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Abstract Reaction intermediates in dioxygen reduction by the E. coli cytochrome bo-type ubiquinol oxidase were studied by time-resolved resonance 
Raman spectroscopy using the artificial cardiovascular system. At O-20 ps following photolysis of the enzyme-CO adduct in the presence of 0,, we 
observed the Fe&& stretching Raman band at 568 cm-’ which shifted to 535 cm-’ with the “0, derivative. These frequencies are remarkably close 
to those of other oxyhemoproteins including dioxygen-bound hemoglobin and aa,-type cytochrome c oxidase. In the later time range (20-40 ps), 
other oxygen-isotope-sensitive Raman bands were observed at 788 and 361 cm-‘. Since the 781 cm-’ band exhibited a downshift by 37 cm-’ upon 
‘*O, substitution, we assigned it to the Fe’“=0 stretching mode. This band is considered to arise from the ferry1 intermediate, but its appearance 
was much earlier than the corresponding intermediate of bovine cytochrome c oxidase (>I00 ps). The 361 cn-’ band showed the ‘60/‘s0 isotopic 
frequency shift of I4 cm-’ similar to the case of bovine cytochrome c oxidase reaction. 
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1. Introduction 

Cytochrome bo-type ubiquinol oxidase is a terminal oxidase 

of the aerobic respiratory chain of Escherichia coli (E. coli) and 
is predominantly expressed under highly-aerated growth condi- 
tions (se [l] for a review). It catalyzes the four-electron reduc- 
tion of molecular oxygen at the cytoplasmic side of membranes, 
which is coupled with the two-electron oxidation of two ubiqui- 
nol-8 molecules at the periplasmic side. Redox reactions at 
different surfaces of the membrane can create a difference in 
electrochemical potential across the cytoplasmic membrane. In 
addition to the protolytic scalar reactions, this enzyme is known 
to function as an electron transfer-linked proton-pump [2] like 
bovine aa,-type cytochrome c oxidase. Recent molecular bio- 
logical [3-71 and physicochemical [8-lo] studies demonstrated 
that the bo-type quinol oxidase belongs to the heme-copper 
oxidase superfamily and shares a common molecular mecha- 
nism for the redox-coupled proton pumping [l 11. 

Subunit I of the E. coli bo-type quinol oxidase contains a 

hexa-coordinated low-spin heme B, a penta-coordinated high- 
spin heme 0 and one copper ion (Cu,) (see [3,12] for recent 
reviews). The high-spin heme and Cu, are antiferromagneti- 
tally coupled, forming an Fe-Cu, binuclear center where diox- 
ygen reduction takes place. Subunit II provides the oxidation 
site for a lipophilic two-electron donor, ubiquinol-8 [13], but 
does not contain the Cu, center which accepts electrons from 
ferrous cytochrome c for mammalian cytochrome c oxidases. 
Thus, electrons are transferred from the quinol bound to 

*Corresponding author. Fax: (81) (564) 55 4639. 

**This is Paper XIII in the series ‘Structure-function studies on the 
E. co/i cytochrome bo complex’. 

subunit II to the binuclear center of subunit I via the low-spin 
heme. 

Resonance Raman (RR) spectroscopy can bring about struc- 
tural information on hemes and their vicinities [14,15], and is 
especially powerful for studies of reaction intermediates. In 
fact, for the reaction of reduced bovine cytochrome c oxidase 
with dioxygen, the oxy [l&18], ferry1 [ 19-211, and hydroxy 
[20,22] intermediates have been identified by this technique. It 
is extremely interesting to examine similar intermediates for the 
reaction of cytochrome bo with 0,. although there are large 
differences between bo-type quinol oxidase and aa,-type cyto- 
chrome c oxidase, regarding electron donors, presence or ab- 
sence of the Cu, center, and heme species at the dioxygen 
reduction site. Therefore, we applied time-resolved RR spec- 
troscopy using the artificial cardiovascular system [23,24] suc- 
cessfully to characterize intermediates involved in dioxygen 
reduction by bo-type quinol oxidase. We detected the Fe-O, 
and Fe”‘=0 stretching modes at 568 and 788 cm-‘, respec- 
tively, for the first time, suggesting that the dioxygen reduction 
mechanism of quinol oxidases is similar to that of aa,-type 
cytochrome c oxidases. 

