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Abstract Reaction intermediates in dioxygen reduction by the E. coli cytochrome bo-type ubiquinol oxidase were studied by time-resolved resonance
Raman spectroscopy using the artificial cardiovascular system. At 0-20 us following photolysis of the enzyme-CO adduct in the presence of O,, we
observed the Fe-O, stretching Raman band at 568 cm™' which shifted to 535 cm™ with the '*0, derivative. These frequencies are remarkably close
to those of other oxyhemoproteins including dioxygen-bound hemoglobin and aa;-type cytochrome ¢ oxidase. In the later time range (20-40 us),
other oxygen-isotope-sensitive Raman bands were observed at 788 and 361 cm™'. Since the 781 cm™' band exhibited a downshift by 37 cm™ upon
'*0, substitution, we assigned it to the Fe'Y=0 stretching mode. This band is considered to arise from the ferryl intermediate, but its appearance
was much earlier than the corresponding intermediate of bovine cytochrome ¢ oxidase (>100 us). The 361 cm™ band showed the '*0/'®0 isotopic
frequency shift of 14 cm™' similar to the case of bovine cytochrome ¢ oxidase reaction.
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1. Introduction

Cytochrome bo-type ubiquinol oxidase is a terminal oxidase
of the aerobic respiratory chain of Escherichia coli (E. coli) and
is predominantly expressed under highly-aerated growth condi-
tions (se [1] for a review). It catalyzes the four-electron reduc-
tion of molecular oxygen at the cytoplasmic side of membranes,
which is coupled with the two-electron oxidation of two ubiqui-
nol-8 molecules at the periplasmic side. Redox reactions at
different surfaces of the membrane can create a difference in
electrochemical potential across the cytoplasmic membrane. In
addition to the protolytic scalar reactions, this enzyme is known
to function as an electron transfer-linked proton-pump [2] like
bovine aas;-type cytochrome ¢ oxidase. Recent molecular bio-
logical [3-7] and physicochemical [8-10] studies demonstrated
that the bo-type quinol oxidase belongs to the heme-copper
oxidase superfamily and shares a common molecular mecha-
nism for the redox-coupled proton pumping [11].

Subunit I of the E. coli bo-type quinol oxidase contains a
hexa-coordinated low-spin heme B, a penta-coordinated high-
spin heme O and one copper ion (Cug) (see [3,12] for recent
reviews). The high-spin heme and Cuy are antiferromagneti-
cally coupled, forming an Fe-Cujg binuclear center where diox-
ygen reduction takes place. Subunit II provides the oxidation
site for a lipophilic two-electron donor, ubiquinol-8 [13], but
does not contain the Cu, center which accepts electrons from
ferrous cytochrome ¢ for mammalian cytochrome ¢ oxidases.
Thus, electrons are transferred from the quinol bound to
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**This is Paper XIII in the series ‘Structure-function studies on the
E. coli cytochrome bo complex’.

subunit II to the binuclear center of subunit I via the low-spin
heme.

Resonance Raman (RR) spectroscopy can bring about struc-
tural information on hemes and their vicinities [14,15], and is
especially powerful for studies of reaction intermediates. In
fact, for the reaction of reduced bovine cytochrome ¢ oxidase
with dioxygen, the oxy [16-18], ferryl [19-21], and hydroxy
[20,22] intermediates have been identified by this technique. It
is extremely interesting to examine similar intermediates for the
reaction of cytochrome bo with O, although there are large
differences between bo-type quinol oxidase and aa,-type cyto-
chrome ¢ oxidase, regarding electron donors, presence or ab-
sence of the Cu, center, and heme species at the dioxygen
reduction site. Therefore, we applied time-resolved RR spec-
troscopy using the artificial cardiovascular system [23,24] suc-
cessfully to characterize intermediates involved in dioxygen
reduction by bo-type quinol oxidase. We detected the Fe-O,
and Fe'Y=0 stretching modes at 568 and 788 cm™', respec-
tively, for the first time, suggesting that the dioxygen reduction
mechanism of quinol oxidases is similar to that of aa,-type
cytochrome ¢ oxidases.

2. Materials and methods

Cytochrome bo-type quinol oxidase was purified from the cyto-
chrome bd-deficient strain GO103 (dcyd::Km" [25]) harboring
pHN3795-1 (H. Nakamura, unpublished results), as described previ-
ously [8]. pHN3795-1 is a derivative of pBR322 which carries the
cytochrome bo operon (cyoA BCDE") and was obtained from pHN3795
[26] as a clone that can support the aerobic growth of the dcyo Acyd
strain on a nonfermentable carbon source.

The enzyme was dissolved in 100 mM Tris-HCI buffer (pH 7.4)
containing 1.0% sucrose monolaurate SM-1200 (Mitsubishi-Kasei
Food Co. Ltd., Tokyo), 200 uM ubiquinone-1 (a kind gift from Dr. S.
Ohsono, Eisai Co. Ltd., Tsukuba) and 100 mM sodium ascorbate
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(pH 7.4). About 75 ml of the 50 uM enzyme solution in the fully reduced
CO-bound form was circulated at 5°C at a flow rate of 20 or 40 ml/min
and brought under oxygen concentration of 150 M using the artificial
cardiovascular system. Details of this system are described elsewhere
[23,24]. Raman scattering was excited at 406.7 nm by a Kr* ion laser
(Spectra Physics, Model 2016), and detected with a cooled (—20 °C)
diode array (PAR 1421HQ) attached to a single potychromator (Ritsu
Oyo Kogaku, DG-1000), for which the slit width of 200 #m and slit
height of 10 mm were used. A single laser beam with a power of ~5 mW
was focused to 40 um on a flow cell with a cross section of 0.6 x 0.6 mm?
and was used to photolyze CO for initiation of the reaction and also
to excite RR scattering. The transit time of a given molecule across the
laser beam was 40 or 20 us according to the flow rate used. Raman
shifts were calibrated with ethanol as a standard under the same illumi-
nation geometry.
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3. Results and discussion

