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SUMMARY

SUMOylation is the covalent conjugation of SUMO
polypeptides to cellular target proteins. Psmd1 is a
subunit of the proteasomal 19S regulatory particle
that acts as a docking site for Adrm1, another protea-
some subunit that recruits ubiquitinated substrates
for proteolysis. Here, we show that the SUMOdecon-
jugating enzyme xSENP1 specifically interacts with
Psmd1 and that disruption of xSENP1 targeting
delays mitotic exit. Psmd1 becomes SUMOylated
through the action of the SUMO E3 enzyme PIASy.
We mapped SUMOylation sites within Psmd1 and
found that SUMOylation of a critical lysine immedi-
ately adjacent to the Adrm1-binding domain regu-
lates the association of Adrm1 with Psmd1.
Together, our findings suggest that the interaction
of Psmd1 with Adrm1 is controlled by SUMOylation
in a manner that may alter proteasome composition
and function. These findings demonstrate a mecha-
nism for regulation of ubiquitin-mediated protein
degradation by ubiquitin-like proteins of the SUMO
family.

INTRODUCTION

SUMOylation is the covalent conjugation of SUMO proteins

(small ubiquitin-related modifiers) to target proteins through the

sequential action of E1 (Uba2/Aos1) and E2 (Ubc9) enzymes

(Gareau and Lima, 2010). Most targets also require a SUMO

ligase or E3 enzyme to facilitate their SUMOylation.

SUMOylation is reversed by SUMO-specific deconjugating en-

zymes called Ulp/SENPs (Mukhopadhyay and Dasso, 2007).

Yeast has two Ulp/SENPs, Ulp1p and Ulp2p. ULP1 is essential,

and ulp1D strains arrest in mitosis (Li and Hochstrasser, 1999).

There are four Ulp1p-like Ulp/SENPs in mammals: SENP1,

SENP2, SENP3, and SENP5 (Mukhopadhyay and Dasso, 2007).

SENP1 and SENP2 are most similar to each other; like Ulp1p,

the vertebrate SENP1/SENP2 subfamily is important for mitosis

(Cubeñas-Potts et al., 2013; Era et al., 2012; Zhang et al., 2008).

Proteasomes are multisubunit proteases that mediate the

degradation of proteins that have been targeted for destruction
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by ubiquitination (Tomko and Hochstrasser, 2013). Ubiquitinated

degradation substrates are fed into the proteasome’s catalytic

20S core particle (20S-CP) through the 19S regulatory particle

(19S-RP). Psmd1 (Rpn2 in yeast) is the largest subunit of 19S-

RP (Tomko and Hochstrasser, 2013). Psmd1 plays a key struc-

tural role in the 19S-RP and acts as a docking site for other

proteasome subunits, including Adrm1 (Rpn13 in yeast), a

subunit that recruits ubiquitinated substrates to the 19S-RP.

Adrm1 also recruits and activates UCH37, a deubiqitinating

enzyme (Lee et al., 2011). Proteasomal subunits have been

found in proteomic screens for SUMOylation substrates (Becker

et al., 2013; Golebiowski et al., 2009), but no role of their modifi-

cations has been reported.

Taking advantage of the fact that the frog X. laevis has only

one member of the SENP1/SENP2 subfamily, xSENP1 (Wang

et al., 2009), we have investigated the mitotic function of

SENP1/SENP2 proteases through manipulation of xSENP1 in

Xenopus egg extracts (XEEs) (Maresca and Heald, 2006). We

found that disruption of xSENP1 targeting caused defects

in mitotic exit and that xSENP1 associated strongly with

Psmd1.Wemapped SUMOylation sites within Psmd1 and found

that modification of a critical lysine adjacent to the Adrm1 bind-

ing domain regulates Adrm1’s association with Psmd1. Our

findings suggest Psmd1 SUMOylation controls proteasome

composition and function, providing a mechanism for regulation

of ubiquitin-mediated protein degradation through the SUMO

pathway.

RESULTS AND DISCUSSION

The N-terminal domains of SENPs determine their localization

and contribute to their substrate specificity (Mukhopadhyay

and Dasso, 2007). We reasoned that addition of a recombinant

N-terminal xSENP1 fragment (xSENP1N) might act in a domi-

nant-negative manner by displacing endogenous xSENP1. We

added maltose binding protein (MBP)-fused xSENP1N to

M-phase-arrested XEEs (CSF-XEEs), followed by induction of

anaphase (Figures 1A and 1B). As shown by the rate of Cyclin

B protein destruction, the addition of xSENP1N delayed

anaphase progression in comparison to control XEEs to which

MBP was added, suggesting that xSENP1 function is important

in some way for mitotic exit.

