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Abstract

An Information-Theory-like hypothesis recently proposed for early visual processing (the Minimal Local-Asperity hypothesis)
accounts for the adaptive behavior with intensity of horizontal cells. It has been shown that for this to hold, the probability that
a point is traversed by an occluding border must increase supralinearly (that is, with a positive second derivative) as a function
of contrast. We test this condition by analyzing the distribution of contrasts and their relationship with occluding borders in
natural images. We find that the distribution of contrasts in natural images falls exponentially as a function of contrast. Moreover,
the probability that a point is traversed by an occluding border in natural images always rises with contrast until reaching one.
This rise tends to be supralinear and addition of noise (at low intensities) increases the supralinearity, shifting the rising portion
of the curve towards higher contrasts. These findings lend support to the Minimal Local-Asperity hypothesis, which proposes that
one of the main roles of early retinal processing is to extract optimally edge, contrast, and luminance attributes from the visual
world based on previous knowledge about natural images. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The visual system extracts information from the envi-
ronment. It has been argued that this information has a
statistical character (Barlow, 1961a,b; Field, 1987; Bar-
low, 1989; Marroquin, 1995), and accordingly, several
authors proposed information-optimizing theories for
the goal of early visual processing (Srinivasan, Laughlin
& Dubs, 1982; Atick & Redlich, 1992; Field, 1994;
McCarthy & Owen, 1996; Balboa & Grzywacz, 2000a).
In most of these theories, the image redundancies elim-
inated by the visual system are second-order statistics
of the image (spatial autocorrelation or power spec-
trum). In another theory (Field, 1994; Balboa &
Grzywacz, 2000a), the goal is to obtain a signal with
the largest kurtosis possible, which would highlight the
image distribution’s outliers that are assumed to con-
tain the relevant information.

We recently tested whether the above theories would
explain the lateral-inhibition adaptation of horizontal
cells to light intensity (Balboa & Grzywacz, 2000a).
Using electrophysiological and morphological methods
in two species (rabbit and goldfish) Xin and Bloomfield
(1999) and Jamieson (1994) showed that the extent of
lateral inhibition mediated by horizontal cells displays a
bell-shape behavior as intensity increases. At low inten-
sities, the lateral-inhibition extent was narrow and in-
creased with intensity (Xin, Bloomfield & Persky, 1994;
Xin & Bloomfield, 1999) until reaching a maximum.
After this maximum, the lateral inhibition’s extent nar-
rowed down with intensity (Baldridge & Ball, 1991;
Myhr, Dong & McReynolds, 1994; Lankheet, Rowe,
Van Wezel & van de Grind, 1996). Analytical and
computer-simulation results showed that none of the
theories could explain the bell-shape behavior of hori-
zontal cells with intensity. All these theories predicted a
fall of the lateral-inhibition extent as a function of
intensity (Balboa & Grzywacz, 2000a).

To explain the bell-shape behavior of the horizontal
cells’ lateral-inhibition extent, we recently proposed an
alternate hypothesis called the Minimal Local-Asperity
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Fig. 1. Six examples of images used in this work. In this figure, while Images s13 and s07 were from the Sowerby database, the others were
atmospheric and underwater images from the WWW. Source: images s13 and s07: www.ski.org/nmgrzywaczlab/; image a27: www.amerisites.com/
preserv2.html; filename:wld-16.jpg; image a80: www.euronet.nl/users/mbleeker/fotom-e.html; photo title: Banksia coccinea; image i199:
www.coralcay.org/cgi-bin/photos; image i101: www.repost.com/uw-photos/gallery/images/ssarpa2.jpg

hypothesis (Balboa & Grzywacz, 2000b). With it, we
obtained a bell-shape behavior qualitatively similar to
the experimental results. (Elsewhere (Balboa &
Grzywacz, 2000a), we stressed the differences and simi-
larities between this hypothesis and the theories that
maximize extraction of luminance information.) In the
general framework of this hypothesis (Grzywacz &
Balboa, 2000), the visual system would optimize the
lateral inhibition’s extent to minimize the error in esti-
mating desired image attributes, based on previous
knowledge about natural images and the biological
processes involved. We proposed that three important
attributes partially computed by the retina’s outer plex-
iform layer (OPL) are occluding borders, their local
contrasts, and the mean intensity inside visual objects.
In the application of the new hypothesis to natural
images, it was assumed that points with high contrast
have more probability to be occluding borders than
points with low contrasts. For this application, we
approximated the probability of points being occluding
borders as a power function of the ratio between the
gradient of intensity levels and the local mean intensity
(this ratio being the local contrast). In the simulations,
we found that only powers larger than two could yield
a bell-shape behavior for our sample of natural images.
In other words, the hypothesis could only account for
the biology if the probability of occluding borders as a
function of contrast was supralinear, that is, had posi-
tive first and second derivatives.

