambda(m, M, f) f \left(\sum_{j=1}^k \omega_j A_j \right)$$

(4)

holds for $\lambda(m, M, f) = \max_{m \leq t \leq M} \{(f(m) + \mu(t_m))/f(t)\}$, where $\mu = \frac{f(M) - f(m)}{M - m}$.

Proof. For each $\omega_j \in \mathbb{R}_+$ and unit vector $x \in H$ we put $x_j = \sqrt{\omega_j}x$ in Theorem C. Then we have

$$\sum_{j=1}^k \omega_j f(A_j)x_j \leq \lambda(m, M, f) f \left(\sum_{j=1}^k \omega_j A_jx_j \right).$$
Hence
\[
\left(\sum_{j=1}^{k} \omega_j f(A_j)x, x \right) \leq \lambda(m, M, f) \left(\sum_{j=1}^{k} \omega_j (A_j x, x) \right)
\]
and the last inequality holds by the convexity of \(f \). Therefore we have
\[
\sum_{j=1}^{k} \omega_j f(A_j) \leq \lambda(m, M, f) \left(\sum_{j=1}^{k} \omega_j A_j \right).
\]

Next, since \(f \) is convex, it follows from Jensen’s inequality that
\[
\left(\sum_{j=1}^{k} \omega_j f(A_j)x, x \right) = \sum_{j=1}^{k} \omega_j (f(A_j)x, x) \geq f \left(\sum_{j=1}^{k} \omega_j (A_j x, x) \right).
\]

Since \(0 \leq m I \leq \sum_{j=1}^{k} \omega_j A_j \leq M I \), it follows from (3) for \(k = 1 \) that
\[
f \left(\sum_{j=1}^{k} \omega_j (A_j x, x) \right) = f \left(\left(\sum_{j=1}^{k} \omega_j A_j \right) x, x \right) \geq \frac{1}{\lambda(m, M, f)} f \left(\sum_{j=1}^{k} \omega_j A_j \right) x, x \right).
\]

Therefore we have
\[
\sum_{j=1}^{k} \omega_j f(A_j) \geq \frac{1}{\lambda(m, M, f)} f \left(\sum_{j=1}^{k} \omega_j A_j \right). \quad \square
\]

We have the following complementary result of Theorem 3.2 for concave functions.

Theorem 3.3. Let \(A_j \) be positive operators on a Hilbert space \(H \) satisfying \(\text{Sp}(A_j) \subseteq [m, M] \) for some scalars \(0 < m < M \) and \(\omega_j \in \mathbb{R}_+ \) such that \(\sum_{j=1}^{k} \omega_j = 1(j = 1, 2, \ldots, k) \). If \(f \in \mathcal{C}(\{m, M\}) \) is a positive concave function, then
\[
\frac{1}{v(m, M, f)} f \left(\sum_{j=1}^{k} \omega_j A_j \right) \geq \sum_{j=1}^{k} \omega_j f(A_j) \geq v(m, M, f) f \left(\sum_{j=1}^{k} \omega_j A_j \right)
\]
(5)
holds for
\[\nu(m, M, f) = \min_{m \leq t \leq M} \left\{ \frac{(f(m) + \mu(t - m))/f(t)}{M - m} \right\}, \]
where \(\mu = \frac{f(M) - f(m)}{M - m} \).

Proof of Theorem 3.1. This theorem follows from Theorems 3.2 and 3.3 for \(f(t) = t^p \). As a matter of fact, since \(f(t) = t^p \) is an operator concave function if \(0 \leq p \leq 1 \), then we have the right hand inequality in (I) and by Theorem 3.3 we have the left hand inequality with \(\nu(m, M, f) = K(m, M, p) \). Since \(f(t) = t^p \) is a operator convex function if \(-1 \leq p < 0 \) or \(1 \leq p \leq 2 \), then we have the left hand inequality (II) and by Theorem 3.2 we have the right hand inequality with \(\lambda(m, M, f) = K(m, M, p) \). Since \(f(t) = t^p \) is not operator convex though \(f \) is a convex function if \(p < -1 \) or \(p > 2 \) we obtain inequality (III) by Theorem 3.2. \(\square \)

For the sake of convenience we denote intervals from (i) to (iv) as in Table 1 (see Fig. 1).

