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A b s t r a c t - - T h i s  paper is motivated by recent interests in space discrete Nagumo equations and is 
concerned with the existence of solutions of a nonlinear discrete boundary value problem. Monotone 
methods are used to derive the existence theorems. These methods, as is well known, provide con- 
structive schemes for calculating the solutions. 
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1 .  I N T R O D U C T I O N  

Interests  in stabil i ty and spatial  chaos in discrete or semidiscrete dynamical  systems can be found 

in several recent studies [1-4]. For instance, the semidiscrete Nagumo equat ion 

u n' = d (un-1 - 2un + u,~+l) + f (u~),  

or the  fully discrete Nagumo equat ion 

u i ( j + l )  - u i ( j )  = a ( u i _ l ( j ) - 2 u ~ ( j ) + u i ( j - 1 ) ) + a f ( u i ( j ) ) ,  

have been studied in [1-3], respectively. These studies show tha t  discrete analogs of  part ial  
differential equat ions  yield interesting dynamical  systems in their own right. In this paper,  we 
are concerned with the existence of s teady-s ta te  or t ime independent  solutions of  dynamica l  

systems,  such as the ones indicated above. More specifically, denot ing Vk+l -- vk by Avk and 
Vk+l - 2vk + vk-1  by A2vk_l ,  respectively, we will seek solutions of  a class of  discrete b o u n d a r y  
value problem of the form 

A2•k-1 -~- f ( k ,  vk) = 0, k = 1 , 2 , . . .  ,n ,  ( I . I )  

where f ( k ,  v) is a real funct ion defined for k = 1 . . . . .  n and v E R. In general, such solutions are 
subject  to b o u n d a r y  conditions. In  these paper,  we will consider a s t andard  type  of  b o u n d a r y  

condit ions of  the form 

vo = 0 --- vn+l, (1.2) 
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Discrete boundary  value problems such as (1.1),(1.2) have already been studied by many  au- 
thors (see, for example, [5-8]), since these problems are also natural  consequences of discretiza- 
tion techniques of differential boundary problems. Besides, they arise in the s tudy of solid state 
physics, chemical reactions, population dynamics, etc. 

As is well known, there are several techniques which are often employed in boundary  value 
problems. These include or involve the method of a priori estimates,  contraction mappings 
theorems, the Brouwer fixed point theorem, the method of perturbation,  etc. Here, we will 
employ the method of upper  and lower solutions (see, e.g., [9-11]). Such methods, as is well 
known, will provide constructive schemes for calculating the desired solutions. 

2.  U P P E R  A N D  L O W E R  S O L U T I O N S  

In the sequel, a sequence u = { U a , U a . . k l , . . .  ,Ub}  is said to be less than  or equal to another 

sequence w = {wa, Wa+l , . . . ,  Wb} (denoted by u < w) if each of the components of u is less than  
or equal to the corresponding ones of w. A solution of the boundary value problem (1.1),(1.2) is 
a real sequence of the form {u0, U l , . . . ,  un+l} such tha t  (1.1),(1.2) is satisfied. A real sequence 
w = {w0, W l , . . . ,  w~+l} is called an upper  solution of (1.1),(1.2) if 

and 

A2Wk_l + f ( k ,  Wk) < O, k = l , . . . , n ,  (2.1) 

and 

u0 <_ 0, Un+l _< 0. (2.4) 

There  is a maximum principle as follows. 

LEMMA 2.1. Let  {Vo, Vl,. . . ,  Vn+l} be a real sequence which satisfies the recurrence relation 

A2vk_l  + F(k ,  Vk) >_ 0, k = 1 , 2 , . . . ,  n, (2.5) 

where for each k C { 1 , . . . ,  n}, F(k ,  v) <_ O, whenever v >_ O. I f  

M = m a x { v 0 , . . . , v n + l }  >_ O, 

then vk < M for l < k < n, unless vk = M for O < k < n + l. 

PROOF. Suppose to the contrary tha t  vj = M for some j E {1 . . . . .  n}. Then A2Vj_x = vj-1  - 
2vj + vj+l  _> 0, which implies vj -1  -- vj = Vj+l = M.  The proof can now be completed by 
showing inductively tha t  vj -1  = v j -2  . . . . .  vo and Vj+l = vj+2 . . . . .  Vn+l .  

