
J. LOGIC PROGRAMMING 1991:10:333-360 333

COMPARISON OF METHODS
FOR LOGIC-QUERY IMPLEMENTATION*

ALBERT0 MARCHETTI-SPACCAMELA,

ANTONELLA PELAGGI, AND DOMENICO SACCii

D A logic query Q is a triple (G, LP, D), where G is the query goal, LP is a
logic program without function symbols, and D is a set of facts, possibly
stored as tuples of a relational database. The answers of Q are all facts
that can be inferred from LP U D and unify with G. A logic query is
bound if some argument of the query goal is a constant; it is canonical
strongly linear (a CSL query) if LP contains exactly one recursive rule and
this rule is linear, i.e., only one recursive predicate occurs in its body. In
this paper, the problem of finding the answers of a bound CSL query is
studied with the aim of comparing for efficiency some well-known methods
for implementing logic queries: the eager method, the counting method,
and the magic-set method. It is shown that the above methods can be
expressed as algorithms for finding particular paths in a directed graph
associated to the query. Within this graphical formalism, a worst-case
complexity analysis of the three methods is performed. It turns out that
the counting method has the best upper bound for noncyclic queries. On
the other hand, since the counting method is not safe if queries are cyclic,
the method is extended to safely implement this kind of queries as well. a

1. INTRODUCTION

We assume that the reader is familiar with the basic concepts of logic programming
[6] and relational databases [ll, 131, and with the Logic query language as described
in [12,13]. A (logic) query is expressed as a triple (G, LP, D), where G is the

Address correspondence fo Professor Domenico Sac&, Dipartamento di Sistemi, Universita della
Calabria, 87036 Rende Italy.

Accepted July 1990.
*This work was partially supported by the Commission of the European Communities within the

project 2424 KIWIS of the program ESPRIT; the second author was working at this project as member
of the team of the University of L’Aquila, and she is now with SIP (Rome, Italy). The work of the first
author was also supported by a grant of M.P.I. within the project “Progetto e Analisi di Algoritmi”.
The work of the third author was also supported by a grant of M.P.I. within the project “Metodi
formali e strumenti per basi di dati evolute” and by a grant of CNR within the project “LOGIDATA+ ”
of the program “Sistemi Informatici e Calcolo Parallelo”.

THE JOURNAL OF LOGIC PROGRAMMING

OElsevier Science Publishing Co., Inc., 1991

6.55 Avenue of the Americas, New York, NY 10010 0743-1066/91/$3.50

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82778205?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

334 ALBERT0 MARCHETTI-SPACCAMELA ET AL.

query goal to be solved using the rules of the logic program LP (without function
symbols) and the facts in D possibly stored as tuples of a relational database. We
focus on a subclass of queries introduced in [7] and called canonical strongly linear
queries (CSL queries). The logic program of a CSL query contains exactly one
recursive rule, and this rule is linear, i.e., only one recursive predicate occurs in its
body. In this paper, we study the problem of finding the answer to a bound CSL
query (i.e., a CSL query having some constants in the goal) with the aim of
comparing for efficiency some well-known methods for implementing logic
queries. To this end, we show that the problem of finding the answer of a bound
CSL query Q can be formulated in terms of graphs. In particular, it is possible to
associate to the query Q a query graph, that is, a directed graph having three
different kinds of arcs, denoted by A,, A,, and A,. All nodes in the query graph
are reachable from a source node (say a), which corresponds to the initial bindings
of the query. A node (say b) corresponds to a fact in the answer of the query if
there is a (possibly cyclic) directed path from a to b having k arcs from A,, one
arc from Af, and k arcs from A,, where k is any nonnegative integer.

Within the above formalism, we present a graphical interpretation of three
methods: the eager method, which was introduced in [7] and is very similar to the
method of [4]; the counting method [l, 7,8,31; and the magic-set method [l, 7,8,3].
We perform a worst-case complexity analysis of the three methods. It turns out
that the counting method has the best upper bound for noncyclic queries. We note
that the above mentioned methods (together with other methods) were evaluated
on common examples of queries in [2]. The results of our paper confirm the results
of 121 and provide a formal ground for their generalization. Finally, we extend the
counting method to deal with cyclic queries.

The paper is organized as follows. In Section 2, we present an intuition of our
graphical interpretation of logic queries using a simple example. Then, in Section
3, we introduce CSL queries and their properties, and we generalize the graphical
interpretation to show that the problem of finding the answers of any CSL query
can be formulated in terms of simple graph concepts. The proofs of some results of
this section are reported in the appendix. In Section 4, we describe the three
mentioned methods in terms of the graph formalism, and in Section 5 we supply
the complexity analysis of these methods. Finally, we extend the counting method
to cope with cyclic CSL queries in Section 6, and we give the conclusions and
discuss further work in Section 7.

2. AN EXAMPLE

Consider the following logic program:

Program Pl.

ro: g(X,Y):- up(X, W),down(Z,Y), g(W, 23.
rl: g(X,Y):-$at(X,Y).
r2: up(a, aI).
r3: da,, a,).
r4: wb, a3).
r5: da,, a,).
t-6: up(a5, a,).

METHODS FOR LOGIC-QUERY IMPLEMENTATION 335

r7: flatbz,, b,).
r8: flaf(al, b,).
ro: down(b,, b,).
rlo: down(b,, b,).
rll: down(b,, b,).

This logic program is a syntactic variation of the well-known same-generation
example. In fact, the predicates up, flat, and down correspond to the relations
Child, Sibling, and Parent, respectively, and g(X, Y) is true if X and Y are of the
same generation. In fact, two human beings x and y are of the same generation if
either x is sibling of y (see rule r,) or there exist w and z such that x is child of
w, z is parent of y, and w and z are of the same generation (see rule ro). In other
words, the fact g(x, y) is inferred from Pl if either the fact flut(x, y) is in Pl or
there is an integer i, i > 0, and constants w,, w2,. . . , wi, z,, z2,. . . , zi such that all
the facts

~~(~~~~)~“P(w~~w~)~~~~~uP(wi-~~Wi)~flClt(Wi~zi)~

down(zi,zi_,);...; down(z,,z,);down(z,,y)

are in Pl.
As an example, consider the two constants a and b,. The fact g(u, b,) can be

inferred from Pl in two different ways:

(1) up(a, u,kflut(u,, b,); down(b,, b,), or

(2) ~(a, a,); UP(U,, a,);~7at(a,, b,); dowdb,, b,); down&, bJ.

The logic program Pl can be graphically interpreted as follows. We define a
directed graph G = (N, A), where the set of nodes is the Herbrand universe and
the set of arcs A consists of the union of the three following disjoint sets:

(1) A, = Kx, y)I up(x, Y) is in Pll;

(2) Af = {(x, Y) I flatk Y) is in Pll;

(3) A, = ((x, y> I down(x, y) is in Pl).

The graph G is shown in Figure 1 (arcs in A, and in A, are represented by solid
arrows going up and down, respectively, and arcs in Af are represented by dotted
arrows>.

FIGURE 1. Graph G.

336 ALBERT0 MARCHETTI-SPACCAMELA ET AL.

Using the graphical representation, it is easy to see that a fact g(x, y) can be
inferred by Pl if and only if there is a path from x to y of length 2i + 1, where
i 2 0, such that

(1) the first i arcs belong to A,,

(2) the (i + 11th belongs to Af, and

(3) the last i arcs belong to A,

(this kind of path is called an answer path).
As an example, we consider again the pair of constants a, b,. There are two

answer paths from a to b,, namely,

(1) ((a, a,>,(~,, b,),(b,, &I), and

(2) ((a, ~~),(a,, a,),(~,, b,),(b,, b,),(b,, b,)).

These two paths correspond to the two derivations of the fact g(u, b,), shown
before.

It follows that the problem of answering a query on the logic program Pl
coincides with the problem of finding answer paths in the graph of Figure 1.
Moreover, methods to implement logic queries differ in the strategy for determin-
ing such paths. As an example, consider the query ? g(u, Y). A first strategy is to
start from the node a, to consider one arc at the time, and to find all possible
answer paths leaving a; this means that the same arcs can be taken into account
several times and, if the graph is cyclic, termination is not guaranteed. This is the
implementation strategy used by PROLOG [6].

