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a b s t r a c t

The effect of nonlinear elastic pre-stress on coupled compressional and vertically polarised shear elastic
wave propagation in a two-dimensional periodic structure is investigated. The medium consists of
cylindrical annuli embedded on a periodic lattice in a uniform host material. An identical inhomogeneous
deformation is imposed in each annulus and the theory of small-on-large is used to find the incremental
wave equations governing subsequent small-amplitude elastic waves. The plane-wave-expansion
method is employed in order to determine the permissable eigenfrequencies. It is found that the
application of pre-stress has a significant effect on the band structure, allowing stop bands to be
controlled. The sensitivity of the choice of constitutive behaviour is studied and it is shown that the
fundamental shear wave mode is largely unchanged for the class of strain energy functions considered
here, whereas the compressional mode is considerably more sensitive to this choice.

© 2016 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Improvements in engineering and technology rely greatly
on advanced, complex materials, which often possess intricate
microstructure, permitting macroscopic behaviour that is not
present in naturally occurring materials. Elastodynamic and
acoustic phononic media present a broad range of opportunities
for directing waves [1–3] and being able to design these materials
carefully in order to enable wave focusing, filtering and directivity
is greatly advantageous. Of specific importance is the notion of
tunable, configurable or re-configurable phononic media, which
have static and dynamic material properties that can be tuned
in real time. Such materials have many obvious advantages over
mediawith properties that are fixed uponmanufacture. A standard
approach is to modify the microstructure and then understand
how this modification affects the macroscopic response on a static
and dynamic level. A number of opportunities to enable this have
been presented. Early work in tuning the acoustic response of such
media focused on modifying the band gap properties of phononic
media by rotating cylinders [4–6].
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Several groups have considered using the influence of magnetic
or electric fields as a means to perform external control over a
crystal [7,8]. In [9], an electric field deforms annular cylinders that
are embedded in air, piezoelectric materials are studied in [10–12]
and electro-rheological materials in [13]. Thermal effects have also
been proposed but the effect is usually fairly weak and so a phase
transition effect is usually required [14,15]. These mechanisms
for control provide the advantage of a phononic switch in such
materials. Mechanical mechanisms to create photonic switches
have also recently been considered, see e.g. [16,17].

It is well-known that nonlinear elastic pre-stress affects the
propagation of subsequent linear elastic waves in themedium [18]
and this effect has been exploited in order to modify the
band-structure of elastodynamic phononic media. In [19,20] an
inhomogeneous beam was considered and it was shown that the
band structure can be manipulated effectively using pre-stress. It
has recently been noted that the response of a nonlinearly elastic
material can be extremely sensitive to the choice of constitutive
behaviour [21].

An electrical bias has been employed in order to control
deformation and hence band gaps in layered and fibre reinforced
media [22,23]. Experiments in one dimensional structures were
performed by [24]. By making use of numerical simulations, via
the finite-element method, the mechanical tunability of three-
dimensional structures has also recently been studied [25]. The
effect of microstructural buckling of an elastic material was the
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Fig. 1. Illustration of the unit cell for the undeformed configuration on the left and the deformed configuration in the middle. On the right hand side it is shown how the
cylindrical annuli are embedded in a square periodic lattice with period ℓ in a stress-free, homogeneous medium shown by the hashed pattern.

focus of investigation in [26–29]. In [30] elastic microstructural
helices were employed to control sound.

In this article a new mechanism for the control of band gaps
in the full elastodynamic context is introduced, based on the
work in [31], which was restricted to the scenario of antiplane
elastic waves. In that work, incompressible hyperelastic annular
cylinders were embedded periodically in an elastic medium and
their deformation ensured that band gaps could be switched on
and off. Further however, it was shown, based on the theory
of hyperelastic cloaking [32–35] that some materials permit
deformation in a manner such that in a normal setting from a
geometric viewpoint they would possess band gaps but the pre-
stress prohibits this; these materials were termed phononic cloaks.
The theory of small-on-largewas employed to derive the equations
governing the propagation of superposed antiplane elastic waves
and the plane-wave-expansion technique was extended in order
to accommodate the inhomogeneous deformation present in the
cylinders.