As an application, if v = {v0 , . . . ,  vn+l} is a lower solution of (1.1),(1.2), where f ( k ,  v) < 0 for 
1 < k < n and v > 0, then Vk <_ 0 for 0 < k < n +  1. Indeed, if m a x { v 0 , . . . , v n + l }  > 0, then it is 
either v0 or Vn+l, which is impossible. 

As another  application, we will show tha t  a lower solution is less than  or equal to any upper 
solution when f ( k ,  v) is nonincreasing in v. 

LEMMA 2.2. Assume  that f ( k ,  v) is nonincreasing in v for 1 <_ k <_ n. Then, for any lower 

solution u = { u 0 , . . . , u n + l }  and upper solution w = {w0 . . . .  ,wn+l}  of  (1.1),(1.2), we have 
uk <_ wk f o r 0 < k < n + l .  

PROOF. We obtain from (2.1) and (2.3), tha t  

A 2 ( u k _ l - - W k _ l ) + f ( k ,  u k ) - - f ( k ,  wk)>_O, l < k < n ,  (2.6) 

w0 _> 0, Wn+l > 0. (2.2) 

Similarly, a real sequence u -- {u0, U l , . . . ,  Un+l} is called a lower solution of (1.1),(1.2) if 

A2Uk_l + f ( k ,  uk) >_ O, k -- 1, 2 , . . . ,  n, (2.3) 
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and 

u0 - w0 _< 0, Un+l - Wn+l <_ 0. 

Thus,  the sequence {vk} defined by Vk = Uk -- wk for 0 _< k _< n + 1, satisfies the recurrence 

relation (2.6) which is of  the form (2.5). By  Lemma 2.1, we see tha t  vk = uk - wk _< 0 for 

0 < k < n + l .  | 

We remark  that ,  in general, a lower solution may  not  be less than  or equal to an upper  solution. 

As we will see in Section 3, it is useful to know tha t  a lower solution is less t han  or equal to  an 

upper  solution. Thus,  an addit ional  result is derived in addi t ion to L e m m a  2.2. 

LEMMA 2.3. Le t  w = { w 0 , . . . , W n + l }  be an upper  solution o f  (1.1),(1.2) such that  there is a 

posi t ive  sequence z = {z0, . .  •, zn+l } satisfying 

A 2 (Azk-1) < f ( k ,  Wk) -- f ( k ,  wk + Azk), 1 < k < n, 

for any ~ > O. T h e n  v < w, for any  lower solution v = { v 0 , . . . ,  Vn+l} o f  (1.1),(1.2). 

PROOF. Suppose to the cont ra ry  tha t  v is a lower solution of  (1.1),(1.2) such tha t  

vj - w j  = m a x { v i - w i } > 0 ,  
l < i < n  

then vj = wj  + A*zj,  for some A* > 0. Fur thermore,  

0 >_ A 2 (v j -1  - w j - 1  - A*zj-1) > - f ( j ,  v~) + f ( j ,  w j )  + f (j,  wj  + )~*zj) - f ( j ,  wj) = 0, 

which is a contradict ion.  II 

Ano the r  compar ison theorem for lower and upper  solutions is as follows, the proof  of which is 

elementary.  

LEMMA 2.4. A s s u m e  that  f l ( k , v )  <_ f ( k , v )  <_ f 2 ( k , v )  for 1 <_ k <_ n. Then,  an upper solution 

o f  

m 2 W k - 1  -]- f2(k ,  wk) = 0, 1 < k < n, wo : 0 -~ W n + l  , 

is also an upper  solution o f  (1.1),(1.2), a lower solution of  

n 2 U k - 1  -~- f l ( k ,  uk) = O, 1 < k < n, Uo = 0 = U n + l  , 

is also a lower solution o f  (1.1), (1.2). 

Next,  we derive an existence theorem for upper  and lower solutions. Before doing so, let us 
recall [5] t h a t  the b o u n d a r y  problem (1.1),(1.2) is equivalent to  the matr ix  problem 

A x  = F, (2.7) 

where A = (aij),  is defined by 

I 
2, i = j ,  

a i j  = - - 1 ,  I i -  Jl = 1, 

0, otherwise, 

x = col(x1, x 2 , . . . ,  x,~) and F = col(f(1,  x l ) , . . . ,  f ( n ,  Xn)). The bounda ry  problem (1.1),(1.2) is 
equivalent  to (2.7), in the sense tha t  a vector x = co l (x1 , . . .  ,xn)  is a solution of (2.7) if, and 

only if, the  sequence {0, x l , . . . ,  Xn, 0} is a solution of (1.1),(1.2). 