<table>
<thead>
<tr>
<th>Interval</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>(r \leq s, s \notin (-1, 1), r \notin (-1, 1)) or (1/2 \leq r \leq 1 \leq s) or (-1 \leq s \leq -1/2)</td>
</tr>
<tr>
<td>(ii)</td>
<td>(s \geq 1, -1 < r < 1/2, r \neq 0) or (-1 < r \leq 1, -1/2 < s \leq 1, s \neq 0)</td>
</tr>
<tr>
<td>(iii)</td>
<td>(-1 \leq -s \leq r \leq 1, r \neq 0) or (-1 \leq r \leq s \leq r/2 < 0)</td>
</tr>
<tr>
<td>(iv)</td>
<td>(-1/2 \leq r/2 < s \leq -r \leq 1, s \neq 0)</td>
</tr>
</tbody>
</table>

Fig. 1.
Our main result is given in the next theorem.

Theorem 3.4. Let A_j be positive operators on a Hilbert space H satisfying $\text{Sp}(A_j) \subseteq [m, M]$ for some scalars $0 < m < M$ and $\omega_j \in \mathbb{R}_+$ such that $\sum_{j=1}^k \omega_j = 1 (j = 1, 2, \ldots, k)$.

(i) If $r \leq s$, $s \notin (-1, 1)$, $r \notin (-1, 1)$ or $1/2 \leq r \leq 1$ or $r \leq -1$ or $s \leq -1/2$, then

$$A(\kappa, r, s)^{-1}M^{[s]}_k(A; \omega) \leq M^{[r]}_k(A; \omega) \leq M^{[s]}_k(A; \omega).$$

(ii) If $s \geq 1$, $-1 < r < 1/2$, $r \neq 0$ or $r \leq -1$, $-1/2 < s < 1$, $s \neq 0$, then

$$A(\kappa, r, s)^{-1}M^{[s]}_k(A; \omega) \leq M^{[r]}_k(A; \omega) \leq A(\kappa, r, s)M^{[s]}_k(A; \omega).$$

(iii) If $-1 \leq -s \leq r \leq s \leq 1$, $r \neq 0$ or $-1 \leq r \leq s \leq r/2 < 0$, then

$$A(\kappa, r, 1)^{-1}A(\kappa, r, s)^{-1}M^{[s]}_k(A; \omega) \leq M^{[r]}_k(A; \omega) \leq A(\kappa, r, 1)M^{[s]}_k(A; \omega).$$

(iv) If $-1/2 \leq r < 2 < s < -r \leq 1$, $s \neq 0$, then

$$A(\kappa, s, 1)^{-1}A(\kappa, r, s)^{-1}M^{[s]}_k(A; \omega) \leq M^{[r]}_k(A; \omega) \leq A(\kappa, s, 1)M^{[s]}_k(A; \omega),$$

where

$$A(\kappa, r, s) = \left\{ \frac{r(k^s - \kappa^r)}{(s - r)(\kappa^r - 1)} \right\}^{1/r} \left\{ \frac{s(k^{s} - r^s)}{(r - s)(r^s - 1)} \right\}^{-1}, \quad \kappa = \frac{M}{m}.$$

Proof. Mond and Pečarić proved in [11] that (i) holds. We proved in [12] that (i) and (ii) hold. Next we shall prove (iii) and (iv).