To understand xSENP1’s function, we performed pull-down

assays from XEEs (Figure 1C) and observed several proteins
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Figure 1. Psmd1 Binds xSENP1 Specifically in XEEs

(A) A total of 5 mM MBP-tagged N-terminal xSENP1 fragment (mbp-xSENP1N; amino acids 1–420) or MBP was added to CSF-XEEs in the presence of sperm

chromatin. Anaphase was induced with 0.6 mM Ca2+ (time = 0 min), and samples were taken periodically for analysis by western blotting with anti-Cyclin B and

anti-MBP. Lower left panel shows silver stain of input proteins (mbp and mbp-xSENP1N).

(B) Mean Cyclin B levels from three independent experiments performed as in (A), quantified using ImageJ. Error bars represent SD.

(C) Pull-down (PD) samples from XEEs using MBP, MBP-tagged full-length xSENP1 (f.l.). or MBP-xSENP1N (N) subjected to SDS-PAGE and silver staining.

Arrowheads and asterisks indicate bait and binding proteins, respectively. Proteins within the bracket were analyzed by mass spectrometry. Psmd1 association

to xSENP1 was confirmed by western blotting (lower panel). Input: 2.5%

(D) Immunoprecipitates (IP) from interphase (Int) or mitotic (Mito) XEEs using either immunoglobulin G (Mock) or xSENP1 antibodies were analyzed by western

blotting with the indicated antibodies. Input: 1%

(E) Pull-down samples from XEEs usingMBP, MBP-xSENP1, or MBP-xSENP3 were analyzed by western blotting with anti-Psmd1 (upper panel) or silver staining

(lower panel). Asterisks indicate bait. Input: 2.5%

(F) Reciprocal pull-down assays samples from XEEs using MBP or MBP-Psmd1 were analyzed by western blotting for the indicated proteins. Asterisks indicate

bait. Input: 5%
on silver-stained gels that bound xSENP1 and xSENP1N, but not

MBP. These proteins were excised from a Coomassie-blue-

stained gel (bracket) and analyzed by mass spectrometry.

Psmd1 was among the most prominent proteins identified, and

western blotting confirmed its association to both full-length

xSENP1 and xSENP1N (Figure 1C, bottom panel). Psmd1 was

present in anti-xSENP1 immunoprecipitates from interphase

and mitotic XEEs (Figure 1D), indicating that this association

occurred throughout the cell cycle.

We examined Psmd1 binding to other SENPs in two ways.

First, we performed pull-down experiments comparing MBP-

xSENP1 to MBP-xSENP3, the other Ulp1p-like SENP present

in XEEs (Wang et al., 2009) (Figure 1E). While Psmd1 bound

strongly to MBP-xSENP1, its binding to MBP-xSENP3 was

negligible. Second, we performed reciprocal pull-down experi-

ments using MBP-Psmd1, which showed a strong interaction

with xSENP1, but not xSENP3, xSENP6, or xSENP7 (Figure 1F).

Additionally, we observed coprecipitation of bacterially ex-

pressed Psmd1 with purified xSENP1, indicating that they asso-

ciate in the absence of any other XEE components (Figure S1).

Together, our data suggest that Psmd1 binds xSENP1 in a

direct, specific fashion.
C

Western blotting of isolated mitotic spindles formed in CSF-

XEEs indicated that both xSENP1 and Psmd1 are concentrated

on spindles (Figure S2A). A smaller amount of these proteins

associated with chromosomes purified from nocodazole-treated

CSF-XEEs. We determined the distribution of Psmd1 and

xSENP1 on mitotic chromosomes by immunofluorescent stain-

ing. Psmd1 and xSENP1 concentrated at centromeres (Fig-

ure S2B). SUMOylated species are abundantly concentrated

on mitotic centromeres in XEEs (Ryu and Azuma, 2010), and

we speculated that Psmd1 might be a SUMOylation target. To

test this idea, MBP-Psmd1 was incubated in XEEs, reisolated,

and analyzed by western blotting. Antibodies against MBP and

SUMO2 both detected a smear migrating more slowly than

MBP-Psmd1 that was abolished in reactions containing a domi-

nant-negative form of the SUMO E2 enzyme (dnUbc9) (Fig-

ure S2C and Figure 2A). No corresponding smear was observed

when we blotted the same samples with SUMO1 antibodies.