A different strategy is to add new dotted arcs to the graph of Figure 1 as
follows. If there are a dotted arc from w to z, a solid arc going up from x to w,
and a solid arc going down from z to y, then a dotted arc from x to y is added.
As soon as no new arc can be added, the query answers are determined by taking
the target nodes of dotted arcs leaving a. This is the strategy used by database-ori-
ented implementations of logic queries [12], and it can be expressed as the least
fixpoint of the following function over database relations:

f(g) =.W u ~1,6((W w *=lg) w ,=,down).

The function f is defined by a join-project-union algebra expression [ll] having as
operands the constants fiat, up, and down and the variable g, where jiizt, up, and
down are database relations corresponding to the predicates with symbols jlut, up,
and down, respectively, and g is an unknown database relation. After computing
g, the answers are given by the second components of those tuples of g whose first
component is equal to a; thus

It is easy to see that the second strategy terminates even when the graph is cyclic;
however, the binding a of the query is not used to restrict the hxpoint computa-
tion. To overcome this limitation, a number of methods have been introduced that
allow an efficient database-oriented implementation of bound logic queries. Also
these methods can be characterized by their strategies for finding answer paths, as
will be shown in the next sections, where a similar graph formalism is used to
describe properties of a larger class of logic programs.

METHODS FOR LOGIC-QUERY IMPLEMENTATION 337

3. GRAPHICAL REPRESENTATION OF LOGIC QUERIES

3.1. Logic Queries

A logic program is a set of rules (Horn clauses). We assume that no function
symbols occur in logic programs; thus we confine ourselves to so-called Datalog
programs. We often denote predicates with capital letters such as P, Q,. . . , and
we assume that the symbols of such predicates are the corresponding lowercase
letters p, q,. . . . In other words, if P denotes a predicate, then we assume that this
predicate has the form p(x), where x is a list of arguments and p is the predicate
symbol.

A predicate without variables is ground. A rule with ground head predicate and
empty body is a fact.

Let L be a logic program and S be the set of all predicate symbols occurring in
L. The dependency graph [13] of L is the directed graph DG, = (S, A) such that
there is an arc (p, q) in A if and only if there is a rule in L where q is the head
predicate symbol and p is a predicate symbol occurring in its body [13]. A
predicate symbol is recursive if it is on one or more cycles of DG,; predicates are
then classified as recursive or nonrecursive according to their symbols. A rule r
(say, with head predicate symbol p) is recursive if there is a predicate symbol q in
the body of r such that p and q belong to the same strong component in DG,.
Given a logic program L and a predicate symbol q, a rule r in L defines q if the
head predicate symbol of r is q.

Given a logic program L and a predicate G, we denote by LP, the set of all
rules in L defining g and all predicate symbols belonging to the same strong
component as g (recall that g is the predicate symbol of G). Moreover, we denote
by D the set of all rules in L - LP, defining all predicate symbols q such that
there is a path from q to g in DG,. A logic query is a triple (G, LP,, 0); the
predicate G is called the query goal. From now on, we shall refer to LP, simply as
LP. Furthermore, since the rules in D can be solved independently of those in LP,
without loss of generality we shall assume that D is a (possibly infinite) set of facts.
All predicates that are defined in LP are called query predicates, whereas all
predicates that are defined in D are called datum predicates. In addition, all
datum predicates that are defined by a finite number of facts in D are called
database predicates.’ The answers of Q are all facts that both can be inferred from
LP U D and unify with G.

Example I. Consider the same-generation example of the previous section
(Program PD. A possible logic query is (g(a,Y),LP, D), where LP = {rO, rl) and
D = {r2,. . . , rti). The answers are g(a, b,) and g(a, b3).

Two queries are equivalent if they have the same answers.

‘The facts defining database predicates can be though of as tuples of a relational database. On the
other hand, comparison predicates are examples of datum predicates that are defined by an infinite
number of facts in D.

338 ALBERT0 MARCHETTI-SPACCAMELA ET AL.

3.2. CSL Queries

A query Q = (G,LP, D) is

(1)

(2)

(3)

recursive if LP contains at least one recursive rule (it follows that query
predicates are recursive);

linear if it is recursive and every recursive rule in LP contains exactly one
query predicate (i.e., recursive predicate) in its body;

strongly linear if it is linear and there are no two recursive rules in LP with
the same head predicate symbol.

It turns out that strongly linear queries have at most one cycle of recursion; thus
they are the simplest recursive queries.

A query Q = (G, LP, D) is canonical strongly linear (a CSL query) if it is linear
and the logic program LP contains exactly one recursive rule [7]. It is easy to see
that any strongly linear query can be transformed into a CSL query by unfolding
the logic program LP so that all rules in LP have g as head predicate symbol.
Therefore, all results for CSL queries hold for strongly linear queries as well.

Example 2. The query Q = (g(u, Y), LP,, D), where LP, is the logic program

ro: dX,Y):- b(X, WI, gW,Z), gW, V),c(V,Y).
ri: g(Z, W):- d(Z, W).

and D is a set of facts defining the predicates symbols b, c, and d, is a recursive
nonlinear query.

If we replace LP, with the following logic program LP,:

ro: g(X, Y I:- g(X, Z), c(Z, Y 1.
rl: g(Z, W) :- b(Z, Y 1, g(Y, W.
r2: g(U, V) :- d(U, VI.

then the query (g(u,Y),LP,, D) is linear but not strongly linear. On the other
side, given the following logic program LP,:

ro: g(X,Y):-p(X, Z),c(Z,Y).
r,: PC? W) :- b(Z, Y>, g(Y, W).
r2: p(lJ, V) :- d(U, VI.

the query (g(u, Y), LP,, D) is strongly linear and can be reduced to a CSL query
by modifying LP, into the following program LP,:

ro: g(X, Y):- b(X, W), gW, Z), c(Z, Y).
rl: g(U, V) :- d(U, Z>, c(Z, VI.

It is easy to see that (g(u,Y),LP,, D) and (g(u,Y),LP,, D) have the same
answers. Finally, the query in Example 1 is a CSL query.

Given a CSL query Q = (g(x), LP, D), where x is a list of arguments, the logic
program LP has the following structure:

ro: g(x,) :- Co, g(y).
rl: g(x,> :- C,.

rip: g(x,,):- C,,.

METHODS FOR LOGIC-QUERY IMPLEMENTATION 339

where x,,, . . . ,x,, y are lists of arguments, lp = lLPl - 1, and C,, . . . , C,, are con-
junctions of database predicates that are defined in D. For simplicity but without
real restriction, we require that all the variables in x be distinct and that x0 and y
only contain variables. In addition, without loss of generality, we suppose that all
constants appearing in LP also appear in D, so that the Herbrand’s universe is
given by the set of all constants occurring in D. From now on, we assume that
every logic program has the above structure, i.e., r0 is the recursive rule, g is the
recursive predicate symbol, and so on.

3.3. Bound CSL Queries

In this paper, we are interested in CSL queries where some of the arguments in
the query goal are constants (bound) and this initial binding may be propagated
top-down through the recursive rule using database predicates. (Note that datum
predicates that are not defined by a finite set of facts cannot effectively propagate
bindings.) For instance, the constant a in the query goal of Example 1 binds the
first argument of the recursive predicate. This binding is propagated by the
database predicate up of the rule rO, giving two additional bindings a,, a3 for
the first argument of the recursive predicate. In turn, again rule r,, propagates
the binding a, into a,. At this point, no further propagation is possible. The
so-computed bindings can be now be used to restrict the actual computation of the
answer. In general, the binding is propagated in a quite complex way (or it is not
propagated at all). For instance, a binding on the first argument of the recursive
predicate can generate a binding on the second argument, which, in turn, adds
bindings for the first argument, and so on. We now provide a precise characteriza-
tion of how bindings are propagated via database predicates.