2. Materials and methods 

Cytochrome bo-type quinol oxidase was purified from the cyto- 
chrome bd-deficient strain GO103 (Acyd:: Km’ [25]) harboring 
pHN3795-I (H. Nakamura, unpublished results), as described previ- 
ously [8]. pHN3795-I is a derivative of pBR322 which carries the 
cytochrome bo operon (cyoABCDG) and was obtained from pHN3795 
[26] as a clone that can support the aerobic growth of the dcyo Acyd 
strain on a nonfermentable carbon source. 

The enzyme was dissolved in 100 mM Tris-HCI buffer (pH 7.4) 
containing 1.0% sucrose monolaurate SM-1200 (Mitsubishi-Kasei 
Food Co. Ltd., Tokyo), 200 PM ubiquinone-I (a kind gift from Dr. S. 
Ohsono, Eisai Co. Ltd., Tsukuba) and 100 mM sodium ascorbate 
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(pH 7.4). About 75 ml of the 50pM enzyme solution in the fully reduced 
CO-bound form was circulated at 5°C at a flow rate of 20 or 40 ml/min 
and brought under oxygen concentration of 150 PM using the artificial 
cardiovascular system. Details of this system are described elsewhere 
[23,24]. Raman scattering was excited at 406.7 nm by a Kr+ ion laser 
(Spectra Physics, Model 2016), and detected with a cooled (-20 “C) 
diode array (PAR 1421HQ) attached to a single polychromator (Ritsu 
Oyo Kogaku, DG-lOtlO), for which the slit width of 200 pm and slit 
height of 10 mm were used. A single laser beam with a power of -5 mW 
was focused to 40,um on a flow cell with a cross section of 0.6 x 0.6 mm2 
and was used to photolyze CO for initiation of the reaction and also 
to excite RR scattering. The transit time of a given molecule across the 
laser beam was 40 or 20 ,US according to the flow rate used. Raman 
shifts were calibrated with ethanol as a standard under the same illumi- 
nation geometry. 
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3. Results and discussion 

Fig. 1 shows time-resolved RR spectra in the 1000 to 300 
cm-’ region for reaction intermediates of the bo-type quinol 
oxidase with r602 (A and C) and “02 (B and D). Spectra A and 
B represent the raw spectra of intermediates generated in the 
time range of O-20 ,US following photolysis, while spectra C and 
D display those around O-40 ~LS following photolysis. Spectra 
E and F illustrate the differences between spectra A and B, and 
between spectra C and D, respectively, in which an intense 
porphyrin band at 678 cm-’ was used as a marker for subtrac- 
tion. 
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Fig. 1. Time-resolved RR spectra of the E. co/i bo-type quinol oxidase in the 1000 to 300 cm-’ region for 160, (A C) and ‘*O, (B,D) derivatives and , 
their difference spectra (E,F). The ordinate scales of spectra (A), (B), (C) and (D) are normalized by the intensity of porphyrin bands. Traces E and 
F represent the differences; spectrum E = (spectrum A-spectrum B) x 50 and spectrum F = (spectrum C-spectrum D) x 50. The bands marked with 
an asterisk denote a plasma line from a Kr’ ion laser. Transit time of a given molecule across the laser beam is O-20 /LS for spectra A, B, and E and 
0-40~s for spectra C, D, and F. Experimental conditions: excitation, 406.7 nm, 5 mW (at the sample) for spectra A and B, and 6 mW (at the sample) 
for spectra C and D; accumulation time, 3840 s for spectra A and B, and 6080 s for spectra C and D. 
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A differential pattern exhibiting a peak at 568 cm-’ and a 
trough at 535 cm’ appeared in difference spectra E and F. The 
frequencies 568 cm’ for 1602 and 535 cm-’ for “02 are in 
reasonable agreement with the Fe-Os stretching frequencies 
reported for oxyhemoglobin [27,28], oxymyoglobin [29,30], and 
dioxygen-bound bovine cytochrome c oxidase [16-18,241. Cry- 
ogenic flash/trap absorption experiments on the CO adduct of 
this enzyme in the presence of oxygen suggested the formation 
of an oxygenated heme at low temperatures [31]. Therefore we 
assign this band to the Fe-O, stretching mode (v,O,) of the 
dioxygen adduct. Note that the vFe& frequencies of the 
ho-type oxy-quinol oxidase (568/535 cm-‘for ‘602/180J and 
c/t/,-type oxy-cytochrome c oxidase (5711545 cm-‘) are alike, 
suggesting similarity in their Fe-O-0 geometry. 

