
Monte Carlo Methods for Process Algebra

Radu Grosu and Scott A. Smolka

Dept. of Computer Science, Stony Brook Univ., Stony Brook, NY, 11794, USA
E-mail: {grosu,smolka}@cs.sunysb.edu

Abstract

We review the recently developed technique of Monte Carlo model checking and show how it can be applied
to the implementation problem for I/O Automata. We then consider some open problems in applying Monte
Carlo techniques to other process-algebraic problems, such as simulation and bisimulation.

Keywords: Monte Carlo model checking, I/O automata, simulation, bisimulation

1 Introduction

Monte Carlo methods are often used in engineering and computer-science applica-

tions to compute an approximation of a solution whose exact computation proves in-

tractable. Example applications include belief updating in Bayesian networks,computing

the volume of convex bodies,and approximating the number of solutions of a DNF

formula.

Recently, model-checking researchers have turned to Monte Carlo methods in

order to cope with the problem of state explosion; see, for example, [3,6,8,1]. In

this paper, we review the Monte Carlo model-checking algorithm of [1] and show

how it can be applied to the implementation problem for I/O Automata [4]. We

then consider some open problems in applying Monte Carlo techniques to other

process-algebraic problems, such as simulation and bisimulation.

2 Monte Carlo Model Checking

Monte Carlo model checking, introduced in [1], is a novel technique that uses random

sampling of lassos in a discrete Büchi automaton (BA) to realize a one-sided error,

randomized algorithm for LTL model checking. Our approach makes use of the

following idea from the automata-theoretic technique of Vardi and Wolper [7] for

LTL model checking: given a specification S of a finite-state system and an LTL

Electronic Notes in Theoretical Computer Science 162 (2006) 203–207

1571-0661 © 2006 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2006.04.033
Open access under CC BY-NC-ND license.

http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

formula ϕ, S |= ϕ (S models ϕ) if and only if the language of the Büchi automaton

B = BS × B¬ϕ is empty. Here BS is the Büchi automaton representing S’s state

transition graph, and B¬ϕ is the Büchi automaton for the negation of ϕ. Call a

cycle reachable from an initial state of B a lasso, and say that a lasso is accepting

if the cycle portion of the lasso contains a final state of B. The presence in B of

an accepting lasso means that S is not a model of ϕ. Moreover, such an accepting

lasso can be viewed as a counter-example to S |= ϕ.

The LTL model-checking problem is thus naturally defined in terms of the BA

emptiness problem for B = BS×B¬ϕ, which reduces to finding accepting lassos in B.

Instead of searching the entire state space of B for accepting lassos, we successively

generate up to M lassos of B on the fly, by performing uniform random walks in

B. If the currently generated lasso is accepting, we have found a counterexample

for emptiness, and we stop. The number M of lassos we need to generate depends

on to two parameters: the error margin ε and the confidence ratio δ.

To determine M for given ε and δ we aim to answer, with confidence 1−δ and

within error ε, to the following question: how many independent lassos do we need

to generate until one of them is accepting? The answer is based on a geometric

random variable X and statistical hypothesis testing. The geometric random variable

is parameterized by a Bernoulli random variable Z (defined later in this section)

that takes value 1 with probability pZ and value 0 with probability qZ = 1 − pZ .

Intuitively, pZ is the probability that an arbitrary lasso of B is accepting.

The cumulative distribution function of X for N independent trials of Z is:

F (N) = P[X ≤ N] = 1 − (1 − pZ)N . Requiring that F (N) = 1 − δ yields:

N = ln(δ)/ ln(1 − pZ). Because pZ is what we want to determine, we assume for

the moment that pZ ≥ ε. Replacing pZ with ε yields M = ln(δ)/ ln(1 − ε) which is

greater than N and therefore P[X ≤ M] ≥ P[X ≤ N] = 1 − δ. Summarizing:

pZ ≥ ε ⇒ P[X ≤ M] ≥ 1 − δ where M = ln(δ)/ ln(1 − ε) (1)

