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We present a fast version of the Feng—Rao algorithm for decoding of one-point
algebraic-geometric (AG) codes derived from the curves which Miura and Ka-
miya classified as C,,. Our algorithm performs the Feng-Rao algorithm efficiently
by using the Sakata algorithm, i.e., the 2D Berlekamp—Massey algorithm. One
can decode the one-point AG codes up to half of the Feng—Rao bound dgg which is
greater than or equal to the designed distance d*. We have proven the validity and
the performance of our algorithm in the framework of our own theory, depending
little on algebraic geometry. © 1995 Academic Press, Inc.

1. INTRODUCTION

Algorithms for decoding geometric Goppa codes or algebraic-geomet-
ric (AG) codes have been given by several authors [1-12]. In particular,
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Skorobogatov and Viadut 3] first presented an effective decoding method
of general AG codes. Recently Feng and Rao [7], Duursma [8], and
Ehrhard [9] have given algorithms for decoding up to [(d* — 1)/2] or less
errors, where d* is the designed minimum distance of the code. Their
algorithms are superior to the Skorobogatov—Vladut algorithm in the
sense that the latter can correct only [(d* — g — 1)/2} or less errors, where
g is the genus of the curve from which the code is defined. In fact, as is
shown by Kirfel and Pellikaan [13], the Feng—Rao algorithm can correct
dgr — 1)/2) or less errors, where deg is the Feng—Rao bound which is
greater than or equal to the Goppa bound d*. The Feng—Rao algorithm,
which can decode one-point codes, is based on Gaussian elimination for
solving the system of syndrome equations and on a kind of majority logic,
which was generalized by Duursma (8] to general AG codes. From the
known syndrome values it finds the unknown syndrome values, which are
necessary to decode up to the better bound, by voting for several candi-
date values. Its computational complexity, which is almost the same as
that of Gaussian elimination of a syndrome matrix, is of order C(n'),
where n is the length of the code.

In this paper, we present a fast version of the Feng—Rao algorithm for
the decoding of some one-point codes, i.e., a class of AG codes derived
from the curves which Miura and Kamiya treated in [14] and classified as
C,, in their paper [15] and which contain Hermitian curves as well. Our
algorithm which simulates the Feng—Rao algorithm in an efficient way is
an application of the Sakata algorithm, i.e., the 2D Berlekamp-Massey
algorithm [16, 17]. We show that one can decode one-point AG codes up
to half the Feng—Rao bound dggr by a modification of the Sakata algorithm.
We must emphasize that one can obtain the candidate values and the
number of votes for them in majority logic decoding by using a minimal
polynomial set of a subarray of the 2D syndrome array at each iteration.
Furthermore, we can prove the validity of our decoding method in the
framework of the Sakata algorithm and the theory of 2D Hankel matrices
[18], depending on linear algebra, but not much on algebraic geometry.
While a subset or a single element of a minimal polynomial set was used in
the previous applications of the Sakata algorithm for decoding of AG
codes [4, 10-12], the whole minimal polynomial set is used effectively and
without loss in our present method. Our decoding method has complexity
of order ((n™?) for the one-point AG codes derived from the Miura-
Kamiya curves C,,.

2. ONE-PoINT AG CODES DERIVED FROM MIURA-KAMIYA
CuRrves Cy,

In this paper we focus our attention to one-point AG codes (€, %, D)
over K = GF(q) derived from Miura—Kamiya curves € = C, in their
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terminology [15], where € is an absolutely irreducible plane curve, % =
{P,. . ., P,}isa set of K-rational points of €, and D = mQ is a divisor
of a K-rational point Q & @ of the curve ¢. More exactly, the smooth
model of the singular curve % is used instead. For a pair of coprime
integers a and b, a < b, € is defined by

YeZb-a + Z ci XTYIZPT + o XP = 0, (1

({.J)EX(ab-1}

where 2(m) := {(i, j) € £ | ai + bj = m}, m € N,, is a subset of the 2D
integral lattice X := Ny X Ny and ¢, # 0. (We denote the set of positive
integers as N, the set of nonnegative integers as Ny, and {i € N | i = m}as
N7 {i € Nol|i = m} as N§. respectively.) In the following, we often
consider subsets of X: %, := {(i, j) € X | i < b}, and the total order <;
restricted within each of these subsets, respectively. Except in case of
b=a+1, € is singular and Q := (0:1:0) is its unique singular point
whose multiplicity is # — a. By desingularizing ‘€, the genus of its smooth
model is shown tobe g = (a — 1)(h — 1)/2[15]. Hermitian curves (¢« = b —
1 =r, g =r?),elliptic curves (a = 2, b = 3), and hyperelliptic curves (a =
2, b = 2g + 1) are among this class of curves. Q corresponds to exactly
one place, which is identified with Q itself for the simplicity of notation. It
is shown that the rational functions ¢ := X/Z and  := Y/Z have a single
pole at Q with orders Opl¢) = —a, Op() = —b, respectively, and that
a basis of L(D) is given as B(mQ) := {¢¥'| (i, j) € 2, (m)}, where
Sopm) = 2m) N 2y, ={(i. ) € X |ai + bj = m, i < b}. From the
defining equation (1) of the curve, we have a lincar dependency among

{ew/ | G, ) € 2k

P+ D e + cpe? = 0. )

(i, HEZ(ab—1)