Here the same geometry as considered in [31] is employed, as
depicted in Fig. 1 but here the annular cylinders are permitted
to be compressible in order to accommodate the propagation of
compressional waves.

2. Deformation and governing incremental wave equations

As illustrated in Fig. 1 the medium consists of a two-
dimensional square array (with period ℓ) of nonlinear isotropic
elastic annular cylinders each with initial inner and outer radii R0
and R1 respectively, density ρ1 and linear elastic bulk and shear
moduli κ1 and µ1 respectively, embedded inside a homogeneous
elastic host medium of density ρ0 and linear elastic bulk and shear
moduli κ0 and µ0. The unit cell is depicted in its stress-free state
in Fig. 1(a). All annuli are assumed to be deformed identically. The
deformation consists of an inflation (leading to an inhomogeneous
radial deformation) and extension along its axis such that, crucially
here, the outer radius of the cylinder remains unchanged, r1 = R1.
This results in a deformed configuration as depicted in Fig. 1(b). In
principal the host medium can be linear or nonlinearly elastic but
herewe shall consider it as linear. Subsequent elastodynamicwave
propagation depends on the initial deformation and the governing
equations are determined by appealing to the theory of small-on-
large [18].

It is envisaged that the deformation results from inserting a stiff
cylindrical inclusion with elastic properties µ2 and κ2 and density
ρ2 into the inner region of the annulus.

2.1. Annular cylinder inflation

The deformation of the annular cylinder is conveniently de-
scribed in the form

R = R(r), Θ = θ, Z = z/ζ (1)

where the usual convention is followed, using upper (lower) case
variables for the reference (deformed) configuration. Deformation
is imposed such that

R0 = R(r0), R1 = R(r1) = r1. (2)

Principal stretches are

λr =
1

R′(r)
, λθ =

r
R(r)

, λz = ζ . (3)

A second order nonlinear ordinary differential equation (ODE) is
determined from the first equation of static equilibrium divT = 0,
the second and third being trivially satisfied by the assumed form
of deformation. The ODE takes the form

R′′
= g


R, R′,W , ζ


(4)

where W is the strain energy function governing the constitutive
behaviour of the annulus and g is some function that is known only
whenW is prescribed. This ODE for R(r) is subject to the boundary
conditions (2).

In general the ODE (4) cannot be integrated analytically except
for six classes of strain energy functions [36]. The issue with
these materials types is that they are not considered physically
realistic. Therefore two alternative strain energy functions shall
be considered here that have been proposed as realistic models of
compressible nonlinear elastic materials. First the form introduced
by Levinson and Burgess [37] is employed:

WLB =
µ1

2
(I1 − 3) +

λ1 + µ1

2
(I3 − 1) − (λ1 + 2µ1)(I

1/2
3 − 1),

(5)

which was been proposed as a compressible extension of the
incompressible neo-Hookean strain energy function and this shall
be referred to here as LB. Note that λ1 = κ1 − 2µ1/3. The second
form considered is a compressible extension of theMooney–Rivlin
strain energy function [38]

WCMR =
µ1S1
2

(I1 − 3 − log (I3))

+
µ1(1 − S1)

2
(I2 − 3 − 2 log (I3))

+
3λ1 + 2µ1

6


I1/23 − 1

2
, (6)
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Fig. 2. The deformation of the annulus when it is a Levinson–Burgess (red
solid), compressible Mooney–Rivlin (S1 = 1) (blue dashed), and compressible
Mooney–Rivlin (S1 = 0.6) (blue dots) material. The incompressible material is
shown as black crosses. The initial inner radius is R0 = 0.1, the outer radius is
R1 = 0.45 and the axial stretch is ζ = 1.4. The associated volume change is
1V = 0.9. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

which will be referred to as CMR. Note thatWCMR incorporates the
I2 strain invariant and the parameter S1 ∈ [0, 1].