Given a predicate P, we denote a list of arguments in P by a tuple S of ordered
position indices. In general, we shall use this notation to indicate bound arguments
in P. For example, given the predicate g(X, Y, 2, IV), if S = (1,3} then the
arguments X and 2 are bound. We note that a different notation has been
proposed in [12], where bound arguments are denoted by a string of b (bound) and
f (free), called adornment; in the above example, the adornment is “bfbf”.
Clearly, the two notations are equivalent.

Suppose that the S-arguments of the predicate g(x,) in r0 are bound.* Then
the set of variables bound in r,, by S, denoted by B,, is defined as follows:

(1) every variable appearing in any bound argument in S is in B,;

(2) if a variable occurring in a bound argument in S appears in a database
predicate P of C,, then all the other variables in P are in B,.

Obviously, if S is empty then B, is empty as well. If all variables of a datum
predicate are in B,, then the predicate is said to be bound by S.

Let TS be the index tuple denoting all arguments y in y such that y is a
variable in Bs. The database pr@cates in C, propagate bindings from the bound
arguments S in the head of rO to the Ts-arguments of the recursive predicate in

*We often blur the difference between arguments and indices denoting them.

340 ALBERT0 MARCHETTI-SPACCAMELA ET AL.

the body; we say that the Ts-arguments in the body are bound by S. Note that TS
may be empty, i.e., the binding is not propagated.

The binding graph of the CSL query Q = (g(x), LP, D) is the directed graph
B, = (N, A) having nodes of the form S, where S is an index tuple for the
arguments of g. The binding graph B, is constructed as follows:

(1) if X denotes the index tuple of all constant arguments in the goal g(x), then
X E N (source node);

(2) if there exists a node S in N, then TS and (S,Ts) are in N and A,
respectively, where TS denotes the arguments of the recursive predicate in
the body of r0 that are bound by the arguments S in the head.

Let G be a directed graph with nodes S,, S,, . . . , S,. G is a single-cycle graph if
it is composed of an initial (possibly empty) acyclic path followed by a cycle; thus
the arcs of G are (S,,S,),(S,,S,),...,(Sj_,,Sj),(Sj,Sj+,),...,(S,_,,S,),(S,,Sj).
If j = 1, then the initial path is empty and the graph is a cycle.

Example 3. Consider the query (g(a, b, Z, W), LP, D), where D contains a
number of facts defining the database predicates a, b, c, d, e, f, and where LP is

rO: g(X, Y, 2, WI:- a(X, VI, b(Y, U, 21, ~(2, X,2),
d(W), e(W), g(X, I’, 2, WI

rl: g(X,Y,Z,W):-f(X,Y,Z,W).

Suppose that S = (l,?]; then the database predicates that areA boundA by S, a;e
a(X, VI and b(Y, U, Z). Moreover, TS = (3); thus the argument Z of g(X, Y, Z, WI
is bound by S.

The binding graph of the query is shown in Figure 2(a). If we now replace the
query goal with g(a, Y, Z, WI and g(X, Y, Z, a), the corresponding binding graphs
are those shown in Figure 2(b) and cc), respectively. Notice that the three binding
graphs are single-cycle.

Next we present some properties of CSL queries whose proofs directly derive
from the previous definitions.

Fact 1. Let Q = (G, LP, D) be a query. Then

(a)

(b)

BY

the recognition of whether Q is a CSL query can be done in time linear in the
size of LP;

if Q is a CSL query, then the binding graph B, is a single-cycle graph and can
be constructed in time 0(2”]LP]), where ILPl is the size of LP and n is the
largest arity of the predicates in LP.

Fact l(b), the binding graph B, can be represented as (S,, S,, . . . ,

sj,sj+1>a"7 S,, Sj>, where Si, 1 pi I k, are the nodes of B,; S, is the source
node; the arcs (Si, Si+i), 1 <i 2 j - 1, form the initial path; and the arcs
<Sj, Sj+ 119.. .9 (Sk-l, S,),(S,, Sj> form a cycle.

The CSL query Q is bound if no node in the binding graph B, is an empty list.
The first two queries of Example 3 [see the binding graphs in Figure 2(a) and (b)]
are bound, whereas the third query [see Figure 2(c)] is not.

METHODS FOR LOGIC-QUERY IMPLEMENTATION 341

(a)

<I>

0

(b)

Cc) FIGURE 2. Binding Graphs.

Let Q be a bound query and B, be its binding graph, represented by

(S,,&,..., S,, S,). For each Si, 1 I i I k, we denote (1) by Si the indices that are
not in S;, (2) by Lsd the conjunction of all predicates in C, that are bound by Si,
and (3) by L St_ the conjunction of all predicates in C, that are not in L’l. The
initial bindings of the query goal on the arguments denoted by S, are propagated
to the arguments denoted by S, through the database predicates in Lsl, then from
S, to S, through the database predicates in Ls2, and so on. Eventually, the
bindings are propagated back from S, to Sj via Ls*. If for some i, 1 I i I k, Lsl is
empty, then the binding is directly propagated; thus every argument y in TSl is a
variable appearing in some S,-argument of the head predicate.

342 ALBERT0 MARCHE-ITI-SPACCAMELA ET AL.

Example 4. Consider the query (g(a, b,, Z, WI, LP, D) of Example 3. We have
Lsl = a(X, U), b(Y, U, I!> and Lsz = c(Z, X, I’>, where S, = (1,2) and S, = (3). In
addition, S; = (3,4) and Lsi is equal to

c(Z,R,F),d(W),e(ti).

Finally, S; = (1,2,4) and LsF is equal to

a(x,u>,b(Y,U,~),d(W),e(~).

3.4. Query Graph

We now associate a directed graph to a bound CSL query to provide an interpreta-
tion of it. The nodes of the graph correspond to tuples of constants; in particular,
the source node corresponds to the tuple of constants in the query goal. The other
nodes (and incoming arcs) are obtained by retrieving tuples from the database D
via a goal composed by a conjunction of database predicates, using restrictions
from the tuples corresponding to previously generated nodes. In order to formally
define such a graph, we require additional definitions.

Let z be a list of arguments, and let S be an index tuple denoting some
arguments of z. Then z(S) stands for the ordered list of the arguments of z that are
denoted by S.

A (ground) substitution CT for a set of variables X is a mapping from X to the
Herbrand universe. Let z be a list of arguments whose variables are in X. Then zu
denotes the list of arguments obtained from z by simultaneously replacing each
occurrence of the variable X (for every X in XI with the constant a(X).
Furthermore, if L is a conjunction of predicates whose variables are in X, then La
denotes the conjunction obtained from L by replacing the argument list z of every
predicate in L with zu. It turns out that every predicate in La is ground.

Let Q = (G, LP, D) be a bound CSL query whose binding graph is represented
by (Si,..., S,, Sj). For each Si, 1 pi I k, we denote by Si+ the subsequent node
in the above list (i.e., Si+i if i <k, or Sj if i = k).

Example 5. If z=(X,Y,Z,W) and U=(l,2,4), then zNJ)=(X,Y,W). LA
u = {(X, a), (Y, b), (Z, c),(W, a>} and L =p(X, d, Y), q(Y, WI. Then zu =
(a, b, c, a) and La = p(a, d, b), q(b, a). Finally, given the binding graph
(S,,S,,S,,S,), we have S,+= S,, S,+= S,, and S,+= S,.

Let Q be a query and (S,, S,, . . . , S,, Sj) be its binding graph. The query graph
of Q is the directed graph Go = (N, U Nd, A,, UAf U Ad) having nodes of the
form [S, t], where S is an index tuple and t is a tuple of constants, both having the
same number of components. The query graph Go is constructed as follows:

(a) The node [S,, a] is in N, (source node), where a is the list of constants in the
query goal.3

(b) If [Sj, al] is in N, and there exists a substitution u for the set of variables in
Lsi and x,,(SJ such that x,(Si)u = a, and every predicate in Lsiu is in D,
then the node [Si+,a21 is in N, and the arc ([Si,a,l,[Si+,a,l) is in A,,

3Here and in what follows, constants are listed in the order in which they appear in the predicate.