44 W. ZHUANG et al. 

THEOREM 2.1. I l l ( k ,  v) > L (or f ( k ,  v) < L) for  1 < k < n, then (1.1),(1.2)has a lower solution 
(respectively, an upper solution). 

PROOF. Consider the system of linear equations 

A2vk_l + L = 0, 1 < k < n, (2.8) 

v0 = 0 = vn+l. (2.9) 

As we have just  mentioned, this system is equivalent to a matr ix  problem of the form (2.7), 
where F is now col ( L , . . . ,  L). Note tha t  the matr ix  is nonsingular thus, this system will have 
a unique solution, which in turn gives rise to a solution v of the linear system. In view of 
Lemma  2.3, v is also a lower solution of (1.1),(1.2). II 

Next, suppose there is a nonnegative constant c such tha t  f ( k ,  c) <_ 0 for 1 < k < n. Then the 
sequence v = {c, c , . . . ,  c} satisfies 

h2Vk-1 -b f ( k ,  vk) = f (k ,  c) < 0, 

for 1 < k < n. Tha t  is, v is an upper  solution of (1.1),(1.2). The following is now clear. 

THEOREM 2.2. Suppose there is a nonnegative (or nonpositive) constant c such that f ( k ,  c) < 0 
(respectively, f ( k , c )  > O) for 1 < k < n, then v = {c , . . .  ,c} is an upper solution (respectively, a 
lower solution) of (1.1),(1.2). 

Other  existence theorems for lower and upper  solutions of (1.1),(1.2), can be obtained by 
means of the comparison Lemma 2.3. For instance, we may look for eigensolutions of the linear 
eigenvalue problem 

A2xk-1 + AqkXk = 0, 1 < k < n, (2.10) 

x0 = 0 = Xn+l, (2.11) 

which is equivalent to the matr ix  eigenvalue problem 

Ax  = A d i ag (q l , . . . ,  qn)x. 

Since A is a symmetr ic  matrix,  this matr ix  eigenvalue problem has real eigenvalues and their 
corresponding eigenvectors give rise to lower and an upper  solutions of (1.1),(1.2). 

THEOREM 2.3. Let A be an eigenyalue of  the eigenvalue problem (2.10),(2.11) and let u = 
{u0 , . . . ,  un+l} be its corresponding eigenvector. Suppose further that f ( k ,  x) <_ Aqkx (Aqkx < 
f ( k ,  x)) for 1 < k < n. Then u is an upper solution (respectively, a lower solution) of (1.1),(1.2). 

3.  E X I S T E N C E  O F  S O L U T I O N S  

In this section, we will derive several existence theorems for the solutions of the boundary 
problem (1.1),(1.2). 

LEMMA 3.1. Suppose [f(k,v)[ < M for 1 < k < n and v 6 R. Suppose further that f ( k , . )  is 
continuous. Then the boundary problem (1.1),(1.2) has a solution. 

PROOF. Let G = (gij) be the inverse of the matr ix  A in (2.7). Then, we may rewrite (2.7) as a 
fixed point problem 

x = Tx ,  (3.1) 

where T : R n --* R n is defined by 

n 

(Tx)i  = E g'Jf(J' xj) ,  
j=l  

l < i < n .  
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Let 

and let 

K = max  E Ig~jl, 
l < i < n  

- -  j = l  

= {X  = CO1 ( X l , . . .  , Xn) I I Ix l l  _< KM}, 
where [ix[[ = max l< i<n  [xil. I t  is easy to  see tha t  f~ is a bounded,  convex and closed subset  of  R ~. 

