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Abstract

In this paper, we consider the n-term linear fractional-order differential equation with constant coefficients and obtain the solution
of this kind of fractional differential equations by Adomian decomposition method. With the equivalent transmutation, we show that
the solution by Adomian decomposition method is the same as the solution by the Green’s function. Finally, we illustrate our result
with some examples.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Nowadays there is increasing attention paid to fractional differential equations and their applications in different
research areas. It is well known that these equations are concluded from many physical and chemical problems [15]
such as the motion of a large thin plate in a Newtonian fluid, the process of cooling a semi-infinite body by radiation, the
PI�D� controllers for the control of dynamical systems, the phenomena in electromagnetic acoustic viscoelasticity,
electrochemistry and material science and so on. And these equations are more adequate for modeling physical and
chemical process than integer-order differential equations.

So far there have been several fundamental works on the fractional derivative and fractional differential equations,
written by Oldham and Spanier [14], Miller and Ross [12], Poldubny [15] and others. These works are an introduction
to the theory of the fractional derivative and fractional differential equations and provide a systematic understanding
of the fractional calculus such as the existence and the uniqueness, some analytical methods for solving fractional
differential equations, namely the Green’s function method, the Mellin transform method, the power series and Yu. I.
Babenko’s symbolic method. In particular, restrictions on the initial conditions, the hypotheses on the behavior of the
right-hand side function f and the existence of the Green’s function are treated in [15, Chapters III and V]. Besides
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there are many extensive research papers on fractional differential equations including the development of an effective
method for solving fractional differential equations. It should be mentioned that the work of Diethelm et al. is devoted
to establishing numerical solutions of several classes of linear and nonlinear fractional differential equations [5–10].
Trinks and Ruge have proposed a numerical scheme for the solution of Bagley–Torvik equation [18]. And at present an
attempt has been made to obtain the solutions of fractional differential equations by the decomposition method, as the
decomposition method provides an effective procedure for the analytical solution of large classes of linear and nonlinear
differential equations [1–4,13,16,17]. However, in spite of extensive studies for fractional differential equations, the
literature is rather sparse for generalized-order fractional differential equations.

In this paper, we consider a class of linear fractional differential equations of arbitrary order with constant coefficients
and make use of Adomian decomposition method to obtain the solutions of these fractional differential equations. We
verify that the solutions obtained by Adomian decomposition method are the same as the solutions expressed by the
Green’s function, which are convergent as the solutions expressed by the Green’s function are convergent expansions
in power series [15]. And we show the convergence of the solution by Adomian decomposition method.

The paper is organized as follows. In Section 2, we give definitions of the fractional derivative and fractional integral
with some basic properties. In Section 3, the analytical solution of the linear fractional differential equation of arbitrary
order is given by Adomian decomposition method and verified to the same as the one by the Green’s function method.
In Section 4, the convergence of the solution is considered. And we show some concrete examples in Section 5.

2. Preliminaries and notations

In this section we give the definition of the Riemann–Liouville fractional derivative and fractional integral with
some basic properties. At the same time we review the application of Adomian decomposition method to differential
equations and the properties of multiple infinite sums.

Definition 1 (Podlubny [15]). The Riemann–Liouville fractional derivative of order p with respect to the variable t
and with the starting point at t = a is

aD
p
t f (t) =

⎧⎪⎪⎨
⎪⎪⎩

1

�(−p + m + 1)

dm+1

dtm+1

∫ t

a
(t − �)m−pf (�) d�, 0�m�p < m + 1,

dmf (t)

dtm
, p = m + 1 ∈ N.

Definition 2 (Podlubny [15]). The Riemann–Liouville fractional integral of order p is

aD
−p
t f (t) = 1

�(p)

∫ t

a

(t − �)p−1f (�) d�, p > 0.

For convenience, we denote aD
p
t by Dp, i.e. Dp ≡ aD

p
t , for p is real.

Lemma 3 (Podlubny [15]). If f (t) is continuous, then the following relationship holds:

aD
p
t (aD

−q
t f (t)) = aD

p−q
t f (t).