METHODS FOR LOGIC-QUERY IMPLEMENTATION 343

(cl If [Si, al] is in N, and there exists both a nonrecursive rule in LP, say

rq: &7(x,> :- C,,

and a substitution u for the set of variables in C, and in x, such that
x,(S,)a = a, and every predicate in C,a is in D, then the node [Si, b,] is in
Nd and the arc ([Si,a,],[S;, b,]) is in A,, where b, = x&T:)a.

(d) If [S;, b2] is in Nd, there is Si such that Si+= S,, and there exists a
substitution u for the set of variables in Ls_ in y(S;), and in x,(S;) such
that y(S,-), = b, and every predicate in Lsro is in D, then the node
[S;, b,] 1s in Nd and the arc ([SC, b2], [S;, b,]) is in A,, where b, = ~,#:>a.

We note that the query graph G, is composed of three subgraphs, G, = (N,, A,),
Gf = (Nf, A,), and G, = (Nd, Ad), that are induced by A,, A,, and A,, respec-
tively (note that A,, A,, and A, are disjoint). It is easy to see that Nfc N, U Nd
and Gr is bipartite, since every arc in A, goes from a node in N, to a node in Nd.

where a2 = yfSi+)a. [Note that every variable in ;y(Si+) also occurs in Lsl or
in x,(Si).]

Example 6. Consider the query (g(a, b, Z, W), LP, 0) of Example 3. Suppose
that the facts in D are those stored in the following database relations:

a

a el T a1 e2

a2 e3

a3 e3

C

Cl a1 b,

C2 al

I--r

bl

c4 hl g1

C5 a2 b2

e

r,

12

m

b

b e1 Cl
b l---r e1 C2

bl e2 C3

b2 e3 fl

d

m

q-q--r ;: ::
The query graph is shown in Figure 3. The dotted arcs are in A,, the solid arcs

going up are in A,, and those going down are in A,. The three subgraphs G,, Gf,
and Gd are outlined in the figure.

Notice that the graph of Figure 1 resembles the query graph of the query
(g(a,Y),LP, D>, where LP consists of the two rules r,, and rl defining the
same-generation predicate and D is the set of facts r2,. . . , r12. As a consequence,
one could expect that any answer of a bound CSL query will correspond to a node
that is reachable from the source node through a path having i arcs from A,, one
arc from A,, and i arcs from A,, where i 2 0. In fact, this property is confirmed
by the next theorem.

Before stating the theorem, we note that, in finding query answers, we are
actually interested only in those arguments that are unbound in the query goal; we

344 ALBERT0 MARCHET-WSPACCAMELA ET AL.

.-
__---,

(& _:-=

: \

_.--- -,
,*

,-
.’

,- se
:

[<37,cc3 71 \ .’ \
,

t

\ .’
:

\ .
\

.
Gf :

\
% . _____--*-- ,------- -.-a _______------__,‘m

\ .: \ l/ : \ : \ : \ . . \ :
[cl,2T<a,b>] :’ \ :

. ___-- .-*

FIGURE 3. Query graph.

call these arguments an al~~rver tuple. More formally, an answer tuple of Q is a
tuple b of constants such that there exists an answer g(c) for which c(S;) = b,
where SC denotes the unbound arguments of the query goal. In the following,
whenever no confusion arises, we refer to an answer tuple simply as an answer.
Furthermore, given the query graph, we define an answerpath as a (possibly cyclic)
path of length 2i + 1, i 2 0, from a node in N, to a node in Nd such that the first i
arcs are in A,, the (i + 1)th arc is in Af, and the last i arcs are in A,.

Theorem 1. Let Q = (G, LP, D) be a bound CSL query, and Gp be the query graph
of Q. Zf a tuple b Is an answer of Q, then there exists an answer path from the
source node [S,, a] to the node [SC, b] in G,.

PROOF. In the appendix. 0

The question now is whether the reverse condition of Theorem 1 holds, that is,
whenever there exists an answer path from the source node [S,, a] to a node [S;, b]
in G,, then the tuple b is an answer of Q. Unfortunately, this is not the case, as
shown in the next example.

Example 7. Consider the query (g(X, a), LP, D), where LP is

g(X, Y) :- PJX, E’, Y), g(R, 91, &!?I
g(X, Y) :-p&X, n.

METHODS FOR LOGIC-QUERY IMPLEMENTATION 345

CJ 0 <2>

(a)

[-z2>,<a1 >] [<l>.<a3>]

t A?

[<2?,<a>]
l

0
[<l>,<a>] [<l>>a 1>] [<l>,<a 2>]

6)

FIGURE 4. Graphs for the query of Example 7: (a) binding graph, (b) query graph.

and D consists of the following facts:

P,(%>%,Q).

P*(9) *

PA%, a,> -

The binding graph is shown in Figure 4(a). The query graph is constructed as
follows. The source node is [(2), (a)], and the I;ferbrand universe is (a, a,, u2, us].
Consid_er the substitution a = ((X, u,),(Y, a), (Y, a,>] for the variables in L(‘) =
pl(X,Y,Y) and in x,((2)) = (Y >. Since pl(u2, a,, a) is in D, by the definition of
query graph [part (b)] the node [(2), (a,)] is in N, and the arc
([(2), (u)],[(2>, (al>]) is in A,. It is easy to see that no other node is in N, and no
other arc is in A,. Consider now the substitution U= KX, u,>,(Y,u,)] for the
variables in C, =p&X,Y) and in x1 = (X,Y>. Since [(2), (a,>] is in N, and
p&u,, a,) is in D, by the definition of query graph [part (c)l the node L(l), (u3>l is
in Nd and ([(2),(u,)l,[(1),(u,)l is in A, (and not other arc is in Af>. Finally,

consider the following four different substitutions for the variables in L(l) =p#?),
in ~((1)) = LI[R> and in x,((l)) = (X) (note that S;= (1)):

(+1= (<X,4,(&$));

ff2= {<X,ul~,(~,a,)}:

Cl = {(X,Q),(&aJ};

(+I = ((X,a,),(d,a,)}.

Since the fact p2(u,) is in D, by the definition of query graph [part (d)] the
nodes [(I), (a>l,[(l>, (aI)l,[(l>, (a,>1 are in Nd (besides the node L(l), (a,)]

346 ALBERT0 MARCHETTI-SPACCAMELA ET AL.

that is already in N,), and the arcs (L(l), (a3>1,[(1>, (a,>l>, G(l), (a,>l,[(l), (a)]),
(L(l), (a,>l,[(l>, (a,>1 and (I(l), (~>l,[(l>, (a&l> are in A,. The query graph is
shown in Figure 4(b). Obviously, the only answer of the query is g(a,, a).
Therefore, the existence of answer paths from [(2),(a)] to [(l),(a)], [(l), (a, >I,
and [(l), (u3>] does not guarantee that g(u, a), g(u,, a), and g(u,, a) are in the
answer as well.

3.5. l-Bound CSL Query

We now introduce a subclass of bound CSL queries for which the reverse of
Theorem 1 holds. Let Q = (G, LP, 0) be a bound CSL query and B, be its
binding graph. Q is l-bound if for each node S in B,,

XnB,=0,

where B, is the set of all variables bound by S, and X is the set of all variables that
are in Ls- or in the arguments of the head predicate that are not denoted by S. In
other words, it is required that no bound variable occur in unbound datum
predicates or in unbound arguments of the head predicate.4

Example 8. The query of Example 7 is not l-bound, because the head argument
X, denoted by S;= (l), is in B,, where S, = (2) is a node of the binding graph
[see Figure 4(a)]. On th e other hand, the query (g(u, b, Z, WI, LP, 0) of Example
3 and the query of Example 1 are l-bound. To see another example of a query that
is not l-bound, consider the following logic program LP,:

rO: g(X, Y 1 :- u(X, Z), g(Z, WI, bW, Y 1, Z > Y.
t-1: g(X,Y):- u(X,Y).

The CSL query (g(u, Y 1, LP,, D), where D is any set of facts, is not l-bound, since
the variable Z is both in Lsl and in Lsi [note that S, = (l), S;= (2), L(l) is
u(X,Z), and Lc2) is b(W,Y),Z> Yl.