Inequation 1 gives us the minimal number of attempts M needed to achieve success

with confidence ratio δ, under the assumption that pZ ≥ ε. The standard way of

discharging such an assumption is to use statistical hypothesis testing.Define the null

hypothesis H0 as the assumption that pZ ≥ ε. Rewriting inequation 1 with respect

to H0 we obtain:

P[X ≤ M |H0] ≥ 1 − δ (2)

We now perform M trials. If no counterexample is found, i.e., if X > M , we reject

H0. This may introduce a type-I error: H0 may be true even though we did not

find a counter-example. However, the probability of making this error is bounded

by δ; this is shown in inequation 3 which is obtained by taking the complement of

X ≤ M in inequation 2:

P[X > M |H0] < δ (3)

The Bernoulli random variable Z is associated with a uniform random walk

probability space (P(L),P). The sample space L is the set of all lassos of B; La and

Ln are the sets of all accepting and non-accepting lassos of B, respectively.

R. Grosu, S.A. Smolka / Electronic Notes in Theoretical Computer Science 162 (2006) 203–207204

The probability P[σ] of a lasso σ = S0e0 . . . Sn−1en−1Sn is defined inductively

as follows: P[S0] = k−1 if |S0| = k and P[S0e0 . . . Sn−1en−1Sn] = P[S0e0 . . . Sn−1] ·
π[Sn−1en−1Sn] where π[S eS′] = m−1 if (S, e, S′) ∈ E and |E(S)| = m.

Example 2.1 [Probability of lassos] Consider the Büchi automaton B of Figure 1.

It contains four lassos, 11, 1244, 1231 and 12344, having probabilities 1/2, 1/4, 1/8

and 1/8, respectively. Lasso 1231 is accepting.

2 3 41

Fig. 1. Example lasso probability space.

Definition 2.2 [Lasso Bernoulli variable] The random variable Z associated with

the probability space (P(L),P) of a Büchi automaton B is defined as follows: pZ =

P[Z = 1] =
∑

λa∈La

P[λa] and qZ = P[Z = 0] =
∑

λn∈Ln

P[λn].

Example 2.3 [Lassos Bernoulli variable] For the Büchi automaton B of Figure 1,

the lassos Bernoulli variable has associated probabilities pZ = 1/8 and qZ = 7/8.

Having defined Z, X and H0, we are now ready to presentMC2, our Monte Carlo

decision procedure for emptiness checking of BA. Its pseudo-code is given below,

where rInit(B)=random(S0), rNext(B,S)=random(E(S)) and

acc(S,B)=(S∈ F).

MC2 algorithm
input: B = (S,S0, E, F); 0 < ε < 1; 0 < δ < 1.
output: Either (false, accepting lasso l) or (true, "P[X > M |H0] < δ")

(1) M := ln δ / ln(1 − ε);
(2) for (i := 1; i≤ M; i++) if (RL(B)==(1,l)) return (false,l);
(3) return (true,"P[X > M |H0] < δ");

The main routine consists of three statements, the first of which uses inequation 1

to determine the value for M , given parameters ε and δ. The second statement

is a for-loop that successively samples up to M lassos by calling the random lasso

(RL) routine. If an accepting lasso l is found, MC2 decides false and returns l as a

counter-example. If no accepting lasso is found within M trials, MC2 decides true,

and reports that with probability less than δ, pZ > ε.

The RL routine generates a random lasso by using the randomized init (rInit)

and randomized next (rNext) routines. To determine if the generated lasso is ac-

cepting, it stores the index i of each encountered state s in HashTbl and records the

index of the most recently encountered accepting state in variable f. Upon detecting

a cycle, i.e., the state s := rNext(B,s) is in HashTbl, it checks if HashTbl(s)≤ f;

the cycle is an accepting cycle if and only if this is the case. The function lasso()

extracts a lasso from the states stored in HashTbl.

Given a succinct representation S of a Büchi automaton B, one can avoid the

explicit construction of B, by generating random states rInit(B) and rNext(B,s)

on demand and performing the test for acceptance acc(B,s) symbolically.