These data suggest that Psmd1 is a paralog-specific target for

conjugation to SUMO2/3 in mitotic XEEs.

PIASy, a major mitotic SUMO E3 ligase in XEEs (Azuma et al.,

2005), was among the proteins that were pulled down from XEEs

with Psmd1 (Figure 2A). However, we did not detect RanBP2,
ell Reports 7, 1842–1848, June 26, 2014 ª2014 The Authors 1843



Figure 2. Psmd1 Is Modified by SUMO2/3 in

XEEs and In Vitro

(A) MBP or MBP-Psmd1 were incubated under the

indicated conditions and pulled down using

Amylose resin. Where indicated, dominant-

negative E2 (dnUbc9) was included to inhibit

SUMOylation. The samples were analyzed by

western blotting with antibodies against the indi-

cated proteins. Silver stain shows bait proteins.

Input: 5%

(B) T7-tagged Psmd1 or T7-tagged TopoIIaCTD

were subjected to in vitro SUMOylation with or

without PIASy and analyzed by western blotting

with T7 antibodies. 1 and 2 indicate SUMO1 and

SUMO2, respectively. Asterisks and arrows indi-

cate SUMO-conjugated species and PIASy,

respectively.

(C) Immunoprecipitations (IP) from XEEs using

immunoglobulin G and Psmd4 antibodies were

subjected to in vitro reactions as in (B), except that

SUMO3 replaced the other paralogs. GG indicates

that the mature form of SUMO3 was used, while G

indicates use of a truncated, nonconjugatable

form. Recombinant (Rec.) Psmd1 was concurrently subjected to in vitro SUMOylation. The samples were analyzed by western blotting, as indicated.

Antibodies against subunit C2 were used to detect 20S proteasome. Input: 5%

(D) Sperm chromatin was incubated for 60 min in XEE in the absence or presence of GST-SUMO2 and PIASy. The isolated chromosome fractions (Chr.) were

processed and pulled down for GST-SUMO2 (see Experimental Procedures), followed by western blotting with the indicated antibodies. Asterisks indicate

SUMO-modified forms of Psmd1. pH3 indicates phosphohistone H3. Input: 6%
another SUMO ligase reported to associate with Psmd1 (Yi et al.,

2007). PIASy binding to Psmd1 was enhanced upon dnUbc9

addition. This phenomenon may be analogous to ‘‘substrate

trapping,’’ wherein dominant-negative mutant enzymes form

stabilized complexes with their substrates (Flint et al., 1997).

We tested whether PIASy catalyzed Psmd1 SUMOylation within

in vitro assays that also contained E1 and E2 at concentrations

similar to those in XEEs. We observed PIASy-dependent

Psmd1 SUMOylation (Figure 2B), which occurred specifically

with SUMO2, as we had observed in XEEs. Moreover, PIASy

SUMOylated Psmd1 in the context of the intact 19S-RP; we

immunoprecipitated proteasomes from XEE using Psmd4 anti-

bodies and subjected them to in vitro SUMOylation as in Fig-

ure 2B. The efficiency of Psmd1 SUMOylation within the

19S-RP was comparable to that observed for recombinant

Psmd1 (Figure 2C).

To determine whether chromosome-associated Psmd1 be-

comes SUMOylated, we isolated chromosomes formed in

CSF-XEEs containing sperm chromatin in the presence or

absence of exogenous PIASy and glutathione S-transferase

(GST)-SUMO2. GST-SUMO2-conjugated proteins were isolated

from the chromosomal fractions by affinity chromatography, and

we found that a portion of Psmd1 was SUMOylated in themitotic

chromosomal fraction (Figure 2D). Together, our data indicated

that Psmd1 is a substrate for PIASy-dependent conjugation to

SUMO2/3 and that it can become SUMOylated in the context

of intact proteasomes and on mitotic chromosomes.