Theorem 2. Let Q = (G, LP, D) be a l-bound CSL query and G, be the query graph
of Q. Zf there exists an answer path from the source node [S,, al to a node [U, b] in
Nd, then the tuple b is an answer tuple of Q.

PROOF. In the appendix. 0

It is easy to see that l-bound CSL queries constitute the largest class of CSL
queries for which Theorem 2 holds. In other words, given a, bound que,‘y Q =
(G,LP, D), if Q is not l-bound, then there exists a query Q = (G,LP, D) such
that there is an answer path from the source node [S,, a] to a node [S;, b] in the
query graph of Q, and b is not an answer tuple of Q. We can therefore say that the
class of l-bound CSLqueries is the maximum generalization of the well-known
same-generation query.

We conclude the section by observing that recognition of a l-bound CSL-query
can be easily done while constructing the binding graph.

4This condition corresponds to the condition for the counting method to be applied in a simple way,
without introducing the so-called supplementary counting rules (see ES]).

METHODS FOR LOGIC-QUERY IMPLEMENTATION 347

Fact 2. Let Q = (G, LP, D) be a CSL query. If there is a bound on the arity of the
recursive predicate, then the recognition of whether Q is l-bound can be done in
time linear in the size of LP.

4. GRAPH ALGORITHMS FOR LOGIC-QUERY IMPLEMENTATION

Many methods have been introduced to implement logic queries, based on the
fixpoint computation of relational-algebra expressions. We now show that such
methods can be expressed in terms of graph algorithms using the results of the
previous section. In particular, since answering a l-bound CSL query coincides
with finding answer paths, the various methods can be characterized by the
strategy used to single out such paths. As a consequence, the graph interpretation
provides a unifying ground to compare methods for efficiency.

Let us consider a l-bound CSL query Q and its query graph G, = (N, A).
Recall that GA is composed of three subgraphs: G, = (N,, A,), Gf = (Nf, Af), and
Gd = (N,, A,). Furthermore, N = N, u Nd, N, and Nd are disjoint, Nr c N, U Nd,
and Gf is bipartite, since every arc in A, goes from a node in N, to a node in Nd.
Finally, A,, A,, and A, are disjoint. We denote the source node of G, by a.

We are now ready to present a uniform graph description of three methods for
implementing logic queries, namely, the eager method, the counting method, and
the magic-set method. In the description of the methods, given a subgraph G (i.e.,
G can be G,,, Gf, or Gd) and a subset X of nodes of G, we denote by adjG(X)
[adj-’ G(X)] the set of all nodes j such that the arc (i, j) [(j, i)] is in G and i is in
X. In other words, adj G(X) is the set of all nodes that are adjacent to some node
in X, whereas adj-1 G(X) is the set of all nodes having at least one adjacent node
in X. It is easy to see that these two sets of nodes can be computed using the rules
stated in the definition of the query graph, which can be also expressed as
relational-algebra expressions.

Example 9. Consider the query (g(a, b, Z, W), LP, D) of Example 3 and the
query graph in Figure 3. Say that

X= ([(3>,(c,>],[(3>,(c*>lj.

Then

adjG,(X) = ([(I,2),(a,,b,)]},

adj-‘G,(X) ={[<1,2),(a,b)]},

and

adjGf(X) = {[(I,2,4),(h,,g,,11)]}.

We recall that L(‘**) is the conjunction a(X, Cl), b(Y, 17, 2) and that Lc3) is the
predicate c(Z, X, I;>. It is easy to see that the relation-algebra expression

1r2,3b(l = c,,orcl=c,,C)

computes adj G,(X).

348 ALBERT0 MARCHETTI-SPACCAMELA ET AL.

u := {a};
Amwer:=ad'G,(U); {INITIALIZATION }
":= 0;

While U # 0do
begin

U := adj G,(U); u := u + 1; {UP}
D := adj GJU); {FLAT)
t := 0;
While D # 0 and t > 0
do begin

D := adj G,(D); {DOWN)
t:=t-1

end;
Answer := D U Answer

end FIGURE 5. Eager method.

4.1. The Eager Method

The eager method is described in 171 and is similar to the method of [4]. The
method works as follows. Let U be a variable whose type is the power set of N,,,
and let u be a counter associated to U. At the beginning, U only contains the
source node a. Then all nodes j in Gd such that there is an arc (a, j) in Gf are
answers of the query. At the second step, U contains all nodes in G, which have
distance 1 from a. Let D be the set of all nodes j in Gd that are adjacent to some
node of U in Gf, i.e., D := adj Gf(U). Then all nodes in Gd that have distance 1
from some node in D are answers of the query. At the generic (U + 0th step, U
contains all nodes in G, which have distance u from (I. Let D be the set of all
nodes j in Gd that are adjacent to some node of U in Cr. Again all nodes in Gd
that have distance u from some node in D are answers of the query. The method
terminates as soon as U becomes empty. Obviously, if the graph G, is cyclic, the
method is not safe. The method is presented in Figure 5.

4.2. The Counting Method

The counting method is described in [1,7,8,31. The method works as follows. Let
U, (v 2 0) contain all nodes j in G, that have distance u from a (such sets are
called counting sets). In the first phase, the method computes all nonempty U,
(notice that, in general, such sets are not disjoint). Suppose the Us contains the
nodes with the greatest distance (thus s) from a. In the second phase, we start
computing the set D, of all nodes j in Gf that are adjacent to some node of Us in
Cf. Then we compute Ds_1 as the set of all nodes j in Gd that are adjacent to
some node of Us_, in Gf or that are adjacent to some node of D, in G,. We
continue until we compute D,, which contains all the answers of the query. As for
the eager method, if the graph G, is cyclic, the counting method is not safe. The
method is presented in Figure 6.

METHODS FOR LOGIC-QUERY IMPLEMENTATION 349

U” := {a}; u := 0;
(1st PHASE: UP)

While U,. # 0 do
begin

u p+ 1 := adj G,(U,,); u := u + 1;
end;
D,._, := adjGfWP,);
(2nd PHASE: FLAT and DOWN)

For t := u - 1 downto 1 do
D,_,:=adjG,(D,)UadjGf(U,_,);

Answer := D,;

FIGURE 6. Counting method.

4.3. The Magic-Set Method

The magic-set method is described in [l, 9,3]. The method works in two phases as
follows. The first phase consists of determining all nodes in N, (N, is called the
magic set). In the second phase, the method computes all possible pairs of nodes
(i, j) such that i is inN,, j is in Nd, and there is an answer path from i to j. To this
end, we start from an arc (i, j) in A, and compute all pairs (i^, j> such that (i, a is
in A, and (j, j? is in A,. The so-obtained pair, in turn, is used to derive other
pairs. The magic set is used to make this derivation more efficient. In fact, since
the arcs of the query graph are actually computed by means of retrieving tuples
from the database, it may happen that some pair 2, j^ is computed even though the
node i^ is not in N+ (see, for instance, the node a4 in Figure 1). The magic set
forbids the use of i for deriving further arcs not in the query graph. Since a node
in the magic set needs to be determined only once, independently of the number of
its different distances from the source node, it turns out that the magic-set method
is always safe. The algorithm is presented in Figure 7. Notice that, for efficiency,

fiu := (a); N, = ni,;
(C~MPUTNG THE MAGIC SET]

While N, # 0 do
beginA

N, := afij GJ N,) - N,,;
N,, := N, u N,,

end;
{~OMPUTINC; THE ANSWER PATHS}

E := {(i, j) I(i, j) E Af and i E N,); (a)
SE = E,
While E # 0 do
beginA

E := ({i, j),l(i, d E A,, CL, y) E E, CL j) E Ad) - E; (b)
E=EuE

end;
Answer := (j \(a, j) E E}.

FIGURE 7. Magic-set method.

3.50 ALBERT0 MARCHE-ITI-SPACCAMELA ET AL.

both phases of the method are implemented using a differential approach (also
called “seminaive”); as a consequence, two sets Z’?” and I? are introduced to store,
respectively, the new nodes and arcs that are generated at each step.