Spectrum F shows the presence of other oxygen-isotope- 
sensitive bands around 785 and 361 cm-’ which must be arising 
from the species generated around 20-40 pus following the start 
of the reaction. The 785 cm-’ band is shifted to 751 cm-’ with 
the “02 derivative. The frequency and its ‘80/‘60-isotopic shift 
(37 cm-‘) are close to those observed for the Fe’“=0 stretching 
mode (v,‘“= 0) of the oxoferryl intermediate for the bovine 
cytochrome c oxidase [19-211, of horseradish peroxidase com- 
pound II [32-351, and of other oxoferryl hemeprotein species 
[3639]. Therefore we assign this band to the v,,‘“=O mode of 
the oxoferryl intermediate. In the case of bovine cytochrome 
c oxidase, there are two oxygen-isotope-sensitive bands in this 
frequency region (786 and 804 cm-‘) [22,24], but it is not clear 
from this experiment whether the 785 cm-’ feature in Fig. 1 is 
a single band or not. It should be noted that the rise time (ca. 
20-40 pets at 5°C) of the oxoferryl intermediate of the bo-type 
quinol oxidase is significantly faster than that of bovine cyto- 
chrome c oxidase, in which the v,,“‘=O band was undetectable 
before 100 ms under similar experimental conditions except for 
removal of detergents for bovine cytochrome c oxidase [24]. 
Recently, we found that the E. coli bo-type quinol oxidase 
contains a tightly-bound ubiquinone-8 (QH) which exists in the 
proximity of both the quinol oxidation site (QJ and the low- 
spin heme and may serve as a pathway for an electron transfer 
between these two centers [40]. The faster decay of the oxy 
intermediate to the oxoferryl intermediate in the bo-type quinol 
oxidase may be due to the unique electron transfer pathway. 
The other oxygen-isotope-sensitive band at 361 cm-’ showed 
an ‘60/‘80 isotopic shift of 14 cm-‘. A similar band is also 
reported for an intermediate in dioxygen reduction by bovine 
cytochrome c oxidase [21,24,41], although the nature of the 
species giving this band has not been characterized yet. 

In conclusion, we observed oxygen-isotope-sensitive Raman 
bands at 568 and 788 cm-’ during turnovers of the E. coli 
bo-type quinol oxidase for the first time, and assigned them to 
the vre-OZ and v,,‘“=O of its oxy- and ferry1 intermediates, 
respectively. These frequencies and their ‘60/‘80 isotopic shifts 
suggest that structures of these intermediates at the catalytic 
site are similar to the corresponding intermediates of au,-type 
cytochrome c oxidases. However, the occurrence of the ferry1 
intermediate was evidently faster in the bo-type quinol oxidase 
than in the au,-type cytochrome c oxidase. 
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