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Abstract—This paper is motivated by recent interests in space discrete Nagumo equations and is
concerned with the existence of solutions of a nonlinear discrete boundary value problem. Monotone
methods are used to derive the existence theorems. These methods, as is well known, provide con-
structive schemes for calculating the solutions.
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1. INTRODUCTION

Interests in stability and spatial chaos in discrete or semidiscrete dynamical systems can be found
in several recent studies [1-4]. For instance, the semidiscrete Nagumo equation

u;-,, = d(u'n—l - 2un + Un+1) + f (un) s

or the fully discrete Nagumo equation

ui(J+ 1) —wi(d) = £ (wi—1(9) — 2ui(5) + wi(§ — 1)) + af (ui(4))

have been studied in [1-3|, respectively. These studies show that discrete analogs of partial
differential equations yield interesting dynamical systems in their own right. In this paper, we
are concerned with the existence of steady-state or time independent solutions of dynamical
systems, such as the ones indicated above. More specifically, denoting vgy; — vk by Awg and
Uk41 — 20k + vk—1 by A2vi_1, respectively, we will seek solutions of a class of discrete boundary
value problem of the form

A2vg_y + f(k,vx) =0, k=1,2,...,n, (1.1)

where f(k,v) is a real function defined for k = 1,...,n and v € R. In general, such solutions are
subject to boundary conditions. In these paper, we will consider a standard type of boundary
conditions of the form

vg =0 = vpyy, (12)
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Discrete boundary value problems such as (1.1),(1.2) have already been studied by many au-
thors (see, for example, [5-8]), since these problems are also natural consequences of discretiza-
tion techniques of differential boundary problems. Besides, they arise in the study of solid state
physics, chemical reactions, population dynamics, etc.

As is well known, there are several techniques which are often employed in boundary value
problems. These include or involve the method of a priori estimates, contraction mappings
theorems, the Brouwer fixed point theorem, the method of perturbation, etc. Here, we will
employ the method of upper and lower solutions (see, e.g., [9-11]). Such methods, as is well
known, will provide constructive schemes for calculating the desired solutions.

2. UPPER AND LOWER SOLUTIONS

In the sequel, a sequence u = {uq,Ug+1,--.,Up} is said to be less than or equal to another
sequence w = {Wq, Wq+1,.-.,Ws} (denoted by u < w) if each of the components of v is less than
or equal to the corresponding ones of w. A solution of the boundary value problem (1.1),(1.2) is
a real sequence of the form {ug, u1,...,un41} such that (1.1),(1.2) is satisfied. A real sequence
w = {wg, w1, ..., Wn+1} is called an upper solution of (1.1),(1.2) if

Awi_ + flkywy) <0,  k=1,...,n, (2.1)
and
wp > 0, Wp+1 > 0. (2.2)
Similarly, a real sequence u = {ug,u1,...,uUn+1} is called a lower solution of (1.1),(1.2) if
Aup_y + f(k,ux) >0, k=1,2,...,n, (2.3)
and
ug < 0, Upt1 < 0. (2.4)

There is a maximum principle as follows.

LEMMA 2.1. Let {vg,v1,...,Uny1} be a real sequence which satisfies the recurrence relation
A?vp_y + F(k,vx) >0, k=1,2,...,n, (2.5)
where for each k € {1,...,n}, F(k,v) <0, whenever v > 0. If
M = max {vg,...,Upt1} >0,

thenvy < M for1 <k <n,unlessvy =M for0<k<n+1.
PRrROOF. Suppose to the contrary that v; = M for some j € {1,...,n}. Then szj_l =wv;_1 —
2v; + vj41 > 0, which implies v;_; = v; = vj4+1 = M. The proof can now be completed by
showing inductively that v;_; =v;_9 =-- = v and vj41 = vj42 =+ = vpy1. i
As an application, if v = {vg,...,vn41} is a lower solution of (1.1),(1.2), where f(k,v) <0 for
1<k<nandv>0,then vy <0 for 0 <k <n+1. Indeed, if max{vg,...,vny1} > 0, then it is
either vg or v,4+1, which is impossible.
As another application, we will show that a lower solution is less than or equal to any upper
solution when f(k,v) is nonincreasing in v.