We wished to determine the sites of Psmd1 SUMOylation and

the consequences of this modification. A SUMOylation site pre-

diction program, SUMOsp 2.0, indicated that potential SUMO

acceptor lysines lie mainly within the Psmd1 C-terminal domain.

Human Adrm1 associates to the proteasome through the C ter-
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minus of Psmd1 (He et al., 2012);XenopusAdrm1 likewise bound

the C terminus of Psmd1 (Figure S3), while xSENP1 bound to the

middle domain of Psmd1 (PC domain, amino acids 348–782).We

hypothesized that Psmd1 SUMOylation might alter Adrm1 bind-

ing. To test this idea, we SUMOylated Psmd1 in vitro using

elevated concentrations of enzymes to enhance its modification.

Psmd1was isolated on beads, whichwere introduced to XEEs to

allowAdrm1 binding. After reisolation andwashing, SUMOylated

Psmd1 beads showed correspondingly less coprecipitating

Adrm1 than those from a mock reaction lacking ATP (Figure 3A),

indicating that SUMOylation compromises Psmd1 binding to

Adrm1.

We prepared a Psmd1 C-terminal fragment (Psmd1C; amino

acids 783–951) that harbors most of the predicted SUMO

acceptor lysines and the Adrm1-binding motif. Psmd1C was

incubated with SUMO2, E1, E2, and PIASy in the presence or

absence of ATP (Figure S4). We incubated SUMOylated or

mock-treated Psmd1C with XEEs, followed by isolation and

detection of Adrm1 by western blotting. Adrm1 binding was

lost in close correlation with increasing levels of Psmd1C

SUMOylation (Figure 3B). We predicted that if SUMOylation

occludes Adrm1 binding to the C terminus of Psmd1, its

deSUMOylation should restore binding. To test this idea, a

deSUMOylation step was included in the SUMOylation-coupled

pull-down (Figure 3C). As before, Psmd1C SUMOylation

decreased Adrm1 binding (Figure 3D, conditions 1 and 2), but

the deconjugation of SUMOylated Psmd1C by an exogenous

xSENP1 catalytic fragment restored Adrm1 interaction (condi-

tions 2, 3, and 4), indicating that SUMOylation indeed blocks

Adrm1’s association to the C-terminal domain of Psmd1.

We used liquid chromatography-tandem mass spectrometry

to map acceptor lysines of in-vitro-SUMOylated full-length



Figure 3. SUMOylation of the Psmd1 C Terminus Negatively Regu-

lates its Interaction with Adrm1

(A) Full-length MBP-Psmd1 was either mock-treated (lane 2) or subjected to

in vitro SUMOylation (lane 3), followed by incubation with XEEs. The samples

were subjected to affinity chromatography, followed by western blotting of the

bound fractions with anti-Psmd1 (upper panel; bracket indicates SUMOylated

Psmd1) or anti-Adrm1 (lower panel). Input: 5% of mock-treated input reaction.

(B) A T7-tagged C-terminal fragment of Psmd1 (Psmd1C) was subjected to

in vitro SUMOylation for 0 (lane 2), 20 (lane 3), and 60 min (lane 4). The beads

were incubated in CSF-XEEs, reisolated, and washed. Bound proteins were

analyzed by western blotting with anti-Adrm1 (upper panel) or anti-T7 (lower

panel). Lane 1 shows a control sample with empty beads. The amounts

unSUMOylated T7-Psmd1C (below lower panel) and of Adrm1 bound to the

beads (above upper panel) were quantitated for reactions containing T7-

Psmd1C and normalized relative to levels in lane 2. Input: 10%

(C) Schematic of experiment Figure 3D. In vitro SUMOylation reactions of T7-

Psmd1C containing one volume (13) or three volumes (33) were incubated

without or with ATP, respectively, followed by proportional addition of CSF-

XEEs and further incubation for 30 min at 23�C. T7-Psmd1C-bound proteins

were isolated from the first reaction (�ATP) on beads. The latter (33) was split

into three equal portions; T7-Psmd1C-bound proteins were isolated on beads

from the first portion without further manipulation. The second and third

portions were supplemented with buffer or xSENP1 catalytic domain, respec-

tively, and incubated for 30 min at 23�C, followed by capture of T7-Psmd1C-

bound proteins on beads. All samples were eluted with 13 sample buffer.

(D) Proteins prepared as in (C) were analyzed by western blotting with anti-

Adrm1 and anti-T7. Buf., buffer. Input: 5%
Psmd1 and Psmd1C, in combination with a candidate approach.