(iii) If $0 < r \leq s \leq 1$ then $0 < \frac{r}{r/s} \leq 1$. If we put $p = \frac{r}{r/s}$ in Theorem 3.1(I) and replace A_j by A_j^s ($j = 1, \ldots, k$) we obtain

$$K \left(m^s, M^s, \frac{r}{s} \right) \left(\sum_{j=1}^k \omega_j A_j^s \right)^{r/s} \leq \sum_{j=1}^k \omega_j A_j^s \leq \left(\sum_{j=1}^k \omega_j A_j^s \right)^{r/s}. $$

By raising above inequality to the power $1/r (\geq 1)$ it follows from Theorem A that

$$K \left(m^r, M^r, \frac{1}{r} \right)^{-1} K \left(m^s, M^s, \frac{r}{s} \right)^{1/r} M^{[s]}_k(A; \omega) \leq M^{[r]}_k(A; \omega).$$

Then, we have

$$A(\kappa, r, 1)^{-1}A(\kappa, r, s)^{-1}M^{[s]}_k(A; \omega) \leq M^{[r]}_k(A; \omega) \leq A(\kappa, r, 1)M^{[s]}_k(A; \omega).$$
because

\[K \left(m', M', \frac{s}{r} \right) = \frac{m' (M')^\frac{r}{s} - M' (m')^\frac{r}{s}}{(\frac{r}{s} - 1) (M' - m')} \left(\frac{\frac{r}{s} - 1}{\frac{r}{s}} \right) \left(\frac{M' - m'}{m' M' - M' m'} \right) \]

\[= \frac{m' M^s - M' m^s}{(\frac{r}{s} - 1) (M' - m')} \left(\frac{\frac{r}{s} - 1}{\frac{r}{s}} \right) \left(\frac{M' - m'}{m' M' - M' m'} \right) \]

\[= \frac{r (\kappa^s - \kappa^r)}{(s - r)(\kappa^r - 1)} \left(\frac{s(\kappa^r - \kappa^s)}{(r - s)(\kappa^s - 1)} \right)^\frac{r}{s} \]

and

\[K \left(m^s, M^s, \frac{r}{s} \right) = K \left(m', M', \frac{s}{r} \right)^{-\frac{1}{r}} \]

\[= \left\{ \frac{r (\kappa^s - \kappa^r)}{(s - r)(\kappa^r - 1)} \right\}^{-\frac{1}{r}} \left\{ \frac{s(\kappa^r - \kappa^s)}{(r - s)(\kappa^s - 1)} \right\}^{\frac{1}{r}} \]

\[= A(\kappa, r, s)^{-1}. \]

If \(-1 \leq -s \leq r < 0\) then \(-1 \leq \xi < 0\), but if \(-1 \leq r \leq s \leq r/2 < 0\) then \(1 \leq \xi \leq 2\). If we put \(p = \xi/2\) in Theorem 3.1(II) and replace \(A_j\) by \(A_j^s\) \((j = 1, \ldots, k)\) we obtain

\[\left(\sum_{j=1}^{k} \omega_j A_j^s \right)^{\frac{r}{s}} \leq \sum_{j=1}^{k} \omega_j A_j^s \leq K \left(m^s, M^s, \frac{r}{s} \right) \left(\sum_{j=1}^{k} \omega_j A_j^s \right)^{\frac{r}{s}} \]

if \(-1 \leq -s \leq r < 0\) and

\[\left(\sum_{j=1}^{k} \omega_j A_j^s \right)^{\frac{r}{s}} \leq \sum_{j=1}^{k} \omega_j A_j^s \leq K \left(m^s, M^s, \frac{r}{s} \right) \left(\sum_{j=1}^{k} \omega_j A_j^s \right)^{\frac{r}{s}} \]

if \(-1 \leq r \leq s \leq r/2 < 0\). Using that \(K(M^*, m^s, \frac{s}{r}) = K(m^s, M^s, \frac{s}{r})\) and by raising above inequalities to the power \(1/r\) \((\leq -1)\), we obtain from Corollary 2.6

\[K \left(m', M', \frac{1}{r} \right) M_k^{\frac{r}{s}}(A; \omega) \]

\[\geq M_k^{\frac{r}{s}}(A; \omega) \]