A code of the above type is a linear code of length n = #% over K
which is the orthogonal complement of the following subspace of K”:
EVo(L(DY) := {(f(P),. .. .fiP)) € K" | f€ L(D)}, where L(D} is the
subspace of the linear space K(%6) of rational functions of the curve €
defined by the divisor D. If m < n, the evaluation map EV is injective,
and hence the code has dimension k* :=n —m+ g - 1(=n—m +
((ab — a — b — 1)/2)). The designed minimum distance d* := m — 2g + 2
(=m—ab +a+ b+ 1), providedthat m >2g - 2(=ab—-—a—b - 1).
We want to correct 1 (: = [(dgg — 1)/2] = [(d* — /2] = [(m + 1)/2] — g)or
less errors, where we determine the Feng—Rao bound dyg of our code in
the next section. We know a variety of such codes, among which there are
codes treated by [4, 10-12, 19, 20]. For example, Stichtenoth [19], Juste-
sen et al. [4], and Shen [10] treated codes from Hermitian curves: y" + y —
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x*1 = 0 over K = GF(r?); Kamiya and Miura [11] treated codes from
curves y¢ + y — x? = 0 for a pair of integers a < b, which were discussed
by Stichtenoth [20]. The following discussions will be valid for any one-
point AG code if L(mQ) is generated by the powers {¢ ¥/ | (i, /) € Z((m)}
of two rational functions ¢ and ¢ with Og(¢) = —a, Og(y) = —b, where a
and b are coprime. Furthermore, it is possible to generalize to the case of
L(mQ) generated by powers of £ (= 2) rational functions, and to apply the
kD Sakata algorithm [17] to decoding of such codes.
In our case, the nongaps oy, 0 =< &, for Q are given by

{=0p(e') | (i, j) € Zp(m)} = NT\A, (3)

where A :={bi —aj| 1 =i<a— 1,1 =j=<[bi/a]}is the gap sequence and
#A= E?Q,' Lbila]l = (a — 1)(b — 1)/2is the genus g of the curve €. We take
the total order =7 over the 2D integral lattice % defined by

P = (P, p2) =rq = (q1, q2)
& ap) + bpy < aq, + bg:\/ (ap, + bp, = aq, + bg: N\ py = qy)

corresponding to the pair of coprime integers a, b and its restrictions
within subsets of 2 such as 3.,,(m), %, etc. We denote the bijection from
2 onto N as «, and that from 2, (m) onto N #*! as «,, ,, respectively,
according to each total order =7. Thus, we have the natural numbering of
the functions composing the following basis of L(D):

fi=ohdbk, Il=k=m-g+1 4)

Here k = k,np(k), k2) € Nm=#* for (ky, ki) € 2(,(m). The nongaps 0| :=
—Op(fdare 0 =0<0,<0,<: - <o, <2g;0i =k + g, k=g (see,
€.g., Theorem 1.6.7 of [21]), and f; is denoted as ¢, , | =k=m — g + 1,
in the terminology of Feng and Rao [7]. Thus, for k = g, k = «,(k;, ky) =
ak, + bk2 i

We assume that a codeword ¢ = (c¢;) is sent, and thatu = (i;) = ¢ + e is
received, where e = (¢;) is an error vector of weight v < ¢, and e, #0,1=<
u=v;e=0,k&{k,...,k}. Then, the 2D syndromes

v

$ij= 2 enbo (Pb, (P, 1=ijsm—g+]1, (5)

u=1

and the syndrome matrix 8 = ||s; ;|| are introduced [7], where the elements
s;; of 8 are known only for (i, j) with 0, + 0;-; = m from the received
word u. The elements s; ; and s;: » are dependent on each other if 0,_, +
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0,1 = 0y-1 + 0;_y(= k); i.e., one is determined from the other by
the linear relation (2) on the basis of the values s;-;-, 0;-1 + 0;-; < k. In
our casec, o = ai, + biz, Oj— = aj, + bjz, and Sij = EZ:] ek“

e (P ) (P )2, where (i), i2), (ji, j2) € 2(m) correspond to i, j €
Nm-2+1_respectively. Thus, s;; and s;» are dependent on each other if
and only if a(i) + /i) + b, + jo) = a(ii +J1) + b(iz + j3), where &, (i), i2)
=1, Kmp(J1,J2) = jand ki1, 12) = i', kmp(j1,72) = j'. I iy + ji = i1 + j)
and i, + j» = iz + j,, we have 5;; = sy ;. Thus, we have some distinct
elements s; ; and s, which are dependent on each other, where i, j, i’, j'
€ Nm=#*1 We call them a dependent pair.

3. Fast DEcopING METHOD UP TO HALF THE FENG-RaAO BounD

Instead of the matrix terminology, we use the following data structure,
i.e., the 2D syndrome array § = (§,):

5 1= 2:. e (P (P )™, (6)

Here p = (p1, p2) € 2. (Remark. The element 5, = 5, ,, of our 2D array §
is different from the element s, , of the Feng-Rao matrix S. The se-
quence (5, py | (p1, P2) € Z»(m)) arranged in the total order appears in the
first row of the matrix S, and its subsequences appear in the remaining
rows.) 5, and §,, p = (p1, p2), 4 = (q1, §2) € Zap, are dependent on each
other if and only if ap, + bp, = aq, + bq,, where, if p = (p1, p2) €E 34), g =
(g1, g2) = (p1 + b, p2 — a) € Zop\2). From now on, we use the notation
of the Sakata algorithm [16, 17] freely. Thus, in the following, we have the
concepts such as the next point p @ 1 (with respect to the total order <7)
of a point p(€ X), a subarray 57 := (5, | ¢ <7 p), the excluded point set
A(C 2) of 57, a minimal polynomial set F(C K[x, y]) of 57, etc. In fact,
since we know that the curve has a defining polynomial of the form