The deformation (R(r)) is determined numerically within
MATLAB by writing the ODE (4) as a system of two first order
ODEs, before employing the function bvp4c. The deformation is
plotted in Fig. 2. As can be seen, the form of the deformation
is largely independent of the choice of strain energy function,
and the compressible deformation is only slightly different
to the incompressible case. The function R(r) is then used
within the incremental equations that govern the propagation of
elastodynamic waves.

The deformation is characterised not only by the axial stretch,
but also by the volume change given by

1V =
Vf

Vi
=

ζ (r21 − r20 )
R2
1 − R2

0
, (7)

where Vi and Vf are the initial and final volumes of the annular
section. The deformed inner radius is therefore given by

r0 =


R2
1 −

1V
ζ

(R2
1 − R2

0). (8)

For each case, in order to ensure that the annulus is deformed
appropriately the necessary radial pressure is applied on the outer
surface and the inner expansion is driven by the insertion of
the stiff cylindrical inclusion. This is also accompanied by an
axial stretch ζ and chosen volume change 1V . In principal these
two parameters can be chosen so that the pressure exerted on
the outer boundary of the annulus is zero, which is a more
physically satisfying condition in terms of fixing the annuli inside a
phononic medium. The annular (nonlinear) region is chosen to be
significantlymore compliant than the host region and it is assumed
that the host material remains stress-free.

2.2. Incremental waves

Assume now that in-plane small-amplitude linear elastic
waves propagate through the deformed structure. For geometrical
reasons it is convenient to consider the displacementswith respect
to the cylindrical polar coordinate system and then transform to
Cartesian coordinates when quasi-periodicity of the Bloch waves

is imposed. In this case, the incremental displacement from the
deformed configuration is given by

u = (ur(r, θ)er + uθ (r, θ)eθ )e−iωt , (9)

where er and eθ are unit vectors in the radial and azimuthal
directions and where time-harmonic dependence has been
assumed; ω is the angular frequency. It is straightforward to
show that within the annular cylinder, in the periodic cell, the
incremental wave equation is [18]

divζ = −ρ1 ω2u, (10)

where ζ is the push forward of the incremental nominal stress,
given by ζ = M : γ in which γ = gradu and

Mijkℓ = J−1 ∂2W
∂Fjm∂Fℓn

FimFkn. (11)

It can be shown that (see [18])

Miijj =
λiλj

J
∂2W

∂λi∂λj
, (12)

with no sum over repeated indices. Furthermore, provided that
i ≠ j and λi ≠ λj

Mijij =
λ2
i

J(λ2
i − λ2

j )


λi

∂W
∂λi

− λj
∂W
∂λj


, (13)

Mijji =
λiλj

J(λ2
i − λ2

j )


λj

∂W
∂λi

− λi
∂W
∂λj


. (14)

All other combinations give Mijkℓ = 0. In the host and inclusion
media the governing wave equations are those of linear isotropic
elastodynamicswith isotropic elasticmoduli κ0, µ0 and κ2, µ2 and
densities ρ0 and ρ2 respectively. It transpires that for the study of
in-plane waves there are four non-zero elements of ζ that are of
interest, which are

ζrr = Mrrrrγrr + Mrrθθγθθ ,

ζrθ = Mrθrθγθr + Mrθθrγrθ ,

ζθr = Mθrθrγrθ + Mθrrθγθr ,

ζθθ = Mθθrrγrr + Mθθθθγθθ .

The stress ζzz is non-zero but does not influence the propagation
of in-plane waves. The following two incremental wave equations
are generated:

∂

∂r


Mrrrr

∂ur

∂r
+ Mrrθθ

1
r


∂uθ

∂θ
+ ur


+

1
r


∂

∂θ


Mθrθr

1
r


∂ur

∂θ
− uθ


+ Mθrrθ

∂uθ

∂r


+ (Mrrrr − Mθθrr)

∂ur

∂r
+ (Mrrθθ − Mθθθθ )

1
r


∂uθ

∂θ
+ ur


+ ρ1 ω2ur = 0, (15)

∂

∂r


Mrθrθ

∂uθ

∂r
+ Mrθθr

1
r


∂ur

∂θ
− uθ


+

1
r


∂

∂θ


Mθθrr

∂ur

∂r
+ Mθθθθ

1
r


∂uθ

∂θ
+ ur


+ (Mrθrθ + Mθrrθ )