Fur thermore ,  T t ransforms f~ into f~, in a continuous manner  in view of  the assumpt ions  imposed 

X* on f .  By  the  Brouwer fixed point  theorem, there exists a vector x* = col ( x ~ , . . . ,  ~) c f~ such 
tha t  x* = Tx* .  But  then col (0, x~ . . . . .  x*, 0) is a solution of (1.1),(1.2) as required. | 

THEOREM 3.1.  Suppose  tha t  f ( k , . )  is continuous. Then for any  lower solution u = { u 0 , . . . ,  

Un+ 1 } and upper solution w = { w 0 , . . . ,  Wn+l } o f  (1.1),(1.2) satisfying u <_ w, there is a solution 

v = {v0 , . . .  ,v~+l}  of (1 .1) , (1 .2)  which satisfies u < v < w. 

PROOF. Consider  the bounda ry  value problem 

A2xk_l  + ¢ ( k ,  Xk) = O, k = 1 , 2 , . . . , n ,  

X 0 = 0 ~ X n + l ,  

(3.2) 
(3.3) 

where 
f ( k ,  wk) + (Wk - x)  

(1 + x2) , X > W k ,  

• (k,  z )  = f ( k , x ) ,  uk < z < wk,  

y ( k ,  uk)  + (uk - z) 
(1 + x 2) , x < uk, 

(3.4) 

for 1 < k < n. Clearly, the  funct ion ~ is bounded  for 1 < k < n and x E R, and is cont inuous in x. 

Thus,  by L e m m a  3.1, there exists a solution v = { v 0 , . . . ,  v~+l} of the  b o u n d a r y  problem (3.2) 

and (3.3). 
We assert  t ha t  the solution v satisfies u < v < w so tha t  it is also a solution of  (1.1),(1.2) in 

view of the definition of  ~.  Indeed, suppose to  the cont ra ry  tha t  v j - w j  = maxl<i<n{V i - w i }  > O. 

T h e n  
0 _> AZ(vj - wj)  _> f ( j ,  w j )  - ¢ ( j ,  vj)  -- v j ~  > 0 , -  wj 

vj 

which is a contradict ion.  Similarly, we m a y  show tha t  u < v. | 

As an example,  suppose 

O < _ f ( k , v ) < _ 4 s i n  2 2 ( n ~ - 1 )  v, l < k < n .  

T h e n  the  zero sequence is a lower solution of  (1.1),(1.2) by Theorem 2.2, and the sequence 

w = {w0 , . . .  ,W~+l} defined by 

k r  
Wk = s i n - -  0 < k < n + 1, 

n + l '  

is an upper  solution of  (1.1),(1.2) since it satisfies 

A 2 w k - l  + 4sin2 2 ( n ~ 1 )  Wk = O, l < k < n, 

and w0 = 0 = w~+l.  In  view of Theorem 3.2, (1.1),(1.2) has a solution v = {v0 . . . .  ,v~+l}  which 
satisfies 

kTr 
0<_vk < _ S i n n + l ,  0 < k < n + l .  

Next,  we derive an existence theorem when a Lipschitz condit ion is satisfied. 
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THEOREM 3.2. Suppose  f ( k ,  .) is continuous. Suppose  fur ther  that  there exist a lower solution 
n u --- { u 0 , . . . , U ~ + l } ,  an upper  solution w = {wo , . . .  wn+l} ,  and a posi t ive  sequence {Pk}k=l,  

such that  u < w and for each k c { 1 , . . . ,  n}, the following one-sided Lipschi tz  condition 

f ( k , x )  - f ( k , y )  > - -pk(x  -- y),  (3.5) 

holds whenever  uk <_ y <_ x < wk.  Then  the boundary  problem (1.1),(1.2) has a solution u* and 

a solution w* such that  u* <_ w*. 

PROOF. For any  sequence r/---- {70 , . . .  ,r ln+l} which satisfies u _< r] < w, consider the  following 
b o u n d a r y  p rob lem 

A 2 v k _ l  + f ( k ,  ~?k) - pk(vk  -- ~k) = O, 1 < k < n, (3.6) 

Vo = 0 = Vn+l. (3.7) 

This  p rob lem is equivalent  to  the ma t r ix  p rob lem 

B x  = H,  (3.8) 

where  the  ma t r i x  B = (bit) is defined by 

{ 2 + p ~ ,  i = j ,  

bit = - 1 ,  [i - j[ = 1, 

0, otherwise,  

x = c o l ( x l , . . . , x n ) ,  H = c o l ( f ( 1 , r h )  + p l ~ ? l , . . . , f ( n , r ~ n )  +p,~rln). Since Pk > 0 for 1 _< 
k _< n, B is a s t r ic t ly  diagonal ly  dominan t  mat r ix ,  and hence, is nonsingular .  Thus  (3.8), and 
also (3.6),(3.7), have unique solutions. 