C:=yi+ >  cxiy + cpxb, )

(i, jYEL(ab-1)

a linear relation corresponding to (2) is valid for §,, p € X, and so we have
only to execute the algorithm within 2,,_, (with respect to the total order
=y restricted in 2,_1)) to determine uniquely the reduced minimal poly-
nomial set of the 2D syndrome array over the whole region 2. Therefore,
we consider the 2D syndrome array § over X-1y mainly. For some addi-
tional purpose, we sometimes consider the 2D syndrome array 5 over X,
as well.
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For a rational function f = 2,_, ser, fo@? ¥4 (€ K(6)) or its corre-
sponding polynomial f = 2,_, ser, f,X4 y¥ (€ Klx, y]), we consider a
2D linear recurrence

f[glp = 2 f;lf(ﬁ»p—d = 09 VP(E 2:('.’h)) 2[’ d’ (8)

qely

which should be valid for (or satisfied by) the 2D syndrome array 5, where
=<p is the natural partial order over X and d(E€ 2, is the degree of
[ defined as deg(f) := maxy{qg € I/}, i.e., the maximum element of the
subset ['{C X)) corresponding to the nonzero terms of f. (We denote
both function and polynomial by the same symbol f.) The following is a
key to decoding by using the Sakata algorithm.

PROPOSITION 1.  The function f has the error locators I = {P;.. . . ,
P HC P)among the zeros, i.e.,

fPy =2 feP)yy@Py: =0, YPEI, 9)

4€ly

if and only if the 2D linear recurrence (8) is valid for the subarray §¢+4%!
upto(r+d)® 1;ie., (B)is satisfied at any p such thatd <;p <yr + d,
where r = (ry, ry) with ary + br =z v + 2¢ — 1.

This is derived from the following observation: If we have the identity
for 0 =y p=<rr, where r = (r|, r;) such that ar, + br; =z v + 2g — 1,

z f;lfqﬂ, = Z ﬁ, 2| é’kH(p(Pku)m+/1|¢(Pk“)q:+n:

€l ¢Ely

Z ékgP(Pk“)ml!!(Pk#)m (Z f;,go(P;\u)m,,’,(P,m)r/:) =0,
]

g€l

then (9) holds, because by the Riemann-Roch theorem the evaluation
map EV;: L(mQ)— K" defined by f— (f(P),. . . ,f(P.))is surjective if
m-—2¢g+1lzv.(fm—-—v=2¢— 1, thendim (L(D))=m—2¢g + 1 and
dim(L(mQ — 2¥, P.)) = m — 2g + 1 — v. Thus, the image of the
evaluation map has dimension v equal to dim(K").) (Remark. The above
identity holds for 0 = p =7 rif and only if (8) holds ford =7 p =7r + d.)
Therefore, our first main concern is how to find an error locator polyno-
mial f or a 2D linear recurrence valid for the given syndrome array §,
where we remark that we do not know the values §, for p = (p,, p>) such
that ap, + bp: > m.
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The above matrix § = ||s; ;|| is a submatrix of the 2D Hankel matrix S of
the 2D array § introduced in [18], where s; ; := 5,4, for i = k,,5(p), j =
kmp(q) (€ N7 571 which correspond to p, g (€ 2, (m)), respectively.
Thus, the Feng-Rao algorithm fits in well with the framework of the
Sakata algorithm. We consider an extension S of § which contains the
rows i and columns j such that i = x,(p), J = «,(q), p, ¢ € 2. If

> foSpig =0, VYq' =rq. (10)

p'ElY

then f= 2, ner, f X7 y" with deg(f) = d(=7 p) is said to represent a
linear row dependency of a submatrix S, 1= |lsijlli<iz,(p.1=j=xnq) Of S.
which corresponds to a 2D linear recurrence valid for a subarray of §. In
the discussions of 2D Hankel matrix, we have the following lemma
(Lemma 2 of [18]).

LEMMA 1. Let fwith deg(f) = q represent a linear row dependency of
the submatrix §q_,, of S, g <7 p. If every column of§q',, is linearly depen-
dent on the columns of §M, then f represents also a linear row depen-
dency ofgq.,, (i.e., f corresponds to a 2D linear recurrence).

From a similar consideration it is easy to see that fis a minimal polyno-
mial of 57%! := (5, | g =7 p) if and only if the following conditions are
satisfied for d := deg(f):

(1) frepresents a linear row dependency of §d_,,~,1;

(2) there exists no linear row dependency of any submatrix 5,,,,,,,,.
t <pd.