In this paper, following the new hypothesis’ precepts,
we analyze the probability of occluding borders as a
function of contrast and the distribution of contrasts in

natural images. Because of the interest in different light
levels, it is also studied how these functions are affected
by noise. Part of this study appeared previously in
abstract form (Balboa & Grzywacz, 1998).

2. Methods

Twenty-nine well-callibrated images (Mackeown,
1994) were obtained from the Sowerby Research Centre
(British Aerospace). These images were a subset of the
Bristol Image Database, which consists of over 350
color images of a wide range of urban and rural scenes.
This database was constructed with the goal to recog-
nizing roads in a wide range of scenes. Each image
contained a road; two thirds of the image were taken
from an ‘on-road’ position and the remainder from an
‘off-road’ position. To determine whether calibration or
human-made objects affect the results, 89 natural un-
derwater and atmospheric images from the world wide
web (WWW) were also analyzed following criteria used
by other authors (Field, 1987, 1994), we selected www
images without human-made objects or human-made
artifacts, and with sizes greater that 300×300 pixels.
Four examples of these images and two examples of
Sowerby images appear in Fig. 1.

2.1. Probability of occluding borders (POB) as a
function of contrast

We analyzed six of the 29 callibrated images and 16
of the 89 images from the www (nine underwater and



R.M. Balboa, N.M. Grzywacz / Vision Research 40 (2000) 2661–2669 2663

seven atmospheric) to compare contrasts in occluding
borders and outside them. (As explained below, all 118
images were used in the analysis of the distribution of
contrasts.) The definition of contrast was the absolute
value of the ratio between the gradient of intensity and
the local intensity (see Balboa & Grzywacz, 2000b for
methods and justification). To test whether high con-
trasts not belonging to occlusions but to camouflage
markings would change the POB, we also accepted as
‘occluding’ borders the borders of a fish’s stripes for one
image (i199; see Fig. 1). This latter, less strict definition
of occluding border did not yield different results from
the other 21 images.

The analysis of the POB in the 22 images used a
psychophysical method based on a random sample of
points. The computer presented the natural image with
a colored dot randomly placed on it (Fig. 2). The
observer (one of the authors; RMB) had to judge

whether the dot fell over an occluding border1. The
computer saved the dot’s image position, local contrast,
and the observer’s answer. At least 4000 dots were
inspected for each image. To increase the program speed,
some images were concentrically cropped, with the
smallest image size used containing 512×512 points.
The data were arranged in contrast bins and the POB-
contrast curves were computed as the number of occlud-
ing borders in each bin divided by the total number of
points there. After this, each POB-contrast curve was
smoothed with a spline.

To study the effect of noise on the POB-contrast
curves, we added noise to the images as described by
Balboa and Grzywacz (2000a). Using the points stored
during the analysis of the images without noise, we
recalculated the contrast with noise and the POB-con-
trast curves as above. This noise had a Poisson distribu-
tion to simulate the effects of low-light intensity (Fuortes
& Yeandle, 1964; Lillywhite, 1977; Baylor, Lamb & Yau,
1979; Grzywacz, Hillman & Knight, 1988).

2.2. Distribution of contrasts

For each one of the 118 images, we extracted the
distribution of contrast. These distributions were ar-
ranged in frequency histograms. As we will see in Section
3, these histograms almost always rose and fell with
contrast at low and high contrasts respectively. The
logarithm of the absolute frequency as a function of
contrast was linearly fit at high contrasts. This fit was
obtained for the range between the median contrast and
the 99 percentile of the distribution. From the linear fits
of the distributions, we extracted the slopes and correla-
tion coefficients. Other statistics extracted from the
distributions of contrast were the median contrast and
the peakedness at their beginning. The peakedness was
defined as the ratio between the maximal frequency and
the frequency at zero contrast. Hence, the peakedness
was one if there was no peak (at a contrast larger than
zero) and increased monotonically with the depth of the
peak. To test whether there are differences between
calibrated and uncalibrated images, we statistically com-
pared the slope, correlation coefficient, median contrast,
and peakedness for the www atmospheric images against
those from the Sowerby database.