LEMMA 2.2. Assume that f(k,v) is nonincreasing in v for 1 < k < n. Then, for any lower
solution v = {ug,...,un+1} and upper solution w = {wq,...,wp41} of (1.1),(1.2), we have
up <wg for0<k<n+1.

PrROOF. We obtain from (2.1) and (2.3), that

A? (up—y — wr—1) + fk,uz) — f(k,wg) >0, 1<k<n, (2.6)
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and

up —wp <0, Untl — Wny1 < 0.

Thus, the sequence {vg} defined by vy = ux — wy for 0 < k < n + 1, satisfies the recurrence
relation (2.6) which is of the form (2.5). By Lemma 2.1, we see that vy = ux — wx < 0 for
0<k<n+1. |

We remark that, in general, a lower solution may not be less than or equal to an upper solution.
As we will see in Section 3, it is useful to know that a lower solution is less than or equal to an
upper solution. Thus, an additional result is derived in addition to Lemma 2.2.

LEMMA 2.3. Let w = {wp,...,Wn+1} be an upper solution of (1.1),(1.2) such that there is a
positive sequence z = {2, ..., Zn41} satisfying

A? (/\Zk—-l) < f(k,wk) - f(k,wk + )\zk), 1<k <n,

for any A > 0. Then v < w, for any lower solution v = {vy,...,vn41} of (1.1),(1.2).

PrOOF. Suppose to the contrary that v is a lower solution of (1.1),(1.2) such that

vi —w; = max {v; —w;+ >0
] j lSiSn{l i} s

then v; = w; + A*z;, for some A* > 0. Furthermore,
0> A% (vj1 —wj—1 = A1) > = f(5,v5) + F(G wy) + f (Ghw; + A25) = f(G,w;) =0,

which is a contradiction. ]

Another comparison theorem for lower and upper solutions is as follows, the proof of which is
elementary.

LEMMA 2.4. Assume that fi(k,v) < f(k,v) < fa(k,v) for 1 < k < n. Then, an upper solution
of

A?wy_1 + fa(k, wg) =0, 1<k<n, wy=0=wpqy,
is also an upper solution of (1.1),(1.2), a lower solution of
A2uk—1+fl(kauk)=0’ lgksna u0=0=un+17

is also a lower solution of (1.1),(1.2).

Next, we derive an existence theorem for upper and lower solutions. Before doing so, let us
recall [5] that the boundary problem (1.1),(1.2) is equivalent to the matrix problem

where A = (ay;), is defined by
2, i=}4,
aij = -1, ‘i_.ﬂ:la
0, otherwise,

z = col(zx1,Zg,...,2,) and F = col(f(1,z1),..., f(n,2n)). The boundary problem (1.1),(1.2) is
equivalent to (2.7), in the sense that a vector z = col(z1,...,Zn) is a solution of (2.7) if, and
only if, the sequence {0, z1,...,Zn,0} is a solution of (1.1),(1.2).
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THEOREM 2.1. If f(k,v) > L (or f(k,v) < L) for1 < k < n, then (1.1),(1.2) has a lower solution
(respectively, an upper solution).

PrOOF. Consider the system of linear equations

A%y +L=0, 1<k<n, (2.8)

vp =0 ="vpy1. (2.9)

As we have just mentioned, this system is equivalent to a matrix problem of the form (2.7),
where F' is now col(L,...,L). Note that the matrix is nonsingular thus, this system will have
a unique solution, which in turn gives rise to a solution v of the linear system. In view of
Lemma 2.3, v is also a lower solution of (1.1),(1.2). ]

Next, suppose there is a nonnegative constant ¢ such that f(k,c) < 0 for 1 < k < n. Then the
sequence v = {¢,¢, ..., c} satisfies

APvg_y + f(k,ve) = f(k,c) <0,

for 1 < k < n. That is, v is an upper solution of (1.1),(1.2). The following is now clear.