We note that the computation of additional pairs 8 in step (b) can be carried
out by determining adj-1 G,(X) and adj G,(Y), where X and Y are the sets of
source and target nodes, respectively, of the pairs in 2. We stress that such
adjacent nodes are in general found using relational-algebra operations on the
database [7]. This means that a pair (i, fi can be retrieved that is not in A,;
recognizing whether such a pair is in A, is done by checking whether i is in N,.
To avoid this situation, it is possible to compute new pairs by considering those
arcs in G, whose target nodes are the source nodes of arcs in I?.

5. COMPLEXITY ANALYSIS

In order to perform our analysis we distinguish different kinds of queries depend-
ing on the structure of the query graph Go.

Definition. Let Q be a l-bound CSL query, and let Go be its query graph. Let G,,
Gf, Gd be the subgraphs of G, as defined before.

(i) Q is a free if for each i in G, there is exactly one path from a to i;

(ii) Q is regular if Go is layered, i.e., for each i in Go, all paths from a to i
have the same length;

(iii) Q is acyclic if G, is acyclic;

(iv) Q is cyclic if it is not acyclic.

We are now ready to supply the worst-case complexity analysis of the three
methods with respect to the different types of queries. To this end, we denote the
numbers of nodes of Go, G,, Gf, and Gd by n, n,, nf, and nd, respectively.
Accordingly, the numbers of arcs are m, m,, mf, and md. Moreover, all opera-
tions have unit costs except the union and difference (which have a cost linear in
the size of sets involved), the adjacency operators adj G(U) and adj-’ G(U) [whose
cost is O(s), where s is the sum of all the outdegrees and the indegrees of nodes in
U], and the operations for constructing pairs in statements (a) and (b) of the
magic-set method, whose complexity will be explained later. We point out that
computing a node of adj G(U) or of adj-1 G(U) is not an elementary operation,
since it requires some complex retrievals from the database. However, since this
operation appears in all methods, we may assume that it is the dominant cost unit.
We observe that the magic set computes, at step (b), adj G&J) and adj-1 G,(U) at
the same time; so one could argue that the actual cost of such computations is not
their sum, since the whole adj G,(U) (or part of it> can be determined from the
computation of adj-‘G,(U) or vice versa. But this is not the case, since, by the
definition of query graph, such computations involve different database relations
(in fact, for any node S in the binding graph, Ls and Ls- are disjoint).

METHODS FOR LOGIC-QUERY IMPLEMENTATION 351

1 a2-

t
a1 0 FIGURE 8.

5.1. The Eager Method

It is easy to see that in the case of a tree query the Eager method performs O(m)
operations.

In the case of a regular query the outer loop can be executed O(n,) times in the
worst case. In turn, the overall cost of the operations within the inner loop is
O(m,), since the query graph is layered, and thus no arc in Gd is handled twice.

FIGURE 9.

352 ALBERT0 MARCHE’ITI-SPACCAMELA ET AL.

Hence O(nm) is an upper bound on the cost of the Eager method in the case of a
regular query. The graph of Figure 8 shows that the above bound is tight.

In the case of an acyclic query, the outer loop can be performed O(n,) times.
On the other hand, for every iteration of the outer loop (say for a given G), the
inner loop can be performed O(C) times. In turn, every single execution of the
inner loop may entail assessing O(m,) arcs. In sum, O(n2m) is an upper bound on
the cost of the Eager method in the case of an acyclic query graph. Again, this
bound is tight, as shown in Figure 9.

We recall that the eager method may loop forever in case of cyclic query graphs.
Later in this paper, we shall show that it is possible to extend the method to
handle cyclicity also.

5.2. The Counting Method

It is easy to see that in the case of tree and regular queries the counting method
performs O(m) operations.

In the case of an acyclic query, the first loop can be performed O(n,) times and
every iteration has cost O(m,). Therefore, the total cost of the first loop is
O(n,m,). Similarly, the second loop has a total cost of O(n,m,). Hence, the cost
of the counting method for acyclic queries is O(nm). This bound is actual, as
shown in Figure 10.

Again, we recall that the counting method is not safe when the query is cyclic,
although the method can be extended to deal with cyclicity, as shown later in the
paper.

an bn

FIGURE 10.

METHODS FOR LOGIC-QUERY IMPLEMENTATION 353

am+, AL /ji
jm a, bti+l 0gpge

+qy “l.!iy

a0 b0

FIGURE 11.

5.3. The Magic-Set Method

We first note that the cost of the first loop as well as statement (a) does not
depend on the type of query graph. Obviously, the cost of the first loop is O(m,>,
since we pnly need to perform a breadth-first search starting from the source node.
On the other hand, it is easy to see that the cost of statement (a) is O(mf). The
cost of the second loop does depend on the type of query graph and is analyzed
next. Observe that a fundamental component of this cost is the analysis of the set
operation in statement (b).

If the query is a tree, then the second loop can obviously be performed in
O(m, + m,) time, since each arc is considered once. In all other cases, for each
pair (i, j) in 8, the cost of statement (b) is proportional to ladj-%]I X ladj(j]l.
Hence, an upper bound of the total cost of the third loop is

c indegree(i) x outdegree(j) = 0(mdmu) .

(i,j)EE

Figure 11 shows that the above bound is tight for the case of regular queries and
thus for acyclic and cyclic queries.

5.4. Comparison of Methods

We summarize the complexity analysis reported in Sections 5.1-5.3 in the next
proposition.

Proposition 1. The costs of the three methods for the different kinds of queries are as
shown in Table 1.

It turns out that the counting method gives better performance than the other
two methods for all cases but cyclic queries. But we recall that the results are
asymptotic and based on worst-case analysis; therefore, as shown in [l], there are
cases where magic set works better than counting. However, we next show that this

354 ALBERT0 MARCHETTI-SPACCAMELA ET AL.

TABLE 1 Costs of methods.

Query Eager

Tree 0(m)
Regular Ohm)
Acyclic O(mn*)
Cyclic Nonterminating

cost

Counting

0(m)
0(m)
O(mn)

Nonterminating

Magic set

0(m)
0(m2)
0(m2)
0(m2)

cannot happen for tree or regular queries; in addition, we show that counting
works better than eager for every query.

Proposition 2. Let Q be a query. Then

(a)

(b)

the cost of the counting method for Q is O(E), where E is the cost of the eager
method for Q;

if Q is regular, then the cost of the counting method for Q is O(M), where M
is the cost of the magic-set method for Q.

PROOF. (a): Let x be a node of the query graph, and d(x) be the number of
different lengths of paths in the query graph from the source node to X. If x E N,,,
then both the eager and the counting method process node x exactly d(x) times.
Hence the cost of both methods is the same. On the other side, if x E Nd, then the
costs of processing x by the eager and the counting methods are R(d(x)) and
O(d(x)) respectively.

(b): The magic-set method considers each arc of the query graph at least once.
Therefore, part (b) follows by observing that, for regular query graphs, the
counting method has cost linear in the number of arcs of the query graph. 0

6. EXTENDING THE COUNTING AND EAGER METHODS

In this section, we present and analyze modified versions of both the counting
method and the eager method, which are safe also for cyclic queries. The main
idea is to set an upper bound on the value of the counter u that denotes the depth
of the recursion (see the algorithms in Sections 4.1 and 4.2). In fact, the next
results shows that there exists a value t, polynomially bound on the number of
nodes in the query graph, such that the answers to the query can be found when
the value of the counter u is less than t. Since this value can be determined while
the algorithm is running, it follows that the iteration can be eventually stopped, so
that the two methods can be made safe.

Theorem 3. Let Go be a query graph of a l-bound query Q. Zf there is an answer
path from the source node a to a node b, then there exists an answer path from a
to b with length less or equal to 2n,nd + 1.