3. Results

Fig. 3 shows the probability of occluding borders

Fig. 2. The psychophysical method to obtain the POB as a function
of contrast. Upper panel. The dot fell on an occluding border (in this
case, where the fish occludes the background). Lower panel. The dot
did not fall on an occluding border. In both panels, the dot was
enlarged for clarity, but in the experiment, the dot was one pixel
wide.

1 Occasionally, the dot fell on a position where the contrast was too
low to see an occluding border, but which by contour extension
probably had a real border. In those cases, the observer judged the
point to be in an occluding border. If the observer was unsure
whether the point was in an occluding border, then the computer
selected the answer at random. Only about 10% of the points
belonged to this ‘doubt’ category.
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Fig. 3. Probability that an occluding border (POB) traverses a point
as a function of its contrast. This probability is nearly zero for low
contrasts and then tends to rise supralinearly towards one at higher
contrasts.

linearity appeared in two levels (Fig. 4, Image a80). The
minority of the cases displayed a more linear shape at
low contrasts (Fig. 4, Image i101;2). For all images,
after adding noise, the POB-contrast curve became even
more supralinear and its rising portion shifted towards
higher contrasts (Fig. 4, dotted lines).

That the probability that a point has an occluding
border increases supralinearly with contrast does not
mean that there are more occluding borders at high
contrasts than at low ones. Using the same data as in
Fig. 4, Fig. 5 shows that the contrary holds. This figure
displays the frequency of points traversed (thick lines)
and not-traversed (thin lines) by occluding borders as a
function of contrast. In all images, as contrast in-
creases, these frequencies tend to fall. In addition, the
amount of non-occluding points is larger than that of
the occluding borders over almost the entire range of
contrasts. However, this difference tends to disappear
and invert at large contrasts, explaining the rise of the
POB-contrast curves. Interestingly, the shape of the
distribution of contrasts at occluding borders is ob-
served to be diverse. This distribution is almost inde-
pendent of contrast in some cases (Fig. 5; Images s13,
s07, and i101). However, the distribution falls sharply
with contrast in others cases (Fig. 5; Images a27, a80,
and i199). Finally, besides the fall with contrast at
intermediate and high contrasts, there is a small but
significant rise at low contrasts. We will address this
rise in Section 4.

Fig. 6 displays six examples of the distribution of
contrasts in our ensemble of images. Five out of these
six images yielded a small peak at low contrasts. Over

Fig. 4. POB as a function of contrast for six natural images. All
curves (solid lines) presented a supralinear rise (in one or two phases)
that varied from image to image. For the vast majority of the images,
the curves rose all the way up to one. In the presence of noise (dotted
lines), all POB-contrast curves presented a more supralinear shape
(that is, with a higher threshold), which again varied from image to
image. In this figure, these results were very apparent for Images s13,
s07, a27, and a80. Image i101 led to a supralinear shape, which was
not prominent before the addition of noise. For Image i199, the noise
produced strong supression of the POB.

Fig. 5. Distribution of contrasts at occluding and non occluding
points obtained from the same data in Fig. 4. After a fast rise at low
contrasts, these distributions tend to fall with contrast. The frequency
of non-occluding points dominates at low and intermediate contrasts,
but the frequency of occluding points overtakes its counterpart at
high contrasts.

(POB) as a function of contrast for one image. It is
apparent that the POB rises as a function of contrast
(except for relatively small fluctuations). This rise is
supralinear in that it seems to have positive first and
second derivatives. At low contrasts, the POB is close
to zero, but it starts to increase at intermediate con-
trasts, often reaching one at the highest contrasts.