∂uθ

∂r
+ (Mθrθr + Mrθθr)

1
r


∂ur

∂θ
− uθ


+ ρ1 ω2uθ = 0. (16)

In order to study Bloch–Floquet wave propagation through the
deformed periodic structure, it is now necessary to transform (10)
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into Cartesian form. In other words since this is already in
‘‘invariant’’ form, the Cartesian forms of the tensor ζ must simply
be deduced when written in terms of Cartesian displacement
components, i.e. u = uex + vey so that γ = gradu. Upon carrying
out this transformation it can be shown that

ζxx = Mxxxxγxx + Mxxxyγyx + Mxxyxγxy + Mxxyyγyy, (17)
ζxy = Mxyxxγxx + Mxyxyγyx + Mxyyxγxy + Mxyyyγyy, (18)
ζyx = Myzxxγxx + Myxxyγyx + Myxyxγxy + Myxyyγyy, (19)
ζyy = Myyxxγxx + Myyxyγyx + Myyyxγxy + Myyyyγyy (20)

where Mijkℓ given here with respect to the Cartesian basis
are specified in terms of their cylindrical coordinate system
counterparts in the Appendix.

3. Implementation of the modified plane-wave-expansion
technique

The implementation of the plane-wave-expansion method is
carried out in much the same manner as described in [31]
expect that here instead of a scalar problem, the pair of coupled
Eqs. (15)–(16) governing the (coupled) shear and pressure waves
must be dealt with. First, the reciprocal lattice is introduced:

G =
2π
ℓ

(mex + ney) (21)

where m, n span the integers. Introducing the Bloch wave vector
K, displacements are written in the quasi-periodic form

u(x) = eiK·x

G

U[G] eiG·x, (22)

v(x) = eiK·x

G

V [G] eiG·x, (23)

noting that the sum here is a double sum over m and n (spanning
all integers). The (periodic) incremental moduli are written in
(periodic) plane-wave form, e.g.

Mxxxx(x) =


G

mxxxx[G]eiG·x (24)

and analogously for all otherMijkℓ and the density ρ(x)with plane-
wave (Fourier) coefficientsmijkℓ[G] and R[G] respectively.

Using (22)–(23) as well as the material property expansions
such as (24) in the governing equations with the forms (17)–(20)
generates an infinite homogeneous linear system for the compo-
nents U[G] and V [G]. Truncating the sum over plane waves gives a
finite system of the form

(A[Kx, Ky] + ω2B)U[G] = 0 (25)

where, having truncated the system with m and n ranging from
−Nmax to Nmax, the vector U[G] is written in the short-hand form

U[G] =



U[−Nmax, −Nmax]

U[−Nmax + 1, −Nmax]

...
U[Nmax,Nmax]

V [−Nmax, −Nmax]

V [−Nmax + 1, −Nmax]

...
V [Nmax,Nmax]


. (26)

It should also be noted that B depends only on the Fourier
coefficients of the density, i.e. R[G]. The matrix eigenvalue
problem (25) is solved using the MATLAB eig function and this
enables the dispersion relation K = K(ω) to be determined.

4. Tuning band gaps: results

When presenting results associated with dispersion relations,
the band diagrams will be plotted in the usual manner. That is,
the frequency of each mode is determined whilst scanning the
wavenumber around the edge of the irreducible Brillouin zone
[39,2]. Following convention, the three points defining this
boundary are denoted Γ (K̂ = 0i + 0j), X (K̂ = 0.5i + 0j) and
M (K̂ = 0.5i + 0.5j).