Now, we consider how to find the candidate values §; ; of s;; = 5+, 0f §
for i = ku(p), j = ku(q) such that a(p, + g} + b(ps + q2) = m + w,
assuming that the syndrome values 5, forat) + bb=m+w -1 (1 =w=
g)are known. Letr = (r;, ) = p + g € 2, such that ar) + bry = m + w.
If r» = a, we have another point ' = (r{, r}) = (r; + b, r» — a) € 2\,
such that §, and 5, are dependent on each other. (Remark. There exists a
single point r = (ry, ;) € %, such that ar; + bry = k for each k € Ny\A.
Furthermore, r' is the next point r @ 1 of r with respect to the total order
within 2,.) If r; < a, we do not have the element §,, which is dependent
on §,. We will show that one can use a minimal polynomial set F of the
subarray 5 for our purpose. In the terminology of Feng and Rao (7], a
column containing X in the row i of the matrix 8 is not any linear combina-
tion of its previous columns with the top i — 1 components, where that the
row i or the column j of § contains x means that the row i or the column j
of the discrepancy matrix obtained from S by elementary column opera-
tions contains X (We abuse the terminology). This implies that the rows S
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containing X are linearly independent, as is seen from linear—algebraic
discussions. Therefore, the excluded point set A of §7*4 is composed of
the points ¢ (€ 3,) which correspond to the rows k& (= x,(1)) of S contain-
ing the mark X, because there exists no valid polynomial f with deg(f) €
A for 57*4. On the other hand, it follows from Lemma 1 that we can
calculate each candidate value $,., at the position in row i = «,(p) and in
column j = k,(q) (of the matrix 8) with a(p, + g)) + b(p2 + q2) = m+ w
and p, g & A by using a minimal polynomial f(€ F) with deg(f) = d <pp
of §7*9 as

Sprg : =~ Z JiSusprg-ds

wELp{d}

where we assume f; = 1 without any loss of generality. (We denote the
candidate value 5., as §,., for simplicity.) Any such f gives the same
candidate value §,,, of §,.,, i.¢., that candidate value does not depend on
any choice of a minimal polynomial f € F with deg(f) =p p, as is seen
from the following lemma. (Its proof is given in the Appendix.

LEMMA 2. Let A be the excluded point set of 5P 4 withp, g &€ A. For a
minimal polynomial set F of 5?4 and f, f' € F with deg(f), deg(f") <pp.f
is valid at p + q if and only if f" is valid at p + q for any assumed value
$p1q (€ K).

The above statements imply also that, for r € 3, with ar; + bry; = m +
w, we can calculate every candidate value §; ; = §, at the position in row i
and in column j such that p + g = r, p = k3, ' (), ¢ = ;' (j), from the
known syndrome values §;, ¢t <7 r, by the same minimal polynomial f with
deg(f) <pp :=«; "' (i). Similarly, forr' = (r|, r3) =r®1=(r, + b, r, — a)
€ 3ap\ 2 we can calculate every candidate value §: » = §. at position in
row i’ and column j’ such that p’ + ¢’ = r', p’ = &;'("), ¢’ = «5'(j"),
which is dependent on §,,

sr+ 2 CUEr*(O,a)*v + L'h0§r' = 0, (11)
vEI(ab—1)

because of the defining equation (1) of the curve or the linear relation (2).
We say that the candidate values §, and §, are consistent to each other if
they satisfy (11). We remark that each candidate value §, (or §.) denoted
by @ in [7] appears just in rows i = k,(p) such that p <p r (or r'). The
number of these @’s are counted in voting in Feng-Rao’s majority logic
scheme, where the number of @’s either in rows i = x,(p), p € A, or in
columns j = x,(q), g € A, is excluded in voting. Motivated by these
considerations, we introduce the following subsets of 2, for r = (ry, ry) €
Zeand r' = (ri, r)) = (ry + b, r; — a) € T\ (if r’ exists):
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= Zgeen N Ty I pi= Zaegny N T N 2, 12)
I, := (Ugerll, ) U (Upeplly N(r — A) U (r' = A)).

Here[,:={g €30y |qg=prs}, 2:={g EZan|q=pshands — A:={s -
t|t€ ANT}fors € 2. (Remark. A + 2\(UrerZaeg(s)-) Here we have
the following important observation: We have that the consistency holds
for the known values 5,. That is, for any pair of p = (p, p2) <rrandp’ =
(pi, p3) <7 r' such that p; = p; + b, p3 = p» — a, §, and §, are consistent,
from which we have in view of linearity

ProrosiTioN 2. Ifdeg(f) €', N T, asingle polynomial f € F gives a
consistent pair of candidate values $, and $,.

On the other hand, Lemma 2 implies that, if 1 € II, and deg(f),
deg(f’) =p ¢, then f and f’ give the same and/or consistent candidate
values of §, and/or 5. In particular, we have

CoROLLARY 1. Fori=«(p),j=«k(q),d=deg(f) =pp,andi' = k(p’),
J'=k(q),d’ =deg(f') =pp’,wherep' + q'=p+q=r ifl,N ;0
3y # O, then the candidate values $; ; and $; ; coincide.

Proposition 2 and Corollary 1 allow us to introduce any maximal subset
F’ of a minimal polynomial set F of 5" as follows:
(*) Any pair f, f* € F’ satisfies one of the following conditions:

(1) Ifdeg(f), deg(f’) <pr,fand f’ give the same candidate value of
5

(2) ifdeg(f) <pr,deg(f') =pr’,fandf’ give the candidate values of §,
and §,, respectively, which are consistent to each other;

(3) if deg(f), deg(f’) =p r’, fand f' give the same candidate value
of 5.

Then, we stipulate that the number of votes for that subset F' is
#(1. . U IL p\N(r — A) U (7' — A)), (13)

where I1, p := UgepIl, p, I p 1= Userll, ;. (Remark. The value (13)
coincides with the number of votes in Feng-Rao’s scheme.) Now, we
have the following:

LEMMA 3. The value of (13) coincides with
#(T.p U T P\, (14)

where T, p 1= UperTrotegnys Tror 1= (Urer T r—gesn) N Zio)-
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(For its proof, see the Appendix.)