PROOF. Consider any answer path from a to b. We represent this path as a
sequence of nodes (a,, a2,. . . , a,_ b,, . . . , b,, b,), where a, =a, b, = b, the arc
(ak, b,) is in Af, and for each i, 1~ i 5 k - 1, the arcs (aj, ai+l) and (bi+I, bt) are

METHODS FOR LOGIC-QUERY IMPLEMENTATION 3.55

in A,, and in A,, respectively. Suppose that k > n,nd so that the answer path has
length greater than 2n,nd + 1. In order to prove the theorem, it is sufficient to
show that there exists another answer path from a to b with length less than
2k + 1. In fact, if this is the case, then we can prove the theorem by repeatedly
deriving shorter and shorter answer paths from a to b until we get an answer path
with length less than or equal to 2n,nd + 1.

We construct an answer path from a to b with length less than 2k + 1 as
follows. First of all, we observe that, since the number of all pairs (c, d) with
c EN, and deN, is n,nd and k >nund, there must exist two indices i, j,
1 I i <j I k, such that ai = aj and bi = bj. Consider now the following sequence of
nodes:

(a ,,...,ai_,,ai,aj+,,...,a,,b,,...,bj+,,bi,bi_,,...,b,).

We have that, by assumption, (a,, bk) is in Af and for each h, 1 I h si - 1 and
j+l<h<k-l,(a,,a,+,)and(b,+,, ,, b 1 are in A, and in A,, respectively. On
the other hand, (ai, aj+ 1) is in A,, and (bj+ 1, bi) is in A,, since ai = aj and bi = bj

by construction, and (aj, aj+ 1) is in A, and (bj+ ,, bj) is in A, by assumption.
Therefore, the above sequence represents an answer path from a = a, to b = 6,

with length less than 2k + 1. This concludes the proof. Cl

Using Theorem 1, we can modify the algorithm of the counting method, shown
in Figure 6, as follows. We compute the set U, of the nodes in G,, with distance u
from the source node, with u 2 0. Then we compute the set D, of the nodes that
are adjacent to the nodes in Uu in Gr, Further, we compute the nodes that have
distance u from the nodes in 0,. In doing so, we compute D, _ 1,. . . , D,. However,
since the same set of nodes D,, u > u 2 0, was already used for the previous step
k, u I k < u, the nodes of D, previously exploited are not used any more. In this
extension, the counting method can be considered as an efficient implementation
of the eager method. The algorithm stops when u becomes greater than nund,
where n, and nd are the numbers of nodes of G, and Gd that have been currently

Answer := 0;
u, := (a}; u := 0;
N, := 0; Nd := 0;

Repeat
N, := N, u U,;
Qu == adj Gf(U,);
D,, := 0,;
For i := u downto 1 do
begin_

Di_, :=adjGJei)-Di_i;
Di_, z=D~_~ uD,_,;
Nd:=NduDi_,;

end;
u:=u+l;
U, := adj GJU, _ ,I

until (U, = 0) or (u > I N,I X I NdI)
answer := Do FIGURE 12. Modified counting method.

356 ALBERT0 MARCHETTI-SPACCAMELA ET AL.

a
P-l

a2

FIGURE 13. Query graph.

retrieved. Therefore, the modified counting method shown in Figure 12 is safe also
for cyclic queries.

It is easy to see that O(mn*) is an upper bound on the cost of the modified
counting method for cyclic queries. In order to prove that it is a tight upper bound,
it is sufficient to show that it is not possible to change the termination condition
u > IN,1 x IN,1 with a lower increasing function. To this end, consider the query
graph of Figure 13, where G, and Gd are two cycles, of length p and p + 1,
respectively. Clearly the node b, is in the answer, I/V,1 =I), and lNdl =p + 1. Let
2d + 1 be the length of the shortest answer path from a, to b,. We have that there
are integers i and j such that d = ip = j(p + 1); hence j =p(i -j). Since i > j, we
have j kp. This implies d zp(p + 1) = IN,1 X IN,I. Therefore, the algorithm works
in 0(mn2).

We note that a different extension of the counting method for cyclic queries has
been proposed in [5] that runs in O(mn).

7. CONCLUSION

In this paper, we have introduced a simple class of logic queries, called l-bound
CSL queries, and we have shown that answering a l-bound CSL query corresponds
to finding particular paths in a graph associated to the query. Within this frame-
work, three methods for implementing logic queries, namely, the eager method,
the counting method, and the magic-set method, have been expressed in terms of
graph algorithms. Therefore, using this simple computation model, it has been
possible to perform an asymptotic worst-case analysis of the above methods. The
main result is that the counting method gives the best performance for all cases
but queries on cyclic databases, where the method does not even guarantee
termination. The possible nontermination of the counting method represents a
major obstacle to its effective use. In [lo] this problem has been solved by
combining the method with the magic-set method. In this paper, we have overcome
the problem by introducing an extension of the method which behaves safely also
with cyclic l-bound CSL queries. An interesting open problem is whether the
extended counting method can be used for larger classes of queries. Another area

METHODS FOR LOGIC-QUERY IMPLEMENTATION 357

of research is complexity analysis of other methods for query implementation (and,
possibly, considering general queries).

APPENDIX

Before proving Theorems 1 and 2, we need some preliminary definitions and
results.

Let LP be a logic program, and let D be a set of facts. Consider a fact q(a),
where a is a list of bound arguments. A detiuation tree for q(a) is defined as
follows. Every leaf node of the tree is a fact in D. Every nonleaf node, say N, in
the tree is a fact and is labeled by a rule in LP, say r, with P as head predicate and
P 1,. . . , P, as body predicates. The node N has children N,, . . . , A’, and is solved
in the rule r; thus, there is a substitution (T for all variables in r such that Pa = N
and Pia = Ni (1 I i I ml. The substitution u is called a solving substitution for N.
The root of the derivation tree is q(a).

It is easy to see that a fact q(a) is inferred from LP U D if and only if there is a
(finite) derivation tree for q(a).

Lemma 1. Let Q = (G, LP, D) be a bound CSL query, and G be the query graph

ofQ-

(a) If there are two arcs (n,,n,), (n,, n2) in A, and A,, respectively, and an
answer path from n3 to n4, then there is an answer path from n 1 to n2.

(b) If there is an answer path p from a node n, in N, to a node n2 in Nd with
length I> 1, then there is an answer path of length 1 - 2 from It3 to n4, where
n3 and n4 are the second and the (I- 11th node in the path p, respectively.
Furthermore, say that n, = [Si,a,] and n3 = [U,a,]; then U = Si,.

PROOF. Straightforward. 0

Theorem 1. Let Q = (G, LP, D > be a bound CSL query, and G, be the query graph
of Q. Zf a tuple b is an answer of Q, then there exists an answer path from the
source node [S,, a] to the node [S,, b] in G,.

PROOF. In order to prove the theorem, it is sufficient to show that, given any node
[S,,a,] in N,, if the fact g(c,) is inferred from LP U D, where c,(Si) = a,, then
there is an answer path from [S,,a,] to [S;,b,] in G,, where c,(,S-)= b,. We
prove the existence of such a path by induction on the number of recursive nodes
(i.e., those with symbol g> in any derivation tree DT of g(c,). We denote this
number by s; furthermore, let u denote the solving substitution for the root of DT.

Basis of the induction (s = 1). Then the root g(c,) of DT is labeled by a
nonrecursive rule, say

r,: g(x,) = C,.

and the children of the root are the facts Pa in D corresponding to predicates P
in C,. We have that x,(Si)a = a, and x,(S;>u = b,. Therefore, since [Si, a,] is in
N, by assumption, the node IS;, b,] is in Nd and the arc ([Sj, a,],[Si, b,]) is in G,
by the definition of query graph [see part (c) of the definition (Section 3.411. The
above arc is an answer path.