Let  us define the  sector  

= {7  = { T 0 , . . . , ~ + ~ }  I~  -< ~ <- ~ } ,  

and let F : f~ --~ R ~+2 be defined by 

F z / =  #, 

where  # = { # o , - . . ,  #n+ l}  is the unique solut ion of the  b o u n d a r y  p rob lem (3.6),(3.7). We assert  
t h a t  u < Fu  and  Fw < w. Indeed,  let Fu  = ~ = {~o, . . .  , ~ + 1 } ,  and suppose  to  the  con t ra ry  t h a t  

then  

v t - ~ t  = m a x  { v i - ( i }  >O,  
l< i<n  

0 > Lx2(vj - ~j) > - / ( j ,  vj) + ( / ( j ,  ~j) - pt(~J - ~t)) = pt(vt  - ~t) > 0, 

which is a contradict ion.  Similarly, we m a y  show t h a t  Fw < w. 
Next ,  we assert  t h a t  for any ~, ~p E f~, and ~ < ~p, we have r ~  < r e .  Indeed,  let F~ = T = 

{V0, . . . ,  T~+I} and F~b = p = { P o , . - . ,  P~+I}, and suppose to the  con t ra ry  t h a t  

Tt -- Pt = m a x  {T~ -- pi} > O, 
l<i<n 

t hen  we have 

0 :> A 2 (7"j_ 1 - Pj-1) = { - f ( J ,  ~t) + Pt(Tt - ~ t ) }  + { f ( J ,  ~Pt) -Pt (PJ  - -  ~/)J) } 

= {f(J,~,bt) - - f ( J ' ~ t ) } + P t { T J  - -~t  - -P t  + ¢ t }  

-> - P t  (¢t  - ~t) +Pt(7J  - ; t )  + Pt(~bt - ~t) 

=Pt(rt - P t )  > 0 ,  

which is a contradic t ion.  
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Therefore,  if we define two sequences as follows: 

and 

U (0) : U ,  U (j+l) = r u  (j), for j > 0, 

w (°) = w ,  w ( j + l ) = F w  (j), for j > _ 0 ,  

then we have 
u = u (0) ~ u (1) ~ - . .  ~ w (1) < w (0) = w. 

It  follows tha t  the limits limj-~oo u (j) = u* and l i m j - ~  w (j) = w* exist. Fur thermore,  by means 

of  the  cont inui ty  of  the function f ( k ,  .), we easily see tha t  they  are solutions of  (1.1),(1.2). I 

We remark  t h a t  the solutions u* and w* of (1.1),(1.2) found in the above theorem are minimal 

and maximal  in the sense t h a t  if v is any solution of (1.1),(1.2) which satisfies u < v < w, then  
u* < v < w*. Indeed,  note t ha t  Fv -- v. Thus  u (1) = Fu (°) _< Fv = v, and by induction,  u(J) < v 

for j > 1. This shows t h a t  u* < v. Similarly, v < w*. 

4 .  B O U N D A R Y  P R O B L E M S  O F  

T W O  I N D E P E N D E N T  V A R I A B L E S  

Results  analogous to those s ta ted in the  previous sections can be derived for b o u n d a r y  value 

problems involving nonlinear  partial  difference equations. To save space, the terminologies in [5] 

will be employed. Let S be a net  in the lattice plane 

{z = (i, j )  [ i, j are integers},  

and let OS be its exterior boundary.  Consider the part ial  difference b o u n d a r y  value problem 

D v ( z ) +  f ( z , v ( z ) ) = O ,  z E  S, (4.1) 

v(z)  = O, z E OS, (4.2) 

where f ( z , v )  is a real function defined for z E S and v E R, and D is the discrete Laplacian 
defined by 

D v ( i , j )  = A2v( i  - 1, j )  + A 2 v ( i , j  - 1) 

= v(i  + 1, j )  + v ( i - -  1, j )  + v ( i , j  + 1) + v ( i , j  - 1) - 4v ( i , j ) .  