We call a maximal subset F' of F satisfying the above condition (*) by
the name of a consistent subset. (Remark. If f € F such that deg(f) <pr
(orr)butIl, A((r — AYU (r' — A)) (or I, A((r — A) U (r' — A))) =, then
the number of votes for that candidate value obtained by fis 0, and it does
not influence the decision of the correct candidate values.) Now, we
assume that a consistent subset F’' of F is preferred; i.e., we take an
extended subarray §"®! which is obtained by appending the candidate
values §, and §, given by the polynomials in F’ to the known part 5. Then,
by Lemma 4 of [13], we know that the excluded point set A’ of the
assumed subarray §”®! for the next point r' @ 1 of r' has cardinality,

#A = #A + #(pp U Do p)\AL (13)

By Lemma 3, this identity implies the following:

LEMMA 4. If a consistent subset F' has been preferred, then the in-
crease of the excluded point set, i.e., #A" — #A is equal to the number of
votes against its preference: #(Il, p.p Uy g poN((r — A) U (¢ — A)).

Feng and Rao have proven the fact (Theorem 2 of [7]) that the number
of candidates in S is at least m — 2g (= d* — 2). Let S’ be the submatrix of
S which is obtained from S by deleting the rows and columns containing
%, i.e., corresponding to the points p € A. For the number w(:= #A) of
X, the number of these rows and columns is 2(x — 1), as seen from the
discussions of Feng and Rao [7]. Therefore, the number of candidates in
S’ which is the total number of votes for all the candidate values is at least
m—2g — 2w — 1) = d* — 2u. Now, independently from the Feng—Rao
theory, we will prove that the total number of votes for all the candidate
values is greater than or equal to dfx — 2u. where ¢k is the Feng—Rao
bound defined by

e = min #T, U (T, N ). (16)

r=(r . r)EXpyari+bra>m

(Remark. This just coincides with Kirfel-Pellikaan’s definition [13].)
First, we have the following:

THEOREM 1. For any r € 3, we have the total number of votes
#I1, = #1, U (I', N X)) — 2#A. (17

(For its proof, see the Appendix.)

From Theorem 1, we have the important theorem which is equivalent to
Theorem 4 of Feng and Rao [7]. Our reasoning is independent from their
arguments.
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THEOREM 2. Let the number t of errors be less than or equal to
[(dFr — 1)/2), then, forany r = (ry, r;) E S andr' = (ry + b, ry — a) (if ¥
exists) such that ary, + br, > m, the number of votes for the correct
candidate value §, and its consistent correct candidate value $, (if exists)
is strictly greater than the number of votes for the incorrect candidate
values.

(For the proof, see the Appendix.)

By the way, we can prove that the Feng—Rao bound d¥x 1s not less than
the Goppa bound, i.e., the designed distance d* = m — 2g + 2, indepen-
dently from any other theory such as Kirfel and Pellikaan [13].

LEMMA 5. For r = (ry, 1) € %, such that m < ary + bra, we have
#, U, NXpy)z=d*=m—-2¢+2=m—-ab+a+ b+ 1

(For its proof, see the Appendix.)
Combining Theorem 2 with Lemma 5, we have proven

COROLLARY 2. Fort = [(d* — 1)/2], t or less errors can be corrected
by our method.

As is shown in the above, we can correct a little more than [(d* — 1)/2]
errors in case dfr > d*. In fact, it occurs rather rarely that d{R > d* [13].

From the above discussions, we have the following algorithm for find-
ing the unknown syndrome values for decoding one-point AG codes de-
rived from Miura—Kamiya curves C,, up to half the designed minimum
distance or rather up to half the Feng—Rao bound. For r = (r|, r2) € X,
such that ar; + br; = m + 1, we can assume a subarray s” of the 2D
syndrome array § and a minimal polynomial set F of 5. Then, for each
w=1,2,. .. ,wefind the values §, and 5, at r = (r(, r;) € X, such that
ary + bro=m+wand r' = (r + b, r, — a) € 2\ 24 from the known
part 5" by using a minimal polynomial set F of §”. From the extended
subarray 57®!, we can find a minimal polynomial set F of 57! for the next
point ' @ 1 of ' after two iterations of the Sakata algorithm at r and ',
Thus, we can proceed to find the remaining unknown syndrome values of
the whole 2D syndrome array. If we have the whole syndrome array, we
can find a Grobner basis of the error locator ideal whose zeros just coin-
cide with the error locations. In fact, we do not need to find the whole
syndrome array by Algorithm 1. Later we show a more efficient method
for finding the whole syndrome array.

ALGORITHM 1: Finding the Unknown Syndrome Values.

Step 1. (Initialization). w := 1.

Step 2. Calculate all the consistent candidate values of the dependent
pair 5, and §, for r = (ry, r;) € X, such thatary + bro=m + wandr' = r b
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1 =(r; + b, r, — a) € Zap\Z) and the number of votes for each of them,
and decide the correct values of them by majority voting.

Step 3. At r and r', execute the iterative procedures of the Sakata
algorithm so that we find a pair of a minimal polynomial set F and the
auxiliary polynomial set G of §7®!. [At the same time, we update D, T,
and A.]