R. Grosu, S.A. Smolka / Electronic Notes in Theoretical Computer Science 162 (2006) 203–207 205

MC2 is very efficient. It runs in time O(MD) and uses O(D) space, where M is

optimal and D is B’s recurrence diameter (longest loop-free path starting from an

initial state).

3 The Implementation Problem for I/O Automata

An I/O Automaton (IOA) is a finite-state automaton whose transitions are associ-

ated with named actions, which are classified as input, output, or internal. Input

and output actions are used for communication with the automaton’s environment,

whereas internal actions are visible only to the automaton itself. The input ac-

tions are assumed not to be under the automaton’s control (IOA are input-enabled,

whereas the automaton itself controls which output and internal actions should be

performed. See [4] for the formal definition.

The implementation problem for I/O Automata (IOA) is the following. Given

IOA A and B, representing the implementation and specification of the system

under investigation, does A implement B (A ≤ B)? Now, A ≤ B holds if L(A) ⊆
L(B); that is, the traces of A are a subset of the traces of B. This in turn is

equivalent to L(A × B) = ∅, where B is the complement of B. Intuitively, if every

observable behavior of A is an observable behavior of B then no observable behavior

of A is an observable behavior of B.

Specification IOA B can be viewed as a (input-enabled) Büchi automaton by

treating a subset of its states as accepting. IOA A can similarly be viewed as a BA

(all of whose states are accepting). Consequently, the IOA implementation problem

can be reduced to the language emptiness problem for BA, and the MC2 Monte Carlo

algorithm can be directly applied. A recent paper [2] suggests how this can all be

extended to the case of Timed I/O Automata.

4 Open Problems

It would be interesting to extend our Monte Carlo approach to the model-checking

problem for branching-time temporal logics, such as CTL, the modal mu-calculus,

and Hennessy-Milner logic. This extension appears to be non-trivial since the idea of

sampling accepting lassos in the product graph will no longer suffice. For the similar

reasons, the problem of applying Monte Carlo methods in deciding simulation [5]

and bisimulation remains open.

References

[1] R. Grosu and S. A. Smolka. Monte Carlo model checking. In Proceedings of TACAS 2005. Springer-
Verlag, 2005.

[2] R. Grosu, S. A. Smolka, W. Tan, A. Bouajjani, M. D. Bozga, and S. Tripakis. Monte Carlo model
checking of timed automata, 2005. Submitted for publication.

[3] T Hérault, R. Lassaigne, F. Magniette, and S. Peyronnet. Approximate probabilistic model checking.
In Proc. Fifth International Conference on Verification, Model Checking, and Abstract Interpretation
(VMCAI 2004), 2004.

R. Grosu, S.A. Smolka / Electronic Notes in Theoretical Computer Science 162 (2006) 203–207206

[4] N. Lynch and M. Tuttle. An introduction to input/output automata. CWI Quarterly, 2(3):219–246,
1989.

[5] N. Lynch and F. Vaandrager. Forward and backward simulations I: untimed systems. Inf. Comput.,
121(2):214–233, 1995.

[6] K. Sen, M. Viswanathan, and G. Agha. On statistical model checking of stochastic systems. In
K. Etessami and S. Rajamani, editors, Proc, of the 17th International Conference on Computer Aided
Verification, volume 3576 of LNCS. Springer, 2005.

[7] M. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification. In
Proc. IEEE Symposium on Logic in Computer Science, pages 332–344, 1986.

[8] H.L.S. Younes. Probabilistic verification for black-box systems. In K. Etessami and S. Rajamani, editors,
Proc. of the 17th International Conference on Computer Aided Verification, volume 3576 of LNCS, pages
253–265. Springer, 2005.

R. Grosu, S.A. Smolka / Electronic Notes in Theoretical Computer Science 162 (2006) 203–207 207

	Introduction
	Monte Carlo Model Checking
	The Implementation Problem for I/O Automata
	Open Problems
	References