Lemma 4 (Podlubny [15]). If f (t) is continuous, then the following relationship holds:

aD
−p
t (aD

−q
t f (t))=aD

−p−q
t f (t) = aD

−q
t (aD

−p
t f (t)).

Adomian decomposition method: [2–4] Let us consider the differential equation in the form

Lu + Ru + Nu = g, (1)
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where L is an invertible linear operator, R is the remainder of the linear operator and N is a nonlinear operator. Applying
the inverse operator L−1 to both sides of Eq. (1), we obtain

u = � + L−1g − L−1Ru − L−1Nu, (2)

where � arises from the given initial condition.
The Adomian decomposition method assumes the solution u described by the series

u =
∞∑

n=0

un. (3)

By substituting the above equation in Eq. (2), we obtain the recursive relationship:

u0 = � + L−1g,

un = −L−1Run−1 − L−1Nun−1, n�1. (4)

Hence the general solution u is obtained since each term ui is calculated.
The following properties of multiple infinite sums are useful to get the main result in Section 3.

Proposition 5.
∞∑

k1=0

· · ·
∞∑

kn=0

ak1,k2,...,kn−1,kn =
∞∑

m=0

∑
k1,...,kn−1,kn �0

k1+···+kn−1+kn=m

ak1,k2,...,kn−1,kn .

Proof. It is well known that an infinite double sums can be written in terms of a single infinite series:

∞∑
k1=0

∞∑
k2=0

ak1,k2 =
∞∑

m=0

∑
k1,k2 �0
k1+k2=m

ak1,k2 .

So the identity is true when n = 2. Now, let us assume that

∞∑
k1=0

· · ·
∞∑

kn−1=0

ak1,k2,...,kn−1 =
∞∑

s=0

∑
k1,...,kn−1 �0
k1+···+kn−1=s

ak1,k2,...,kn−1 .

Then
∞∑

k1=0

· · ·
∞∑

kn=0

ak1,k2,...,kn−1,kn =
∞∑

kn=0

∞∑
k1=0

· · ·
∞∑

kn−1=0

ak1,k2,...,kn−1,kn

=
∞∑

kn=0

∞∑
s=0

∑
k1,...,kn−1 �0
k1+···+kn−1=s

ak1,k2,...,kn−1,kn

=
∞∑

m=0

∑
kn+s=m

kn �0,s �0

∑
k1,...,kn−1 �0
k1+···+kn−1=s

ak1,k2,...,kn−1,kn

=
∞∑

m=0

∑
k1,...,kn−1,kn �0

k1+···+kn−1+kn=m

ak1,k2,...,kn−1,kn . �

Thus, it is easy to see
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Proposition 6.

∞∑
m=0

∑
k1,...,kn−1,kn �0

k1+···+kn−1+kn=m

ak1,k2,...,kn−1,kn =
∞∑

s=0

∑
k1,...,kn−1 �0
k1+···+kn−1=s

∞∑
kn=0

ak1,k2,...,kn−1,kn .

3. The analytical solution of the linear constant coefficients fractional differential equation

In this section, we make use of Adomian decomposition method to present the analytical solution of the linear
fractional-order differential equation with constant coefficients. After some transmutations and calculations, we show
that the solution by Adomian decomposition method is the same as the solution by the Green’s function.

Consider the following n-term fractional-order differential equation with constant coefficients

anD
�ny(t) + an−1D

�n−1y(t) + · · · + a1D
�1y(t) + a0D

�0y(t) = f (t), (5)

y(i)(0) = 0 for i = 0, 1, . . . , n, (6)

where Dp≡0D
p
t , n + 1 > �n �n > �n−1 > · · · > �1 > �0 and ai(i = 0, 1, . . . , n) is a real constant.