Fig. 1 shows time-resolved RR spectra in the 1000 to 300
cm™ region for reaction intermediates of the bo-type quinol
oxidase with 0, (A and C) and *O, (B and D). Spectra A and
B represent the raw spectra of intermediates generated in the
time range of 0—20 us following photolysis, while spectra C and
D display those around 0-40 us following photolysis. Spectra
E and F illustrate the differences between spectra A and B, and
between spectra C and D, respectively, in which an intense
porphyrin band at 678 cm™ was used as a marker for subtrac-
tion.
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Fig. 1. Time-resolved RR spectra of the E. coli bo-type quinol oxidase in the 1000 to 300 cm™* region for '°O, (A,C) and '*0, (B,D) derivatives and
their difference spectra (E,F). The ordinate scales of spectra (A), (B), (C) and (D) are normalized by the intensity of porphyrin bands. Traces E and
F represent the differences; spectrum E = (spectrum A—spectrum B) x 50 and spectrum F = (spectrum C—spectrum D) x 50. The bands marked with
an asterisk denote a plasma line from a Kr* ion laser. Transit time of a given molecule across the laser beam is 0-20 us for spectra A, B, and E and
0-40 us for spectra C, D, and F. Experimental conditions: excitation, 406.7 nm, 5 mW (at the sample) for spectra A and B, and 6 mW (at the sample)
for spectra C and D; accumulation time, 3840 s for spectra A and B, and 6080 s for spectra C and D.
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A differential pattern exhibiting a peak at 568 cm™ and a
trough at 535 cm™! appeared in difference spectra E and F. The
frequencies 568 cm™ for %0, and 535 ¢cm™' for ®Q, are in
reasonable agreement with the Fe-O, stretching frequencies
reported for oxyhemoglobin [27,28], oxymyoglobin [29,30], and
dioxygen-bound bovine cytochrome ¢ oxidase [16-18,24]. Cry-
ogenic flash/trap absorption experiments on the CO adduct of
this enzyme in the presence of oxygen suggested the formation
of an oxygenated heme at low temperatures [31]. Therefore we
assign this band to the Fe~-O, stretching mode (vg~0,) of the
dioxygen adduct. Note that the v.—O, frequencies of the
ho-type oxy-quinol oxidase (568/535 c¢m™'for '%0,/'*0,) and
aa,-type oxy-cytochrome ¢ oxidase (571/545 ¢cm™) are alike,
suggesting similarity in their Fe-O-O geometry.

Spectrum F shows the presence of other oxygen-isotope-
sensitive bands around 785 and 361 cm™" which must be arising
from the species generated around 2040 us following the start
of the reaction. The 785 cm™' band is shifted to 751 cm™" with
the '®0, derivative. The frequency and its "*O/'°O-isotopic shift
(37 cm™") are close to those observed for the Fe'Y=0 stretching
mode (vgV=0) of the oxoferryl intermediate for the bovine
cytochrome ¢ oxidase [19-21], of horseradish peroxidase com-
pound II [32-35], and of other oxoferryl hemeprotein species
[36-39]. Therefore we assign this band to the vg,Y=0 mode of
the oxoferryl intermediate. In the case of bovine cytochrome
¢ oxidase, there are two oxygen-isotope-sensitive bands in this
frequency region (786 and 804 cm™") [22,24], but it is not clear
from this experiment whether the 785 cm™ feature in Fig. 1 is
a single band or not. It should be noted that the rise time (ca.
20-40 us at 5°C) of the oxoferryl intermediate of the bo-type
quinol oxidase is significantly faster than that of bovine cyto-
chrome c oxidase, in which the v,!Y=0 band was undetectable
before 100 ms under similar experimental conditions except for
removal of detergents for bovine cytochrome ¢ oxidase [24].
Recently, we found that the E. coli bo-type quinol oxidase
contains a tightly-bound ubiquinone-8 (Qy) which exists in the
proximity of both the quinol oxidation site (Q,) and the low-
spin heme and may serve as a pathway for an electron transfer
between these two centers [40]. The faster decay of the oxy
intermediate to the oxoferryl intermediate in the bo-type quinol
oxidase may be due to the unique electron transfer pathway.
The other oxygen-isotope-sensitive band at 361 cm™ showed
an '%0/'®0 isotopic shift of 14 cm™. A similar band is also
reported for an intermediate in dioxygen reduction by bovine
cytochrome ¢ oxidase [21,24,41], although the nature of the
species giving this band has not been characterized yet.

In conclusion, we observed oxygen-isotope-sensitive Raman
bands at 568 and 788 cm™' during turnovers of the E. coli
bo-type quinol oxidase for the first time, and assigned them to
the vg—0, and vg'V=0 of its oxy- and ferryl intermediates,
respectively. These frequencies and their '*0/'*Q isotopic shifts
suggest that structures of these intermediates at the catalytic
site are similar to the corresponding intermediates of aa,-type
cytochrome ¢ oxidases. However, the occurrence of the ferryl
intermediate was evidently faster in the bo-type quinol oxidase
than in the aa;-type cytochrome ¢ oxidase.
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