THEOREM 2.2. Suppose there is a nonnegative (or nonpositive) constant c such that f(k,c) <0
(respectively, f(k,c) >0) for1 <k <n, thenv = {c,...,c} is an upper solution (respectively, a
lower solution) of (1.1),(1.2).

Other existence theorems for lower and upper solutions of (1.1),(1.2), can be obtained by
means of the comparison Lemma 2.3. For instance, we may look for eigensolutions of the linear
eigenvalue problem

Alzi_ i+ A\ezr =0, 1<k<n, (2.10)
To=0=Tpy1, (2.11)

which is equivalent to the matrix eigenvalue problem
Azx = Adiag(q1,...,qn)z.
Since A is a symmetric matrix, this matrix eigenvalue problem has real eigenvalues and their

corresponding eigenvectors give rise to lower and an upper solutions of (1.1),(1.2).

THEOREM 2.3. Let A be an eigenvalue of the eigenvalue problem (2.10),(2.11) and let u =
{uo,...,unt+1} be its corresponding eigenvector. Suppose further that f(k,z) < Agrx (Agrz <
f(k,x)) for 1 < k < n. Then u is an upper solution (respectively, a lower solution) of (1.1),(1.2).

3. EXISTENCE OF SOLUTIONS

In this section, we will derive several existence theorems for the solutions of the boundary
problem (1.1),(1.2).

LEMMA 3.1. Suppose |f(k,v)] < M for 1 < k < n and v € R. Suppose further that f(k,-) is
continuous. Then the boundary problem (1.1),(1.2) has a solution.

PROOF. Let G = (g;;) be the inverse of the matrix A in (2.7). Then, we may rewrite (2.7) as a
fixed point problem
r=Tz, (3.1)

where T : R™ — R" is defined by

n
(Tz), =Zgijf(jswj), 1<i<n.
j=1
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Let

n

K= fé‘?gxn; lgil .
J:

and let
Q={z=col(zy,...,zn) | llz]| < KM},

where |jz]| = maxj<;<n |Ti]. It is easy to see that €2 is a bounded, convex and closed subset of R"™.
Furthermore, T transforms {2 into , in a continuous manner in view of the assumptions imposed
on f. By the Brouwer fixed point theorem, there exists a vector z* = col(z],...,z}) €  such
that * = Tx*. But then col (0,z7,...,2z},0) is a solution of (1.1),(1.2) as required. |

THEOREM 3.1. Suppose that f(k,-) is continuous. Then for any lower solution u = {uy,...,
Un+1} and upper solution w = {wo, ..., wpy1} of (1.1),(1.2) satisfying u < w, there is a solution
v={voy...,Uny1} of (1.1},(1.2) which satisfies u < v < w.

Proor. Consider the boundary value problem

A2z 1 + ®(k,zx) = 0, k=1,2,...,n, (3.2)
9 =0= Tn41, (3.3)
where
fleywe) + (wp —2)
(1+z?) ’ ’°’
o(k,z) =< f(k,z), up <z < wg, (3.4)
f(k,uk) + (ug — )
(1 + .'L'2) 3 T < Ug,
for 1 < k < n. Clearly, the function @ is bounded for 1 < k < n and x € R, and is continuous in z.
Thus, by Lemma 3.1, there exists a solution v = {vg,...,vn41} of the boundary problem (3.2)
and (3.3).

We assert that the solution v satisfies u < v < w so that it is also a solution of (1.1),(1.2) in
view of the definition of . Indeed, suppose to the contrary that v; —w; = maxi<;<n{v;—w;} > 0.

Then
v; — Wy

02A2(vj_wj)z.f(jawj)—q)(j7vj): 1-‘(-11]2 >0,
which is a contradiction. Similarly, we may show that u < v. |
As an example, suppose
OSf(k’U)S4Sin2<2(n—7:_I‘)'>U, 1<k <n.