We identified nine lysines near the Adrm1-binding motif as bona

fide SUMO acceptors (amino acids 848, 849, 853, 861, 862, 865,

866, 867, and 932 of Xenopus Psmd1; Figures 4A and 4B).

A Psmd1C mutant in which these lysines were substituted

with arginine, Psmd1C-K9R, showed dramatically reduced

SUMOylation (compare lanes 2 and 10). Psmd1C-K9R showed

modest SUMOylation at elevated SUMO enzyme concentra-

tions, although it remained below the level of SUMOylation

observed for wild-type Psmd1C (lanes 3 and 11). One predicted

SUMOylation site, K932, lies immediately adjacent to the Adrm1-
C

binding site and has an excellent ‘‘JKXE/D’’ SUMOylation

consensus motif (Yang et al., 2006) (Figure 4A). Mutation of

K932 caused a substantial reduction of SUMOylation (Figure 4B,

lanes 2 and 6), although other lysines were still modified at high

enzyme concentrations (lanes 3 and 7). Notably, PIASy was

essential for efficient SUMOylation of Psmd1C (Figure 4B, lanes

4, 8, and 12).

We subjected Psmd1C wild-type (WT), K932R, and K9R to

in vitro SUMOylation or mock treatment, followed by their intro-

duction to XEEs to analyze Adrm1 binding as in Figure 3A. The

capacity of WT Psmd1C to bind Adrm1 decreased by 85% after

SUMOylation (Figures 4C and 4D). However, SUMOylation of

either mutant protein caused a less than 10% decrease in

Adrm1 binding in comparison to the mock-treated control sam-

ples. Taken together, our results suggest that K932 is a major

SUMO acceptor whose conjugation regulates Adrm1 binding,

while SUMOylation of nearby lysines may help to modulate

Adrm1 recruitment.

Collectively, our data suggest a model in which Psmd1 be-

comes SUMO2/3-modified by PIASy, preventing Adrm1 docking

(Figure 4E). We propose that xSENP1 removes SUMOylation

from Psmd1, allowing Adrm1 loading and the degradation of

key proteasomal targets. Under circumstances when xSENP1

is inhibited, this pathway would be disrupted, causing an inability

to degrade Adrm1-dependent substrates. While our data indi-

cate that PIASy and xSENP1 mediate Psmd1 SUMOylation

and deSUMOylation, respectively, precisely how and when their

activities are regulated remain to be elucidated. We do not know

the identity of the protein(s) whose degradation might be

controlled in this manner, although clearly this will be another

important point for future investigation. Notably, Psmd1 associ-

ates with xSENP1 throughout the cell cycle (Figure 1D), so this

mechanism could operate in other contexts.

Disruption of xSENP1 targeting in XEEs delays mitotic exit

(Figures 1A and 1B). SENP1 depletion from cultured mammalian

cells likewise delays sister chromatid segregation and anaphase

onset (Cubeñas-Potts et al., 2013), suggesting that SENP1 func-

tion is conserved among vertebrates. However, the bulk of

Psmd1 remains un-SUMOylated in XEEs (Figure 2). Thus, only

a small fraction of proteasomes should be inhibited through

Psmd1 SUMOylation, making it difficult to rationalize how such

a marginal loss of proteasomal activity could slow mitotic pro-

gression. These issues might be reconciled in two ways. First,

deSUMOylation of a protein other than Psmd1 could be neces-

sary, and the delay caused by xSENP1N might reflect failure to

deSUMOylate this substrate. Alternatively, there might be a

SUMO-regulated proteasome subpopulation that is essential

for the proteolysis of key proteins. For example, if ubiquitination

of mitotic targets were both spatially regulated and closely

coupled to degradation, local regulation of proteasomes could

also modulate their destruction. This is an attractive idea, partic-

ularly because activation of the anaphase-promoting complex, a

major mitotic ubiquitin ligase, is coupled to chromosome locali-

zation (Sivakumar et al., 2014), where we likewise observe

SUMOylated Psmd1 (Figure S2). Further work will clearly be

needed to test these possibilities.