Step 4. If #A > rthenstop. Elsew :=w + 1;r:=r' &1 € 3,
Step 5. If ris a destination point e then stop else go to Step 2.

For the above, we have some remarks as follows.

(1) Ifr € 3\3) does not exist, we have only to execute the proce-
dure at r.

(2) If #A > t in Step 4, it means that we have more than ¢ errors,
which cannot be corrected.

(3) The new point r € 3, in Step 4 is taken to be the successor of the
point r' according to the total order restricted within X, y).

(4) We have only to iterate the steps up to e © 1, where e = (e, ;) is
such that a(e; — d)) + b(e; — dy) = t + 2g — 1 for an error locator
polynomial f with deg(f) = d = (d,, d3), in view of Proposition 1. On the
other hand, for D = D(AXCZX) with #A = r such that A = 3\(Uyep2y),
d(A) := mingepn) d takes its maximum value

d* = max d(A) (18)

A#A=t

if and only if A = {p € %) | p <7 d}, where max and min mean the
maximum and the minimum with respect to <r, respectively. Since #A <
t, kp(d) = ad, + bd, — g =t + 1. Therefore, if ae, + be; = 2t + 3g, we
have a(e; — d;) + b(e; — d2) = t + 2g — 1. Furthermore, the uniqueness
condition for the valid polynomial f having the minimum degree deg(f) =
d among a reduced minimal polynomial set F of §°®! is satisfies if 2d <7
e D 1, where the inequality holds if ae, + be, = 2t + 3g, in view of 2(ad, +
bd; — g) =2(t+ 1) =<2t + 2g < ae, + be; — g + 1. Thus, we can take ¢
such that ae; + be; = 2t + 3g.

(5) If the error locator polynomial f has deg( f) greater than the degree
of the curve defining polynomial C, we hit C firstly. However, we can
continue to get an appropriate error locator f different from C up to the
above-mentioned point e & 1.

Summarizing all the procedures for decoding, we have the following:

ALGORITHM 2: Fast Algorithm for Decoding up to ¢ = [(dFr — 1)/2]
Errors.
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Step 1. By applying the Sakata algorithm to a subarray 5" for r = (r;,
ra) € 3 such that ar; + br, = m + 1, find a pair of its minimal polynomial
set F and the auxiliary polynomial set G such that D := {deg(f) | f € F}
and T := {span(g) | g € G} are dual in the sense of [17]. (In particular, A =
FT = 2\21).)

Step 2. By using Algorithm 1, find the unknown syndrome values and
the unique minimal polynomial f having the minimum (with respect to <p)
degree deg(f) = d = (d,, d») among a minimal polynomial set F of s¢®',
where ¢ = (e, e,) is such that ae; + be; = 2t + 3g.

Step 3. By using the error locator polynomial f, which just has been
obtained in Step 2 and the defining polynomial C = cpx? + y? +
2 es@b-1 €ix'y! (7) of the curve, find the remaining part of the 2D
syndrome array § over the whole period by a method similar to Justesen e¢
al.’s [4]. In fact, if deg(f) = d = (d;, d3), d; < b, d» = a, we can get the
following polynomials valid for §:

fri=yRC = cpoxt i f=yort b F fixyi, o (19)

(I NES -1 (bla+d?)

fri=xhC =y f = cppxbth + > fixiyi.  (20)

G JIEZp. 1alb+d))

Here, except for the first term y9*%: (respectively, cpox?*4), all the terms
of f' (respectively, f") have degree (i, j) such that ai + bj < (a + dJ)b
(respectively, (b + d))a). To obtain the values §,, ar; + br, = m + w, and
5, (ri,r)) =@ + b, r; — a), from the values 5,, ar, + bro<m+w — 1, for
each w, we can use f’ (respectively, f) if r, = a + d, (respectively, r, =
b+ dy).

Step 4. From the 2D syndrome array § which has been obtained in
Step 3, find the error values by the inverse discrete Fourier transform,

gq-2 q-2
e, = 2 D Sla W), 1)

p1=0 p2=0

where ¢(P) = a, y(P; ) = a’ for a primitive element « of K = GF(q).
In the above, we assume that the error values e,, which correspond to the
points P, such that ¢(Py,) = 0 or (P} = 0 vanish. Even if some of those
error values do not vanish, we can find them. For example, the error
value at P, such that ¢(P) = $(P,) = 0 is obtained as 59,0y — 50,4-1) [22].

The following is taken from an example of Section IV of Feng and
Rao [7}.
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ExamMPLE 1. We consider a code (€, ?, D)q, where € is a Hermitian
curve: X° + Y*Z + YZ* = 0 over K = GF(2%), @ is all the K-rational
points of ‘€ exceptfor @ = (0:1:0),and D = 23Q. Inthiscasen = 64, a =
4, b=5,g=6,m=23, andthus, k*=n—-—m+g—1=46,dfr =d* =
m—2g+2=13,andt=6.{p'{/ | 4i + 57 <23, i =< 4} is a basis of L(230),
where ¢ := X/Z, ¢ := Y/Z have Q as a single pole and a = —Op(p) = 4,
b = —0p() = 5. The gap sequence is {1, 2, 3, 6, 7, 11}. {850, S0.a)} IS @
pair of dependent values; in general, we have
Stu+s.py = Sijen 1 Suj+a (22)

from the defining equation of the curve. For each (i, j) € %5, (23) the order
of each rational function ¢’/ is shown in Fig. la. For a 6-error pattern
e=(ep) withep =0, P;E P, except for e(.1.0 = @', €(1.1:02) = @, (1109 =
a’, eqr.an = b, eqan) = o, and e, = a®, the known part of the 2D
syndrome array is shown in Fig. 1b. (« is a primitive element of GF(2*)
whose minimum polynomial is x* + x + 1.) o are the unknown values of
the dependent pair 5, and 5, just in question at the current points r = (1, 4)
and r' = (6, 0). The Sakata algorithm is applied with respect to the total
order <7 defined by the pair 4, 5.