Then the zero sequence is a lower solution of (1.1),(1.2) by Theorem 2.2, and the sequence
w = {wo, ..., Wn41} defined by

k
wg = sin ﬂ-, 0<k<n+1,
n+1
is an upper solution of (1.1),(1.2) since it satisfies
A2’wk_1 +4sin2 (%7:_—-1)) wg =0, 1<k<n,

and wg = 0 = wy41. In view of Theorem 3.2, (1.1),(1.2) has a solution v = {vg, ..., vny1} Wwhich
satisfies

k
0<wvp<sin—r—  0<k<n+l.
n+1

Next, we derive an existence theorem when a Lipschitz condition is satisfied.
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THEOREM 3.2. Suppose f(k,-) is continuous. Suppose further that there exist a lower solution

u = {ug,...,Uns1}, an upper solution w = {wp,... Wny1}, and a positive sequence {px}}_,,
such that v < w and for each k € {1,...,n}, the following one-sided Lipschitz condition

holds whenever uy <y < z < wy. Then the boundary problem (1.1),(1.2) has a solution u* and
a solution w* such that u* < w*.

PRrROOF. For any sequence 7 = {7o, ..., Nn+1} which satisfies u < 1 < w, consider the following
boundary problem

Ay + fk, k) — pr(ve — k) =0, 1<k<n, (3.6)
v =0= Un41-

This problem is equivalent to the matrix problem

Bz =H, (3.8)
where the matrix B = (by;) is defined by
2+pi, 1=,
by=q -1 li-jl=1,
0, otherwise,

z = col(x1,...,2,), H = col(f(1,m1) + ;1715 -, F(7, M) + Dumn). Since pp > 0 for 1 <
k < n, B is a strictly diagonally dominant matrix, and hence, is nonsingular. Thus (3.8), and
also (3.6),(3.7), have unique solutions.

Let us define the sector

Q={n={no,..., 41} v <n<w},
and let T : @ — R"™*? be defined by
In=up,
where pu = {uo, - - ., in+1} is the unique solution of the boundary problem (3.6),(3.7). We assert
that u < I'u and I'w < w. Indeed, let Tu = & = {&,...,&n+1}, and suppose to the contrary that

v; — &= 1??5",1{”1' - &} >0,

then
0> A%(v; — &) = —f(4,v;) + (F(,v5) — pi(&5 — v;)) = pi(v; — &) > 0,
which is a contradiction. Similarly, we may show that ['w < w.

Next, we assert that for any &, ¥ € Q, and £ < 9, we have T'¢ < T't. Indeed, let ['¢ = 7 =
{70,---»Tn+1} and T = p = {po, ..., pn+1}, and suppose to the contrary that

Tj —p; = max {r; —~p;} >0
T Py 15i_<_n{z pi} )

then we have
0> A%(1j_1 — pj_1) = {=f0.&) + pi(r; — &)} + {f U ;) — pi(p; — ¥;)}
={f0,¥;) — fU:.€)} +pi {5 — & — pj + 45}
> —pi(¥; — &) +pi(r5 — p;) +pi(¥; — &)
= p;(1; — pj) >0,

which is a contradiction.
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Therefore, if we define two sequences as follows:

u® =u, Ut =T, for j >0,
and

w® =w, w0 =Tw?  forj>o0,
then we have

w=u® <uV <... < <@ =y,

It follows that the limits lim;_,co u'?) = u* and limj_, w9 = w* exist. Furthermore, by means
of the continuity of the function f(k,-), we easily see that they are solutions of (1.1),(1.2). 1§

We remark that the solutions u* and w* of (1.1),(1.2) found in the above theorem are minimal
and maximal in the sense that if v is any solution of (1.1),(1.2) which satisfies v < v < w, then
u* < v < w*. Indeed, note that T'v = v. Thus u(!) = I'u® < T'v = v, and by induction, v\ < v
for 7 > 1. This shows that v* < v. Similarly, v < w*.