By applying the inverse operator D−�n to Eq. (5), based on Lemma 3 and the initial condition (6), we have

y(t) + an−1

an

D�n−1−�ny(t) + · · · + a0

an

D�0−�ny(t) = 1

an

D−�nf (t), (7)

Using the Adomian decomposition method and Lemma 4, we obtain the recursive relationship:

y0(t) = 1

an

D−�nf (t),

y1(t) = −
(

an−1

an

D�n−1−�n + · · · + a0

an

D�0−�n

)
y0(t),

y2(t) = (−1)2
(

an−1

an

D�n−1−�n + · · · + a0

an

D�0−�n

)2

y0(t),

· · · · · ·

ys(t) = (−1)s
(

an−1

an

D�n−1−�n + · · · + a0

an

D�0−�n

)s

y0(t),

· · · · · · (8)

Adding all terms of the recursion, we obtain the solution by Adomian decomposition method

y(t) =
∞∑

s=0

ys(t)

=
∞∑

s=0

(−1)s
(

an−1

an

D�n−1−�n + · · · + a0

an

D�0−�n

)s

y0(t)

= 1

an

∞∑
s=0

(−1)s
(

an−1

an

D�n−1−�n + · · · + a0

an

D�0−�n

)s

D−�nf (t)
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= 1

an

∞∑
s=0

(−1)s
∑

k0,k1,...,kn−1 �0
k0+k1+···+kn−1=s

s!
k0!k1! · · · kn−1!

(
an−1

an

)kn−1
(

an−2

an

)kn−2

· · ·
(

a0

an

)k0

× Dkn−1(�n−1−�n)+kn−2(�n−2−�n)+···+k0(�0−�n)−�nf (t)

= 1

an

∞∑
s=0

(−1)s
∑

k0,k1,...,kn−1 �0
k0+k1+···+kn−1=s

s!
k0!k1! · · · kn−1!

(
an−1

an

)kn−1
(

an−2

an

)kn−2

· · ·
(

a0

an

)k0

×
∫ t

0 (t − �)�n+kn−1(�n−�n−1)+kn−2(�n−�n−2)+···+k0(�n−�0)−1f (�) d�

�(�n + kn−1(�n − �n−1) + kn−2(�n − �n−2) + · · · + k0(�n − �0))
. (9)

Utilizing the properties of the infinite sums (Proposition 5 and 6), the above solution can be rewritten in an equivalent
form:

y(t) = 1

an

∞∑
kn−1=0

∞∑
m=0

∑
k0,k1,...,kn−2 �0

k0+k1+···+kn−2=m

(−1)kn−1+m (kn−1 + m)!
k0!k1!, . . . , kn−1!

×
(

an−1

an

)kn−1
(

an−2

an

)kn−2

· · ·
(

a0

an

)k0

×
∫ t

0 (t − �)�n+kn−1(�n−�n−1)+kn−2(�n−�n−2)+···+k0(�n−�0)−1f (�) d�

�(�n + kn−1(�n − �n−1) + kn−2(�n − �n−2) + · · · + k0(�n − �0))

=
∫ t

0

1

an

∞∑
m=0

(−1)m

m!
∑

k0,k1,...,kn−2 �0
k0+k1+···+kn−2=m

m!
k0!k1!, . . . , kn−2!

×
n−2∏
i=0

(
ai

an

)ki

(t − �)(�n−�n−1)m+�n+∑n−2
j=0(�n−1−�j )kj −1

×
∞∑

kn−1=0

(−1)kn−1

(
an−1

an

)kn−1 (kn−1 + m)!
(kn−1)!

× (t − �)kn−1(�n−�n−1)

�(kn−1(�n − �n−1) + m(�n − �n−1) + �n + ∑n−2
j=0(�n−1 − �j )kj )

f (�) d�

=
∫ t

0

1

an

∞∑
m=0

(−1)m

m!
∑

k0,k1,...,kn−2 �0
k0+k1+···+kn−2=m

(m; k0, k1, . . . , kn−2)

×
n−2∏
i=0

(
ai

an

)ki

(t − �)(�n−�n−1)m+�n+∑n−2
j=0(�n−1−�j )kj −1

× E
(m)

�n−�n−1,�n+∑n−2
j=0(�n−1−�j )kj

(
−an−1

an

(t − �)�n−�n−1

)
f (�) d�, (10)
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where (m; k0, k1, . . . , kn−2) are the multinomial coefficients and the function