Throughout the results section, the Lamé parameters and
density are non-dimensionalised on those of the host material and
the wavenumbers on the lattice period ℓ, i.e. for j = 0, 1, 2

µ̂j =
µj

µ0
, λ̂j =

λj

µ0
ρ̂j =

ρj

ρ0
,

K̂ = ℓK, Ĝ = ℓG. (27)

The nondimensional frequency therefore becomes

ω̂ =
ℓω

c0
, (28)

where c0 =
√

µ0/ρ0 is the shear wave speed in the host material
(andunstressed annulus due to the choice of properties above). The
spatial variable is non-dimensionalised on the period, ℓ, i.e. x̂ =

x
ℓ
,

ŷ =
y
ℓ
, and so the unit cell is mapped to the region −1/2 < x̂ <

1/2 and −1/2 < ŷ < 1/2. The outer radius of the pre-stressed
region remains fixed at R1 = r1 = 0.45. This value was chosen
since it is large enough to give a sizeable pre-stressed region, but
not too large so the pre-stressed region is close to the outer edge
of the unit cell. Although it is possible to study the latter case as r1
gets closer to 0.5, a significant increase in the number of terms in
the PWE is required. Since this is not the main focus of the study it
is avoided here.

For all calculations, the maximum plane-wave number is taken
at Nmax = 10 (corresponding to 441 plane waves) which has been
established to give sufficiently accurate results. The percentage
error in the method is estimated by taking a large number of plane
waves and is typically below 0.05%.

Through the remainder of this paper, the non-dimensional
properties in the host region and annulus are chosen to be µ̂0 =

µ̂1 = 1, λ̂0 = λ̂1 = 2 and ρ̂0 = ρ̂1 = 1. For the inclusion, the
material properties are chosen to be stiffer and denser: µ̂ = 5,
λ̂ = 30 and ρ̂ = 2 in this region.

4.1. P-SV mode

In Fig. 3 the effect on the band diagram associated with
the coupled compressional/vertically polarised shear waves is
illustrated after applying a pre-stress of the form described in
Section 2.1 with ζ = 1.4 and volume change 1V = 0.8 for the
LB and CMR materials. A significant change in the band diagram is
observed including the appearance of an absolute band gap for the
coupledmode. However, when compared to the band diagram of a
stress free material with larger inclusion (with radius equal to the
inner annulus radius in the deformed state), the stress freematerial
exhibits a significantly larger band gap. This means that materials
can be generated in a pre-stressed that permit the propagation of
elastodynamic waves in frequency ranges that are not possible in
unstressed media with the same geometry.

It is appears that altering the Mooney–Rivlin parameter has
no significant effect on the shape of the band structure. However,
the frequencies of the bands are altered slightly, illustrating some
sensitivity to choice of material.

In Fig. 4 the effective (fundamental) shear and compressional
wavespeeds are plotted and band gap widths for the various ma-
terials. In these plots, typical values of the pre-stress are chosen as



E.G. Barnwell et al. / Extreme Mechanics Letters ( ) – 5

Fig. 3. Band diagrams for a number of different materials. The top left figure is a stress free solid with inclusions of size R0 = r0 = 0.275, the top middle is a pre-stressed
Levinson–Burgess strain energy function, the top right is a stress free solid with inclusion size R0 = 0.36 and the bottom three diagrams are compressible Mooney–Rivlin
materials with (from left to right) S1 = 1, S1 = 0.8 and S1 = 0.6. All of the pre-stressed materials have initial radius R0 = 0.3, axial stretch ζ = 1.4 and volume change
1V = 0.8. Stop bands are indicated by the shaded regions.

Fig. 4. The effective wavespeed of the fundamental modes for the pre-stressed periodic structure is shown in the upper two figures. With variation in the undeformed
inner radius (left) and with variation of the axial stretch (right, with 1V = 1/ζ ). The shear mode is shown by the solid line and the compressional mode by the dashed line.
Results are shown for stress free (black), LB (red), CMR S1 = 1 (dark blue) and CMR S1 = 0.6 (light blue). The lower two figures show the band gap width as a function of
undeformed radius. On the left is stress free (solid) LB (dashed blue), CMR S1 = 1 (dotted red) and CMR S1 = 0.6 (dot dash blue). On the right, the width for no axial stretch
(ζ = 1) is shown where 1V = 1 (no pre-stress, solid), 1V = 0.8 (dashed blue), 1V = 0.6 (dotted red) and 1V = 1.2 (dot dash light blue). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

ζ = 1.4 and 1V = 0.8 and the typical inner radius is chosen as
R0 = 0.3.