4. BOUNDARY PROBLEMS OF
TWO INDEPENDENT VARIABLES

Results analogous to those stated in the previous sections can be derived for boundary value
problems involving nonlinear partial difference equations. To save space, the terminologies in [5]
will be employed. Let S be a net in the lattice plane

{z = (i,7) | i, 7 are integers},
and let 95 be its exterior boundary. Consider the partial difference boundary value problem
Du(z) + f(z,v(2)) =0, z €S, (4.1)
v(z) =0, z €08, (4.2)

where f(z,v) is a real function defined for = € § and v € R, and D is the discrete Laplacian
defined by

Du(i, ) = A2u(i — 1,5) + Av(4,j — 1)
= v(z’ + 1,j) +v(z’ — l,j) +v(i,j + 1) + v(i,j — 1) — 4v(z’,j).

As in Section 2, a real double sequence u = {u(z)},es is said to be less than or equal to
another double sequence w = {w(2)}.es, if u(z) < w(z) for z € S. A solution of (4.1),(4.2) is a
real double sequence v = {v(2)},esuss such that (4.1),(4.2) is satisfied. A real double sequence
w = {w(z)},esuas is called an upper solution of (4.1),(4.2) if

Dw(z) + f (z,w(2)) <0, z €S,
and

w(z) 2 0, z € 08S.
Similarly, a real double sequence u = {u(2)},esuss is called a lower solution of (4.1),(4.2) if
Du(z) + f(z,u(z)) >0, z €S,

and

u(z) €0, z € 8S.
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LEMMA 4.1. Let v = {v(z)},esuss be a real double sequence which satisfies the recurrence
relation

Du(z) + F (z,v(z)) > 0, z €S,

where for each z € S, F(z,v) <0, whenever v > 0. If
M =max{v(z) | z€ SUIS} >0,

then v(z) < M for z € S, unless v(z) = M for z € SUDS.

PROOF. Suppose to the contrary that v(z*) = M for some z* € S. We assert that for any other
point z in S U 88, v(z*) = v(z). Indeed, let z(1) = 2*, 22 ... 2" = 2 be a path of points
contained in S U 8S. Since v(2*) = M, the values of the neighboring points of v are not greater
than M. Consequently, Dv(2())) < 0, which together with Duv(2(1)) > —F(z(D) v(z()) > 0,
imply Dv(z(1)) = 0. But then the values of v at the four neighbors of 2(1), in particular, z(?), are
equal to M. If 2(?) £ z, we may repeat the above argument repeatedly to conclude our proof. Ji

As an immediate application, let us consider the following linear system

Du(z) + p(z)v(z) =0, z€8,
v(z) =0, z €85,

where p(z) < 0 for z € S. We assert that this system can have the trivial solution only. Indeed,
if v = {v(2)}.esuas is a nontrivial solution, we may assume that it’s maximum

v(z*) = zglggaésv(z) > 0.

But in view of Lemma 4.1, 2* € 35 so that v(z*) = 0. This contradiction completes the proof of

our assertion.
The following is now clear.

LEMMA 4.2. Let S be a net, and p(z) < 0 for z € S. Then the linear system

Du(z) + p(z)v(2) = q(2), z€S,
v(z) = h(2), z €08,

has a unique solution.

By means of these two lemmas, results similar to Lemma 2.2, Theorem 2.1, and Theorem 3.1
can easily be formulated and proved. Furthermore, results similar to Lemma 2.4, Theorem 2.2,
Theorem 2.3, Lemma 3.1, and Theorem 3.2, can also be formulated easily and proved. In partic-
ular, we have the following existence criteria.

THEOREM 4.1. Suppose f(z,-) is continuous. Then for any lower solution v = {u(z)} and
upper solution w = {w(z)} of (4.1),(4.2) satisfying u < w, there exists a solution v = {v(z)} of
(4.1),(4.2) which satisfles u < v < w.

THEOREM 4.2. Suppose f(z,-) is continuous. Suppose further that there exist a lower solution
u = {u(2)}, an upper solution w = {w(z)}, and a positive function p = {p(z)},es such that
u < w, and for each z € S, f(z,p) — f(2,7) 2 —p(z)(p — 7) holds whenever u(z) < 7 < p < w(z).
Then the boundary problem (4.1),(4.2) has a solution u* and a solution w*, such that v* < v < w*
for any solution v of (4.1),(4.2) satisfying u < v < w.
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