Gn(t) = 1

an

∞∑
m=0

(−1)m

m!
∑

k0,k1,...,kn−2 �0
k0+k1+···+kn−2=m

(m; k0, k1, . . . , kn−2)

×
n−2∏
i=0

(
ai

an

)ki

t
(�n−�n−1)m+�n+∑n−2

j=0(�n−1−�j )kj −1

× E
(m)

�n−�n−1,�n+∑n−2
j=0(�n−1−�j )kj

(
−an−1

an

t�n−�n−1

)
(11)

is the fractional Green’s function for Eq. (5) and E
(i)

�,�(y) is Mittag-Leffler function:

E
(i)

�,�(y) = di

dyi
E�,�(y) =

∞∑
j=0

(i + j)!yj

j !�(�j + �i + �)
.

So it is readily seen that the solution by Adomian decomposition method is actually the solution by the Green’s function
[15], i.e.

y(t) =
∫ t

0
Gn(t − �)f (�) d�.

4. Analysis of the convergence

In this section, we show the convergence of the solution by Adomian decomposition method.
Based on Eq. (8), we have

|ys(t)| = |(−1)s
(

an−1

an

D�n−1−�n + · · · + a0

an

D�0−�n

)s

y0(t)|

= |(−1)s
∑

k0,k1,...,kn−1 �0
k0+k1+···+kn−1=s

s!
k0!k1! · · · kn−1!

(
an−1

an

)kn−1
(

an−2

an

)kn−2

· · ·
(

a0

an

)k0

× Dkn−1(�n−1−�n)+kn−2(�n−2−�n)+···+k0(�0−�n)y0(t)|

=

∣∣∣∣∣∣∣∣
∑

k0,k1,...,kn−1 �0
k0+k1+···+kn−1=s

s!
k0!k1! · · · kn−1!

(
an−1

an

)kn−1
(

an−2

an

)kn−2

· · ·
(

a0

an

)k0

×
∫ t

0 (t − �)kn−1(�n−�n−1)+kn−2(�n−�n−2)+···+k0(�n−�0)−1y0(�) d�

�(kn−1(�n − �n−1) + kn−2(�n − �n−2) + · · · + k0(�n − �0))

∣∣∣∣∣∣∣∣
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�L ·
∑

k0,k1,...,kn−1 �0
k0+k1+···+kn−1=s

s!
k0!k1! · · · kn−1! · (M|t |(�n−�n−1))kn−1 · · · (M|t |(�n−�0))k0

�(kn−1(�n − �n−1) + · · · + k0(�n − �0) + 1)

= L ·
∑

k0,k1,...,kn−1 �0
k0+k1+···+kn−1=s

(s; k0, k1, . . . , kn−1)
∏n−1

i=0 z
ki

i

�(1 + ∑n−1
i=0 ki�i )

, (12)

where M = max{|(an−1)/an|, |(an−2)/an|, . . . , |a0/an|}, L = max
t∈[0,T ] |y0(t)|, �i = �n − �i (i = 0, . . . , n − 1), zi =

M|t |�i (i = 0, . . . , n − 1),(s; k0, k1, . . . , kn−1) are multinomial coefficients.
Hence,

∑
s=0ys(t)�L·E(�0,...,�n−1),�(z0, . . . , zn−1), where �=1 and E(�0,...,�n−1),�(z0, . . . , zn−1) is the multivariate

Mittag–Leffler function

E(�0,...,�n−1),�(z0, . . . , zn−1) =
∞∑

s=0

∑
k0,k1,...,kn−1 �0

k0+k1+···+kn−1=s

(s; k0, k1, . . . , kn−1)
∏n−1

i=0 z
ki

i

�(� + ∑n−1
i=0 ki�i )

which is convergent [11]. So we obtain the convergence of the solution by Adomian decomposition method.

5. Illustration

In this section, we give some examples to demonstrate the conclusion that the solution by Adomian decomposition
method is actually the solution by the Green’s function.