Before we begin the iteration of our algorithm 1, we calculate a minimal
polynomial set F of §" for r = (1, 4) by the Sakata algorithm. The result is
as follows:

I

X+a*x+ad, fori=xy+y+ ade+ ad,

F={fi:
f35

and G = {x + a”, y + ax + o«’}. (By the way, D = {(2, 0), (1, 1), (0, 2)},
T =1{(1,0), (0, 1)}, and A = {(0, 0), (1, 0), (0, 1)}.) Now, we start by setting
w = I and go to Step 2; i.e., calculate the candidate values of the depen-
dent pair 54 and 5, by using f; (or f3) and f;, respectively. Thus, we
have the candidate values 5.4, = @® and 5 ) = a'¥, which are not consis-
tent in the sense that they do not satisfy the identity (22). (Remark. f; and

y2 + aty + o’x + o'}

(a) (b)
0 5 10 15 20 a o o o o
4 9 14 19 24 a* ot a a! o
8 13 18 23 al o' ot al®
12 17 22 ot ot o
16 21 ot a”?
20 o
24 °
FiG. 1. (a) Orders of ¢'ys/. (b) 2D syndrome array.
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F1G. 2. The first iteration of the algorithm.

/i give the same value of 5, 4, by Lemma 2.) The numbers of votes for the
former and the latter are #(Z U Zq.) N T (1, 4) — A) = 4 and
#2020 N Feo\(6, 0) — A) = 3, respectively. Thus, the majority logic
gives the correct value 5, 4) = ®, and so 5, should be o’ by (22), and we
update the syndrome array as in Fig. 2. (The symbols ¢ are the unknown
values of the next dependent pair §, and 5, for r = (0, S)and ' = (5, 1)
which we will try to find in Step 2 of the next iteration, and * is a destina-
tione O 1.)

Now we proceed to Step 3; i.e., restart the iteration of the Sakata
algorithm at (1, 4) and stop at the next point (0, 5). Thus, we have a
minimal polynomial set

F={x5+ a"x* + o’ + ax + a9,

xy +y+adx+ad yi+ aty + a’x + o'}

and the auxiliary polynomial set G = {x? + ax + o, y + ax + &'},
where we remark that the polynomial f; has been updated. (D = {(5, 0),
(1,1),0,2)}, T = {(4,0), (0, )}, and A = {(0, 0), (1, 0), (0, 1), (2, 0), (3, 0),
(4, 0)}. Thus, #A = 6.) Similarly, we proceed to update the syndrome
array and a pair of F and G (and D, T, A) alternately.

At e @ 1 = (0, 6), we have a minimal polynomial set

F={x+x*+ a%' + a®%? + ally + a'?,

xy + x2+y+x, 2+ x2+ oty + a'x},

among which £ and f; have the correct error locators I = {(1 : 1 : a),
(1:1:ad),(U:1:a%),(1:1:a®,0:0:1),(l:a:1)}as zeros, where e =
(e1, e2) = (1, 5) satisfies 4(e; — d)) + S5(es ~d2) =20, 19>+ 2 — 1 =17
for d = (dy, d») = deg(f>) = (1, 1) and for d = (d|, d2) = deg(f;) = (0, 2),
respectively. (Remark. f, does not have the correct error locators as
zeros.) By the way, by restarting the iterations of our algorithm at (0, 6)
and continuing them, we obtain a unique minimal polynomial set F of §¢'®!
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fore’ @1 =(9,0) as

F={x+x*+ a'ly + a'x,
xy +xt+y+x, y2+x2+ aty + atx},

which is a (reduced) Grobner basis and every element of which has the
error locators [ as zeros. Furthermore, after having the whole period of
the array 5, we can find the error values.

(Remark. For m = 18, d¥g = d*. However, e.g., form = 16, dfg = 8 >
d* = 6 and three errors can be corrected.)

To estimate the computational complexity of our decoding algorithm,
we assume that O(n) = G(m) > O(g) and we consider correction of ¢ or less
errors with 6(¢) = O(n). For the first stage (Steps 1 and 2 of Algorithm 2) of
finding an error locator, we need to update at most b polynomials having
size of G(r) at every point of % up to e @& 1, where e depends on d =
deg( f) of the error locator f, but we have only to take e = (¢, e,) such that
O(ae; + be;) = O(t + g) = O(n). For the first stage, we have complexity of
order O(btm) = O(bm?). For good codes, we have that O(n) = O(bg) =
O(g \/5). If O(a) = O(b), then 06(g) = O(ab) = G(a?), and so we have O(a) =
0(Vq) and O(n) = 0(a?), from which it follows that the complexity is
O(n’?) as is the case treated by [4]. If O(a) < O(b), then the complexity is
much less, because we can take @ : = {(i,j) € 2 | j < a} instead of 2, and
execute the algorithm over /@ with complexity O(am?. Bya + d, + a +
(a/b)d, < 4da, if (m + w)/b > 4a,i.e., m + w> 8g ~ 4ab, we already have
the known syndrome values necessary to use the two polynomials f* and
f" derived from the curve defining polynomial C and the unique minimal
polynomial f having the minimum degree deg(f) = (d,, d;). Therefore,
provided that the procedure of the first stage is executed until m + w >
8g, the second stage (Step 3) of obtaining the error values in our decoding
algorithm has computational complexity of order O(abgq?) = 0(g%) = O(n?),
which is less than @(n’3) for the first stage. (Remark. The additional
computation in the first stage does not increase the order of complexity.)
The final stage (Step 4) also has order O(tq%) = 0(n’3).