There are a number of ways in which Psmd1 SUMOylation

could impact the degradation of proteasomal targets. Changes
ell Reports 7, 1842–1848, June 26, 2014 ª2014 The Authors 1845
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Figure 4. SUMOylation on Lys 932 of Psmd1 Is Critical to Inhibit Adrm1 Binding

(A) C-terminal sequences of human, mouse, chicken, frog, fish, and yeast Psmd1 protein, aligned using ClustalW2 program. The green box indicates Adrm1-

binding motif. Lysines identified as SUMO acceptors in X. laevis are in red and bold. The black box shows a SUMOylation consensus motif. Note that SUMO

acceptor lysines are conserved among higher eukaryotes.

(B) Psmd1C wild-type (WT), K932R, and K9R were subjected to in vitro reactions that contain various concentrations of SUMO E1, E2, and PIASy. Small ‘‘+’’

reactions contain enzyme concentrations similar to XEE endogenous levels: 15 nM E1, 30 nM E2, and 10 nM PIASy. Medium ‘‘+’’ reactions contain double the

level of SUMO enzymes. Bold ‘‘+’’ reactions contain 150 nM E1 and 300 nME2, but not PIASy. Note that PIASy is essential for Psmd1C SUMOylation. The double

dot indicates alternatively SUMOylated forms. The single dot indicates residually SUMOylated forms of Psmd1C observed after nine lysines were mutated to

arginine.

(C) Psmd1CWT and mutants treated as in (B), under conditions without (lanes 1, 5, and 9) or with SUMOylation (lanes 3, 7, 11), were used for pull-down assays in

XEEs. Bound proteins were analyzed by western blotting with anti-Adrm1 and anti-Psmd1. Input: 5%

(D) Two independent experiments performed as in (C) were quantified using ImageJ. The graph shows Adrm1 levels bound to SUMOylated Psmd1C WT or

mutants normalized to Adrm1 bound to the same forms of Psmd1 without prior SUMOylation. Error bar shows SD.

(E) Model: PIASy conjugates SUMO2/3 (Su) to the C terminus of Psmd1 (extension from 19S-RP), occluding the Adrm1 (Ad) docking site. Active xSENP1 (S1*)

antagonizes this modification, allowing Adrm1 recruitment. The balance of conjugation and deconjugation might be regulated, perhaps through conversion of

xSENP1 between inactive (S1) and active forms, with deconjugation favoring proteasome activity. Ub, ubiquitinated targets of Adrm1.
in Psmd1-Adrm1 interactions could modulate the recruitment of

ubiquitinated proteins to the 19S-RP. Proteasomes bind ubiqui-

tinated substrates through Adrm1 and Rpn10 (Tomko and Hoch-

strasser, 2013), which show distinct substrate recognition

profiles. Genetic analysis shows that these two recognition path-

ways are not functionally redundant (Elangovan et al., 2010;

Fatimababy et al., 2010), and some substrates are particularly
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dependent upon Adrm1 for their degradation, including Cyclin

B (Chen et al., 2010). Additionally, Adrm1 mediates the recruit-

ment and activation of UCH37, an enzyme that antagonizes

the degradation of some ubiquitinated species (Lee et al.,

2011). Changes in Adrm1 binding are thus strongly predicted

to modulate the stability of these proteins. Finally, association

to the 19S-RP places xSENP1 in an ideal location to cleave



SUMO chains from proteins that are targeted for proteasomal

degradation by SUMO-targeted ubiquitin ligases (STUbLs)

(Geoffroy and Hay, 2009) and thus to modulate the destruction

of STUbL substrates.

In summary, SUMO conjugation and deconjugation of Psmd1

by PIASy and xSENP1 provides a mechanism for regulating pro-

teasomal composition as well as an important point of crosstalk

between ubiquitin-like modifier pathways.

EXPERIMENTAL PROCEDURES

XEE Preparation

Metaphase XEEs (CSF-XEEs) and sperm chromatin were prepared as

described previously (Azuma, 2009). Interphase XEEs were prepared by the

addition of 0.6 mM CaCl2 to CSF-XEEs and incubation for 60 min at 23�C.
Unless otherwise specified, sperm chromatin was added at a concentration

of 1,000 nuclei per ml of final reaction. All procedures involving frogs were

approved by the NICHD Animal Care and Use Committee (ASP-12-025).