As in Section 2, a real double sequence u = {u(Z)}zeS  is said to be less t han  or equal to 
another  double sequence w = {w(z ) } z~s ,  if u(z)  < w(z)  for z E S. A solution of (4.1),(4.2) is a 

real double sequence v = { v ( z ) } z e s u o s  such tha t  (4.1),(4.2) is satisfied. A real double sequence 

w = { w ( z ) } z e s u o s  is called an upper  solution of (4.1),(4.2) if 

D w ( z )  + f (z, w(z ) )  <_ O, z E S, 

and 

w(z)  >_ O, z ~ OS. 

Similarly, a real double sequence u = {u ( z ) } z e suos  is called a lower solution of (4.1),(4.2) if 

and 

Du(z )  + f (z, u(z))  >_ O, z E S, 

u(z)  < O, z ~ OS. 
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LEMMA 4.1. Let  v = {v(Z)}zeSuOS be a real double sequence which satisfies the recurrence 
relation 

D v ( z )  + F (z, v ( z ) )  > O, z • S, 

where for each z • S,  F ( z , v )  < O, whenever v > 0. I f  

M : max {v(z) I z • S U 0S} _> 0, 

then v (z )  < M for z • S, unless v (z )  = M for z • S U OS. 

PROOF. Suppose to the contrary that  v(z*)  = M for some z* • S. We assert that  for any other 
point z in S U OS, v(z*)  = v(z) .  Indeed, let z (1) = z*, z (2 ) , . . . , z  ('~) = z be a path of points 

contained in S U OS. Since v(z*)  = M ,  the values of the neighboring points of v are not greater 
than M. Consequently, D v ( z  (1)) <_ O, which together with D v ( z  (1)) >_ - F ( z ( 1 ) , v ( z ( 1 ) ) )  >_ 0, 

imply D v ( z  (1)) = 0. But then the values of v at the four neighbors of z (1), in particular, z (2), are 

equal to M. If z (2) 7~ z, we may repeat the above argument repeatedly to conclude our proof. | 

As an immediate application, let us consider the following linear system 

D v ( z )  + p ( z ) v ( z )  = O, z E S, 

v ( z )  = O, z • OS, 

where p(z)  < 0 for z E S. We assert that  this system can have the trivial solution only. Indeed, 

if v = {v(Z)}zESuOS is a nontrivial solution, we may assume that it's maximum 

v (z*)  = m a x  v ( z )  > O. 
z6SuOS 

But in view of Lemma 4.1, z* E OS so that  v(z*)  = O. This contradiction completes the proof of 

our assertion. 

The following is now clear. 

LEMMA 4.2. Let  S be a net,  and p(z )  < 0 for z E S.  Then  the linear system 

D r ( z )  + p ( z ) v ( z )  = q(z) ,  z e S, 

v (z )  = h(z) ,  z E OS, 

has a unique solution. 

By means of these two lemmas, results similar to Lemma 2.2, Theorem 2.1, and Theorem 3.1 
can easily be formulated and proved. Furthermore, results similar to Lemma 2.4, Theorem 2.2, 
Theorem 2.3, Lemma 3.1, and Theorem 3.2, can also be formulated easily and proved. In partic- 
ular, we have the following existence criteria. 

THEOREM 4.1. Suppose  f ( z ,  .) is continuous. Then  for any lower solution u = {u(z)} and 
upper  solution w = {w(z)} of  (4.1),(4.2) sat is fying u <_ w, there exists  a solution v = {v(z)} of  

(4.1),(4.2) which satisfies u < v < w. 

THEOREM 4.2. Suppose  f ( z ,  .) is continuous. Suppose  fur ther  that  there exist  a lower solution 
u = {u(z)}, an upper  solution w = {w(z)}, and a posi t ive  funct ion p = {P(Z)}zes  such that  
u <_ w,  and for each z E S,  f ( z ,  p) - f ( z ,  T) >_ --p(z)(p  -- T) holds whenever  u(z )  < r < p < w(z ) .  
Then  the boundary  problem (4.1),(4.2) has a solution u* and a solution w*, such that  u* < v < w* 

for any  solution v o f  (4.1),(4.2) sat is fying u < v < w. 
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