358 ALBERTOMARCHETTI-SPACCAMELAETAL.

Induction step. The theorem holds whenever the number of recursive nodes is
less than s, where s > 1 (inductive hypothesis). Then the root g(c,> of DT is
labeled by the recursive rule, and its children are the fact g(y)a and the facts Pu
corresponding to the datum predicates P in the recursive rule. Therefore, for
every predicate P in L’s or in L”;, Pa is in D. Say that g(y>a =g(c,), where
c,(S,+) = a2 and c,(S,) = b,. We have that x&)a = a,, yCSi+)a = a2, Pa is in
D for every predicate P in Lsl, and [&al] is in N, by assumption. Hence, the arc
([Si, a,],[Si+,a,]) is in A, by the definition of query graph [see point (b) of the
definition]. In addition, since the subtree of DT rooted at g(c,) is a derivation tree
with s - 1 recursive nodes, by the inductive hypothesis there is an answer path
from [S,,, a21 to [SF+, b2]. Consider now the node [St;, b2]. Obviously, this node is
in Nd; moreover, we also have that x,(S;)a = b,, y(S,)a = b,, and PO is in D
for every predicate P in L’;. Hence, by the definition of query graph [see part (d)
of the definition], the arc ([S$ b,], [S;, b,]) is in G,. It follows that, by Lemma
l(a), there is an answer path from [Si, aI] to [Si,b,]. q

Lemma 2. Let Q be a l-bound CSL query, and let S,, . . . , S, be the nodes of its
binding graph.

(a) The binding graph B, of Q is a cycle.

(b) If there is an answer path from a node [S,,al] in N,, to a node [U, b,] in Nd,
then U = S,:.

PROOF. (a): To prove this part of the lemma, it is sufficient to show that every
node in B, has indegree equal to 1. Suppose not. Then there is a node Sj in B,
with two incoming arcs, say (Sj_ i, Sj> and (S,, Sj>. By definition of binding graph,
the set of variables bound by Sj_ 1 in rO equals the set of variables bound by S, in
ro; thus Bsj_, = BSk. Since S,_r z S,, there exists an argument in the head predi-
cate of r. that is denoted by an index of Sj_ 1 but not by an index of S,. By
assumption, all arguments of the head predicate of r. are variables, so the above
argument is a variable, say X. Obviously, X is in Bsi_,. But Bsj_, = Bsk; so the
unbound head-predicate argument X is in Bs,, and so the query is not l-bound
(contradiction).

(b): We proceed by induction on the length s of any answer path p leaving
n, = [Si,al] and entering n2 = [U, b,]. If s is 1, then obviously U = S;. Suppose
now that s > 1. By Lemma l(b) there is an answer path of length s - 2 from n3 to
n4, where n3 and n4 are the second and the (s - 11th node in the path p,
respectively. Furthermore, n3 = [Si+, a,]. Therefore, by the inductive hypothesis,
nq = [S,, b2]. By Lemma 2(a) there is only one node S, such that S,, = Si+*
Hence, U = $7. 0

Theorem 2. Let Q = (G, LP, D) be a l-bound CSL query, ana’ Go be the query
graph of Q. If there exists an answer path from the source node [S,, a] to a node
[U, b] in Nd, then the tuple b is an answer tuple of Q.

PROOF. By Lemma 2(b), U = S;. In order to prove the theorem, it is sufficient to
show that, given any node [Si,al] in N,, if there is an answer path from this node
to a node [St:, b,] in Nd, say with length 2s + 1, then the fact gk,) is inferred from

METHODS FOR LOGIC-QUERY IMPLEMENTATION 359

LP u D, where c,(SJ = a, and c&S:) = b,. We carry out this proof by induction
on s.

Basis of the induction (s = 0). The arc &Si,ajll,[S;, b,l) is in A, by the
definition of answer path. By the definition of query graph [part (c)l there is a
nonrecursive rule in LP, say

r4: g(x,) :- C,,

and a substitution (+ such that x_,(Si) = a,, ~$7;) = b,, and PO is in D for every
P in C,. It follows that a derivation tree for g(c,) can be easily constructed.
Therefore, g(c,) is inferred from LP U D.

Induction step. The theorem holds whenever the length of an answer path is
less than 2s + 1 with s > 1 (inductive hypothesis). Since s > 1, by Lemma l(b)
there are two nodes, say [Si+, a21 and [T, b21, such that the arcs ([Si, all, [Si+, a,])
and ([T, b&[S;, b,]) are in A, and A,, respectively, and there is an answer path
from [S,+,a,] to [T,b,l with length 2(s - 1) + 1. By Lemma 2(b), T= S;. By the
inductive hypothesis, the fact g(c,l, where ct(Si+) = a2 and c,(&;) = b,, is
inferred from LP u D. We now construct a derivation tree DT for g(c,) as follows.
The root is obviously g(c,) and is labeled by the recursive rule r,,. A child of the
root is g(c,), which in turn is the root of a subtree coinciding with one of its
derivation trees. [Note that at least one derivation tree exists for g(c2), since this
fact is inferred from LP U D.1 The other children of the root of DT correspond to
the database predicates in C, and are constructed as follows. Let m1 and a, be
two variable substitutions such that xO(Si)o, = a,, yLS,+)a, = a2, Pa, is in D for
every P in L’i, ~&?-)a, = b,, y(Sj;)u, = b,, and Qa, is in D for every Q in Lsc
(such substitutions exist by the definition of query graph). Then there is a child
Pa, for every P in Lsl and a child Qa, for every Q in L’i. By construction, in
order to prove that DT is a derivation tree, we only need to show that there is a
solving substitution u for the root g(c,) in the rule rO. Let V, Vi, and V2 be the
domains of u, ui, and u2, respectively. Obviously, V= Vi U V2 and Vi = Bsi, where
B, is the set of variables bound in r0 by Si. By the definition of l-bound query, no
variable occurring in V, appears in B, or, therefore, in Vr. Hence, V, n V, = 0.
Therefore, we can set &Vi/,> = ur and’ u(V,) = ui. It follows that u is a solving
substitution for the root of DT, and this concludes the proof. •I

We want to thank Giorgio Ausiello for many inspiring discussions, and Jeff Ullman, who suggested a
simpler proof of Theorem 3.

REFERENCES

1. Bancilhon, F., Maier, D., Sagiv, Y., and Ullman, J. D., Magic Sets and Other Strange
Ways to Implement Logic Programs, in: Proceedings of the 5th ACM SZGMOD-SZGACT
Symposium on Principres of Database Systems, 1986, pp. 1-15.

2. Bancilhon, F. and Ramakrishnan, R., An Amateur’s Introduction to Recursive Query
Processing Strategies, in: Proceedings of the ACM SZGMOD Conference, 1986, pp.
16-52.

360 ALBERT0 MARCHETTI-SPACCAMELA ET AL.

3. Beeri, C., and Ramakrishnan, R., On the Power of Magic, in: Proceedings of the 6th
ACM SIGMOD-SIGACT Symposium on Principles of Database Systems, 1987, pp.
269-283.

4. Henschen, L. J. and Naqvi, S. A., On Compiling Queries in Recursive First-Order
Databases, J. Assoc. Comput. Mach. 31(1):47-85 (1984).

5. Haddad, R. W. and Naughton, J. F., Counting Methods for Cyclic Relations, in:
Proceedings of the 7th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, 1988.

6. Lloyd, J. W., Foundations of Logic Programming, Springer-Verlag, New York, 1984.

7. Sac&, D. and Zaniolo, C., On the Implementation of a Simple Class of Logic Queries
for Databases, in: Proceedings of the 5th ACM SIGMOD-SIGACT Symposium on
Principles of Database Systems, 1986, pp. 16-23.

8. Sac&, D. and Zaniolo, C., The Generalized Counting Method for Recursive Logic
Queries, Theoret. Comput. Sci. 62:187-220 (1989).

9. Sac&, D. and Zaniolo, C., Implementation of Recursive Queries for a Data Language
Based on pure Horn Clauses, in: Proceedings of the 4th International Conference on
Logic Programming, Melbourne, 1987, pp. 104-135.

10. Sac&, D. and Zaniolo, C., Magic Counting Methods, in: Proceedings of the ACM
SIGMOD Conference, San Francisco, 1987, pp. 49-59.

11. Ullman, J. D., Principles of Database Systems, Computer Science Press, Rockville, MD,
1982.

12. Ullman, J. D., Implementation of Logical Query Languages for Databased, ACM Trans.
Database Systems 10(3):289-321 (1985).

13. Ullman, J. D., Principles of Database and Knowledge-Base Systems, Computer Science
Press, Rockville, MD, 1988.