Pull-Down Assays and Immunoprecipitation

For pull-down assays, bacterially expressed His6-tagged proteins were bound

to Talon affinity resin (Clontech), and MBP-tagged proteins were bound to

Amylose resin (Biolabs) overnight at 4�C. The saturated resins were blocked

with 5% gelatin before mixing with 1:10 diluted XEEs. The resins were incu-

bated between 30 min and 2 hr at 23�C, washed three times with 13 PBS

with 0.1% Tween 20 (PBS-T), and eluted in 13 SDS sample buffer. For immu-

noprecipitations (Figure 1D), xSENP1antibodieswere bound toprotein A-Dyna

beads (Invitrogen) overnight at 4�C and crosslinked using dimethylpimelimi-

date 2 HCl (Thermo Scientific). The antibody-linked beads were incubated in

1:10 diluted XEE, washed with 13 PBS-T, and eluted in 13 SDS sample buffer.

In Figure 2D, chromosomes were formed in CSF-XEEs plus 8,000 sperm nuclei

per ml, with or without PIASy (50 nM) and GST-SUMO2 (5 mM). The isolated

chromosome pellet was sonicated on ice and incubated for 30min with DNase

I (Sigma) at 4�C. The samples were centrifuged at 10,000 3 g for 10 min, and

the supernatants were subjected to GST-SUMO2 affinity chromatography

over glutathione Sepharose. After elution with 13 SDS sample buffer, the sam-

ples were resolved on 4%–12% or 4%–20% tris-glycine gradient SDS-PAGE

gels (NOVEX). Unless otherwise indicated, the input lane of each pull-down

experiment using XEEswas loadedwith a volume of XEE equivalent to the indi-

cated percentage of the total reaction volume.

In Vitro SUMOylation Assays

Unless otherwise specified, in vitro SUMOylation assayswere performed in the

presence of 15 nM E1, 30 nM E2, 10 nM PIASy, 5 mM SUMO paralogs, 0.5 mM

substrates, and 2.5 mM ATP. The reaction buffer contained 5 mM MgCl2,

100–120mMNaCl, 20mMHEPES (pH 7.8), 5% glycerol, and 0.05% Tween20.

Reactions were incubated in 27�C for 1 hr and stopped with 13 SDS sample

buffer. For in vitro SUMOylation-coupled pull-down assays (Figures 3 and 4,

exclusive of Figure 3B), 10 mg MBP-tagged Psmd1C was incubated with

150 nM E1, 300 nM E2, 100 nM PIASy, and 10 mM SUMO2GG at 27�C for

2 hr, with or without 5 mM ATP. The reactions were diluted 10-fold and incu-

bated with Amylose resin for 90 min. The beads were added to CSF-XEEs

that had been diluted 10-fold with CSF-XB buffer and incubated for 30 min

at 23�C to allow Adrm1 binding. Finally, the beads were collected, washed

three times with 13 PBS-T and eluted in 13 SDS sample buffer. Where indi-

cated, xSENP1 catalytic domain (amino acids 300–618) was added at a final

concentration of 50–100 nM.

For the in vitro SUMOylation-coupled pull-down assay (Figure 3B), S-tagged

Psmd1C was expressed in E. coli (BL21DE3Star) cultures containing 5% glyc-

erol and 3% ethanol at 16�C for 40 hr and purified using nickel nitrilotriacetic

acid beads followed by Superdex 200HR and Mono Q columns. A total of

2 mg of S-tagged Psmd1C was incubated at 27�C for 0, 10, 20, or 60 min in

a reaction buffer B (40 mM Tris, 100 mM NaCl, 0.05% Tween-20, 5% glycerol,

2 mM dithiothreitol, 4 mM MgCl2, 2 mM ATP) that contained 150 nM E1,

200 nM E2, 50 nM PIASy, and 10 mM SUMO2GG. The reaction was diluted
C

20-fold with buffer B containing 10 mM EDTA and incubated with S-protein

resin (EMD Millipore) for 90 min at 4�C. The beads were then mixed with

CSF-XEEs that had been diluted 10-fold in CSF-XB buffer containing

10 ng/ml SUMO2-vinyl sulfone (Mukhopadhyay et al., 2006) to block SUMO

isopeptidases and incubated for 90 min at 4�C. The beads were retrieved by

centrifugation at 400 3 g for 10 s, washed three times in CSF-XB buffer con-

taining 0.05% Tween-20, and eluted in 13 SDS sample buffer.
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