4. CONCLUSION

We have presented a fast version of the Feng-Rao decoding algorithm
[7] for the class of algebraic—geometric codes derived from Miura~
Kamiya curves C,, [15]. It is a kind of simulation by the Sakata algorithm
(i.e., the 2D Berlekamp-Massey algorithm) [16, 17]. The Sakata algo-
rithm and the theory of 2D Hankel matrices [18] are applied well for that
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purpose. In particular, the majority logic for finding the unknown syn-
drome values is realized just in the iterative procedures of the Sakata
algorithm. We have proven the validity and the performance of our
method only in the framework of our theory, depending on linear algebra,
but not much on algebraic geometry. (A similar idea is presented in [23],
which is carried out in the framework of the previous papers [1, 4] and
restricted to codes from nonsingular curves.) The total complexity of
computation in finding error locators and error values is G(n"?) for the
class of algebraic—geometric codes. Here, we refer to the result by Feng
et al. [24, 25]. They gave a fast decoding algorithm by using the method of
solving a system of linear equations whose coefficient matrix is of Hankel
block-Hankel (or Toeplitz block-Toeplitz) type. The latter has been
known in the field of system theory. Their algorithm also has complexity
of G(n™?). Our algorithm, which is distinct from their method, has several
merits practically as well as theoretically, owing to its clearcut structure.
In particular, we can generalize the present decoding method to a wider
class of codes, e.g., to codes defined by L(mQ) having a basis of the form
{¢" - - - ¥}, which can be decoded by the kD Sakata algorithm [17] with
a little more computational complexity.

APPENDIX

Proof of Lemma 2. Letdeg(f) = d, deg(f') = d'. Then, from g & A,
there exists f" € F such that deg(f") = d” <p q. Therefore, from d, d’ <p
p,d+d',d + d" <pp + g, which, by Lemma 4 of [16], implies that fis
valid at p + g if and only if f" is valid at p + g and that f" is valid at p + q if
and only if f” is valid at p + q. Consequently, fis valid at p + g if and only
if £ is valid at p + q. Q.E.D.

Proof of Lemma 3. We can show that we have for any subset F’ of F
the one-to-one correspondence between the subsets (I, U I, o)\ ((r —
A)U (' - A)and (T, UT, p)\A of 3. We divide both subsets into two
parts: (I U IL @pN(r — A) U (7 = A) = (ILp\(r — A) U
(L AL pN((r — A) U (7" — A))) (Remark. T1, p\((r — A) U (7' — A)) =
IL, #\(r — A) because I', N (r' — A) = Finview of AC Z,and rj — r; =
b.) and ([, o U T, pNA = (I, p\A) U (I, #\(A U T)). First, for a point
q €1, p\(r — A), we have a point ¢’ := r — g € I, p\A, and vice versa,
because g =pr, deg(f) =p g for some f € F', and q & r — A if and only if

"=pr,q =r — deg(f)forsome fE€ F', and q' & A. Second, for a point
q € UL, AL p)M(r — A) U (7 — A)) we have a point ¢’ :=r' — g €
Iy #\A U T)(C 3, and vice versa, because g <p r’, deg(f) <p g for
some fE€E F',andg & (r' —A)UT,, g€ 3y ifandonlyifq’ <pr',qg </~
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— deg(f)forsomef€ F',andqg' € AUT,, q' €3y inviewof g =r{ — b
=rand g =<ri—r = b. Q.E.D.

Proof of Theorem 1. In view of the one-to-one correspondence be-
tween I1, and (I, » U [, 1)\ A which is shown in the above proof of Lemma
3, we have

#11, = #@,r U T, NA

#((UrerTrcaen ) U (UperTv gegi) N 20p) — #4
= #(T, UT,) O SpNA — #A

= #I, U (I N Zp) — 2#4A.

v

Q.E.D.

Proof of Theorem 2. Otherwise, the total number of votes against the
correct consistent candidate values is greater than or equal to |d¥r/2| —
#A by Theorem 1. Then, when the correct candidate value is assumed (as
it should be) and then the next iteration of the Sakata algorithm is exe-
cuted on the extended correct 2D array, we have by Lemma 4 that #A" —
#A = |dTR/2] — #A, which implies that #A’ = d¥r/2. But, it contradicts
(d¥ — DN/2 = {(dfr — 1)/2] = t = #A’ from the assumption that we have
got ¢ or less errors. Q.E.D.

Proof of Lemma 5. We have #I, = (r; + 1)(r; + 1) and #I',, N 2,0\,
=k —r — 1)r,—a+ 1). Thus, #T, U (I, N XN\ = ra + rb —
ab+a+b>m—ab+ a+ b. (Remark. Evenif I', 0 2\, = O, we
have the same inequality, as is seen easily.) Q.E.D.
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