The supralinear trend was observed in all images,
though the amount of supralinearity varied from image
to image (Fig. 4). In a few cases, this supralinearity was
clear and began at zero contrast (Fig. 4, Images s13,
s07, and a27). In other cases, the POB-contrast curve
was more similar to an oscillating (noisy) plateau at low
contrasts, with a sudden rise at higher contrasts (Fig. 4,
Image i199). There were also cases for which the supra-

2 Nevertheless, even this image elicited a prominent supralinearity
in the contrast range [0, 0.02], which is hard to see in this figure. One
cannot neglect this supralinearity, since it occurs at the contrasts of
the majority of the points.
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Fig. 6. Distribution of local contrasts when adding low light-level
Poisson noise to the images (dotted lines) and without noise (solid
lines). As in Fig. 5, after a fast rise at low contrasts, these distribu-
tions tend to fall with contrast. This fall is approximately exponential.
With noise, all distributions have larger low-contrast peaks than
before and the falling portion of the distributions present a shift
towards higher contrasts.

low contrasts. For contrasts higher than this peak, we
find an approximately exponential fall as a function of
contrast. Consequently, in a semilog scale, the distribu-
tion of contrasts falls linearly. We analyzed the slope of
the linear fit to this fall, and the median contrast and
peakedness of this distribution. Low light-level noise
tended to increase the peakedness of the distribution of
contrasts, make its fall more exponential, and increase its
median contrast. Comparing the amount of noise needed
to change the POB-contrast curve and the distribution
of contrasts, we observed that the former was more
affected by noise than the latter.

4.2. Limitations

Before interpreting our results on the POB-contrast
curves and the distribution of contrasts, we wish to
comment on some of the limitations to their validity.
First of all, one must consider limitations imposed by the
method used to deal with uncertainties on the location
of occluding borders (see Footnote 1). The existence of
low-contrast occluding borders are sometimes inferred
by contour extension. Such an extension can cause an
over-estimation of the POB at low contrasts. This is
because points of low contrast that are not on occluding
borders can erroneously be counted as being on occlud-
ing borders more often than points that actually are on
occluding borders not be counted. There are two reasons
for that: First, almost all low-contrast points are not on
occluding borders (Fig. 5). Therefore, it is more likely to
misclassify them than those points that are on occluding
borders. Second, the human visual system’s hyperacuity
(Westheimer & McKee, 1977; Westheimer, 1979) ensures
that the observer rarely misses a point that is truly on
an occluding border. The main consequence of the
over-estimation of occluding borders at low contrasts is
that the measured POB-contrast curves have their low-
contrast portions slightly higher than they should be.

Another limitation of our results was due to some of
our images being from the www. For such images, it
could be that our results on the POB-contrast curve and
the distribution of contrasts were affected by uncon-
trolled ‘imperfections’ of film, camera, and JPEG image
storage (for a discussion of these problems see Balboa &
Grzywacz, 2000b). The three main ‘imperfections’ to
worry about were over- and under-exposure in the
photography, the film’s gamma of emulsion, and the loss
of high spatial frequencies. However, these imperfections
did not seem to have any major effects on the results. We
observed for both calibrated (Sowerby) and www images
the same behavior in terms of the POB-contrast curve
and distribution of contrasts. For both types of images,
the POB-contrast curve had a supralinear rise as contrast
increased. Moreover, noise affected the curve making it
more supralinear and shifting its median towards higher
contrasts. And for the distributions of contrasts, both

all images, this peak was present in 73% of them. At
contrasts higher than that of the peak, the distribution
of contrasts fell linearly on a semi-log scale, which means
roughly an exponential fall as a function of contrast
(correlation coefficient −0.98590.03; mean9standard
deviation). Adding low-light-intensity noise caused the
contrast distribution to fall even more linearly on the
semilog scale at high contrasts and shifted the falling
portion of the curves toward higher contrasts (Fig. 6,
dotted lines). With added noise, all images yielded a peak
at low contrasts. The peaks for the images with noise
were more pronounced than without noise. The amount
of noise needed to change the shape of the distributions
of local contrast was much higher than that required to
change the POB-contrast curves.

There were no significant differences between the
results obtained with the Sowerby image set and the www
images. The similarity of the results held both for the
POB-contrast curves and for the distribution of con-
trasts.

4. Discussion

4.1. Summary

The POB always rises with contrast (except for rela-
tively small fluctuations) until reaching one. This rise
tends to be supralinear, varying with image and noise.
Addition of noise tends to increase the supralinearity and
shift the rise towards higher contrasts. In relation to the
distribution of contrasts, it typically has a small peak at
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types of images yielded a low-contrast peak, which was
enhanced by noise. At contrasts higher than this peak,
the distribution of contrasts fell approximately expo-
nentially regardless of the image’s type. However, de-
tailed inspection of the images revealed that the
problems mentioned above were present. These prob-
lems caused minor differences between the www and
Sowerby images. For instance, we found that the slopes
of the distributions of contrast from the Sowerby im-
ages (−5.32890.215) were slightly steeper than those
from the atmospheric WWW images (−4.690.795;
one-sided Mann–Whitney test, U=344, z corrected for
ties= −3.701, PB0.001).