Example 1. Relaxation–oscillation equation [15]
Let us consider an initial value problem for the relaxation–oscillation equation

0D
	
t y(t) + Ay(t) = f (t) (t > 0),

y(k)(0) = 0 (k = 0, 1, . . . , n − 1), (13)

where n − 1�	 < n.
Following the above procedure of solving the n-term linear fractional-order differential equation and using Adomian

decomposition method, we have

y0 = D−	f (t),

y1 = −AD−	y0 = −AD−2	f (t),

y2 = −AD−	y1 = (−A)2D−3	f (t),

· · · · · ·

yn = −AD−	yn−1 = (−A)nD−(n+1)	f (t),

· · · · · · (14)
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Thus, we obtain the solution y(t) by Adomian decomposition method which is the same as the solution by the Green’s
function:

y(t) =
∞∑

n=0

yn

=
∞∑

n=0

(−A)nD−(n+1)	f (t)

=
∞∑

n=0

(−A)n
1

�((n + 1)	)

∫ t

0
(t − �)(n+1)	−1f (�) d�

=
∫ t

0

∞∑
n=0

(t − �)(	−1) (−A)n(t − �)n	

�(n	 + 	)
f (�) d�

=
∫ t

0
G2(t − �)f (�) d�, (15)

where G2(t) = t	−1E	,	(−At	).

Example 2. Bagley–Torvik equation [15,16]
Let us consider the following initial value equation problem for the inhomogeneous Bagley–Torvik equation

Ay′′(t) + BD3/2y(t) + Cy(t) = f (t) (t > 0),

y(0) = 0, y′(0) = 0. (16)

Following the above procedure of solving the n-term linear fractional-order differential equation and using Adomian
decomposition method, we have

y0 = 1

A
D−2f (t),

y1 = −C

A

(
B

C
I + D−3/2

)
D−1/2y0,

y2 = −C

A

(
B

C
I + D−3/2

)
D−1/2y1 =

(
−C

A

)2(
B

C
I + D−3/2

)2

D−2/2y0,

y3 = −C

A

(
B

C
I + D−3/2

)
D−1/2y2 =

(
−C

A

)3(
B

C
I + D−3/2

)3

D−3/2y0,

· · · · · ·

yn = −C

A

(
B

C
I + D−3/2

)
D−1/2yn−1 =

(
−C

A

)n(
B

C
I + D−3/2

)n

D−n/2y0,

· · · · · · (17)
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Thus, we obtain the solution y(t) by Adomian decomposition method which is the same as the solution by the Green’s
function:

y(t) =
∞∑

n=0

yn

=
∞∑

n=0

(
−C

A

)n(
B

C
I + D−32

)n

D−n/2y0

=
∞∑

n=0

(
−C

A

)n n∑
i=0

Cn−i
n

(
B

C
I

)n−i

D−3/2iD−n/2 1

A
D−2f (t)

= 1

A

∞∑
n=0

(
−C

A

)n n∑
i=0

n!
(n − i)!i!

(
B

C

)n−i

D−(3i/2+n/2+2)f (t)

= 1

A

∫ t

0

∞∑
n=0

(
−C

A

)n n∑
i=0

n!
(n − i)!i!

(
B

C

)n−i 1

�(3i/2 + n/2 + 2)
(t − �)3i/2+n/2+2−1f (�) d�

= 1

A

∫ t

0

∞∑
i=0

∞∑
j=0

(
−C

A

)i+j
(i + j)!

j !i!
(

B

C

)j 1

�(3i/2 + (i + j)/2 + 2)
(t − �)3i/2+(i+j)/2+2−1f (�) d�

= 1

A

∫ t

0

∞∑
i=0

(−1)i

i!
(

C

A

)i

t2i+1
∞∑

j=0

(i + j)!(−B
A

√
t − �)j

j !�(j/2 + i/2 + 3i/2 + 2)
f (�) d�

=
∫ t

0
G3(t − �)f (�) d�, (18)

where G3(t) = (1/A)
∞∑
i=0

(−1)i

i! (C
A

)i t2i+1E
(i)
1/2,2+3i/2(−B

A

√
t).

6. Conclusion

In this paper, we analyze the solution of the n-term linear fractional-order differential equation with constant coef-
ficients by Adomian decomposition method. And we verify that the solution by Adomian decomposition method is
actually the same as the solution by the Green’s function.
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