\[\geq K \left(m', M', \frac{1}{r} \right)^{-1} K \left(m^s, M^s, \frac{r}{s} \right)^{1/r} M_k^{\frac{r}{s}}(A; \omega) \]
if \(-1 \leq s \leq r < 0\) or \(-1 \leq r \leq s \leq r/2 < 0\). Since \(\Delta(\kappa, r, s) K(m^s, M^s, \frac{r}{s})^\frac{1}{r} = 1\), we have
\[
\Delta(\kappa, r, 1)^{-1} A(\kappa, r, s)^{-1} M_k^{[r]}(A; \omega) \leq M_k^{[r]}(A; \omega) \leq \Delta(\kappa, r, 1) M_k^{[r]}(A; \omega)
\]
if \(-1 \leq s \leq r \leq s \leq r/2 < 0\).

(iv) Next, let \(-1 \leq r < -s < 0\) or \(-1/2 \leq r/2 < s < 0\). Then \(-1 < \frac{s}{r} < 0\) or \(0 < \frac{s}{r} < \frac{1}{2}\). If we put \(p = \frac{s}{r}\) in Theorem 3.1(II) and (I) and replace \(A_j\) by \(A'_j\) \((j = 1, \ldots, k)\) we obtain
\[
\left(\sum_{j=1}^k \omega_j A'_j \right)^{s/r} \leq \left(\sum_{j=1}^k \omega_j A'_j \right)^{s/r} \leq \left(\sum_{j=1}^k \omega_j A'_j \right)^{s/r}
\]
if \(-1 \leq r < -s < 0\) and
\[
K \left(M', m'^r, \frac{s}{r} \right) \left(\sum_{j=1}^k \omega_j A'_j \right)^{s/r} \leq \left(\sum_{j=1}^k \omega_j A'_j \right)^{s/r}
\]
if \(-1/2 \leq r/2 < s < 0\). By raising above inequalities to the power \(1/s\) we obtain from Theorem A and Corollary 2.6 that
\[
K \left(m^s, M^s, \frac{1}{s} \right)^{-1} M_k^{[r]}(A; \omega)
\]
\[
\leq M_k^{[r]}(A; \omega)
\]
\[
\leq K \left(m^s, M^s, \frac{1}{s} \right) K \left(M', m'^r, \frac{s}{r} \right)^{1/s} M_k^{[r]}(A; \omega)
\]
if \(-1 \leq r < -s < 0\) and
\[
K \left(M', m'^r, \frac{s}{r} \right) K \left(M', m'^r, \frac{s}{r} \right)^{1/s} M_k^{[r]}(A; \omega)
\]
\[
\geq M_k^{[r]}(A; \omega)
\]
\[
\geq K \left(M', m'^r, \frac{1}{s} \right)^{-1} M_k^{[r]}(A; \omega)
\]
if \(-1/2 \leq r/2 < s < 0\). Since \(K(M', m'^r, \frac{1}{s}) = K(m^s, M^s, \frac{1}{s}) = \Delta(\kappa, 1, s)^{-1} = \Delta(\kappa, s, 1)\) we have
\[
\Delta(\kappa, s, 1)^{-1} M_k^{[r]}(A; \omega) \leq M_k^{[r]}(A; \omega) \leq \Delta(\kappa, s, 1) M_k^{[r]}(A; \omega)
\]
if \(-1/2 \leq r/2 < s < -r \leq 1, s \neq 0\). Then we have
\[
\Delta(\kappa, s, 1)^{-1} \Delta(\kappa, r, s)^{-1} M_k^{[r]}(A; \omega) \leq M_k^{[r]}(A; \omega) \leq \Delta(\kappa, s, 1) M_k^{[r]}(A; \omega)
\]
if \(-1/2 \leq r/2 < s < -r \leq 1, s \neq 0\). □
References

[6] T. Furuta, Basic property of generalized Kantorovich constant $K(h, p) = \frac{h^p - h}{p - 1} \left(\frac{p - 1}{h^p - 1} \right)^p$ and its applications, Acta (Szeged) Math. 70 (2004) 319–337.