All materials show generally the same trends with regards to
the wavespeed. Although the shear wavespeed for the different
materials is largely unchanged, the choice of material properties

has a significant effect on the compressional wavespeed. This
shows a sensitivity to the strain energy function that is not initially
obvious from the band diagrams.

It is clear that there is some dependence of the band gap
width on the strain energy function. However, rather interestingly
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all strain energy functions cause the band gap to be switched
on at a smaller initial radius than would occur in an initially
unstressed medium. It is also interesting to note that applying
differing amounts of compression, and keeping ζ = 1, has a large
effect on the width of the stop band but does not change the point
at which the stop band switches on. The ζ = 1 case is of specific
interest since this means that the annulus could be held in situ
within the material when imposing initial pre-stress.

5. Concluding remarks

In this paper the theory of small-on-large has been employed
to incorporate pre-stress into a phononic crystal made up of a
compressible elastic material. The effect of this pre-stress on the
band structure was investigated for two different strain energy
functions.

For the coupled pressure and shear mode we have shown that
applying pre-stress can have the effect of switching on and off stop
bands, giving a mechanism for real time tuning. The sensitivity
to different strain energy functions was investigating and it was
shown that in some situations the choice of constitutive behaviour
has a significant effect on the material response. This effect is
more pronounced for the compressionalwavemode than the shear
mode.

There is scope for future work influenced by the work given
here. In particular, it would be interesting to include the SH mode
to see if it is possible to create an absolute band gap for all modes.
Similarly, it would be interesting to determine if it is possible
to obtain a stop band in the pressure mode but allow the same
frequencies to propagate in the shear mode. In doing this, by
building a finite specimen it may be possible to convert pressure
waves from a fluid into shear waves in a (phononic) solid, thus
making efficient soundproofing at specific frequencies.
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Appendix. Incremental moduli in Cartesian form

Mxxxx =
1
r4


x4Mrrrr + y4Mθθθθ

+ x2y2(2Mrrθθ + 2Mrθθr + Mrθrθ + Mθrθr)

,

Mxxyy = Myyxx

=
1
r4


x4Mrrθθ + y4Mθθrr

+ x2y2(Mrrrr − Mrθrθ − 2Mrθθr − Mθrθr + Mθθθθ )

,

Mxxxy = Mxyxx

=
xy
r4


x2(Mrrrr − Mrrθθ − Mrθrθ − Mrθθr)

+ y2(Mrθθr + Mθrθr − Mθθθθ + Mrrθθ )

,

Mxxyx = Myxxx

=
xy
r4


x2(Mrrrr − Mθrθr − Mrθθr − Mrrθθ )

+ y2(Mrrθθ + Mrθrθ + Mrθθr − Mθθθθ )

,

Mxyxy =
1
r4


x4Mrθrθ + y4Mθrθr

+x2y2(Mrrrr − 2Mrrθθ − 2Mrθθr + Mθθθθ )

,

Mxyyx = Myxxy

=
xy
r4


x2(Mrθrθ + Mrθrθ − Mθθθθ + Mθθrr)

+ y2(Mrrrr − Mrrθθ − Mrθθr − Mθrθr)

,

Mxyyy = Myyxy

=
xy
r4


x2(Mrrθθ + Mrθrθ + Mrθθr − Mθθθθ )

+ y2(Mrrrr − Mθrθr − Mrθθr − Mθθrr)

,

Mxyyx = Myxxy

=
xy
r4


x2(Mrθrθ + Mrθrθ − Mθθθθ + Mθθrr)

+ y2(Mrrrr − Mrrθθ − Mrθθr − Mθrθr)

,

Myxyx =
1
r4


x4Mθrθr + y4Mrθrθ

+ x2y2(Mrrrr − 2Mrrθθ − 2Mrθθr + Mθθθθ )

,

Myyyy =
1
r4


x4Mθθθθ + y4Mrrrr

+ x2y2(2Mrrθθ + 2Mrθθr + Mrθrθ + Mθrθr)

.
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