4.3. A model for the POB-contrast cur6e and the
distribution of contrasts

We will now propose a simple one-dimensional (1D),
stepwise model of the image, which accounts for the
natural POB-contrast curve and the distribution of
contrasts. The power of this model stems from its
previous explanation of other statistical properties of
natural images (Balboa & Grzywacz, 2000b; Balboa,
Tyler & Grzywacz, 2000). For instance, the model
accounts for why the power spectrum of natural images
falls as the square of the spatial frequency (Balboa et
al., 2000). In this model, there are two underlying
distributions, one of the true contrasts at occluding
borders and the other of noise-induced contrasts3. Be-
cause both distributions affect occluding borders, they
have a wider distribution of contrasts than points out-
side borders. This wide distribution ensures that the
POB rises to one at high contrasts. The details of the
rise, such as the shape of the supralinearity, depends on
the mathematical properties of the underlying distribu-
tions. These properties are addressed in the next
section.

4.3.1. Formulation of the model
Let a 1D image, sampled at N points, consist of

M+1 regions of uniform intensity, such that the inten-
sity profile of the jth region is

Ij(x)=
!0 xBxj, x\xj+1

I. j xj5x5xj+1

(1)

where the constant I. j\0 is I. j=I( +I j*, with I( being the
mean intensity across the image and I j* being drawn
from PI(I j* �I( ) a probability distribution with zero mean,
and where xj is obtained from some pre-specified, arbi-
trary distribution of sizes of regions. Therefore, the
image is

I(x)= %
M

j=1

Ij(x) (2)

We now make three reasonable simplifying assumptions
about the image: First, N�M. This inequality is rea-
sonable, since there are many more points inside objects
than at their borders. Second, if bI( is the standard
deviation of PI, then bI(�I( . This is equivalent to saying
that the contrasts in natural images are low, for which
there is much evidence (Ruderman & Bialek, 1994).
Third, if sn were the standard deviation of the quantal
noise in an homogeneous image of intensity I( , then
sn�I. Because quantal noise in images has a Poisson
distribution (Fuortes & Yeandle, 1964; Lillywhite,
1977; Baylor et al., 1979; Grzywacz et al., 1988), sn�I( ,
where a is a constant. Hence, the third assumption is
sn�I1/2, that is, the intensity is sufficiently high. One
consequence of this assumption is that to a good ap-
proximation the distribution of the quantal noise
around the mean (PQ(I/I( )) is Gaussian:

PQ(I �I( )= 1


2paI(
e−I2/(2aI( ) (3)

A consequence of the second assumption is that the
noise in the different regions expressed by Eqs. (1) and
(2) is similar. Therefore, we neglect the noise differences
across regions and take Eq. (3) to govern the noise
everywhere. In this paper, we will also model PI as a
Gaussian distribution:

PI(I �I( )= 1


2pbI(
e−I2/(2b2I( 2) (4)

Some support for such a model comes from the ‘occlud-
ing’ lines in Fig. 5, but as we discuss below, our
conclusions do not depend strongly on this choice. In
Eq. (4), the variance is proportional to I( 2, since as the
background intensity rises, the fluctuations from the
mean increase proportionally to keep the contrasts
constant. (Contrasts must remain constant, because the
reflectances of objects do not vary with intensity.)

Let Dn(C �I( ) be the distribution of contrasts due to
noise and Db(C �I( ) be the distribution of contrasts due
to occluding borders. The distribution of contrasts is

D(C �I( )=Dn(C �I( )+Db(C �I( ) (5)

while the POB-contrast curve is

PO(C �I( )= Db(C �I( )
Dn(C �I( )+Db(C �I( ) (6)

Consequently, the key quantities to compute from the
model are Dn and Db. Because N�M, points away
from the border dominate Dn. Hence, Dn is just the
fraction of N with contrast C due solely to noise, that
is,

Dn(C �I( )=N · Pn(C �I( ) (7)

where Pn(C �I( ) is the probability that in two neighbor

3 We are not taking into account contrast due to lighting (such as
those from reflectances and shadows), because they are the minority
in the image (Elder, Beniaminov & Pintilie, 1999).
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points, the contrast is C due to noise. In keeping with
our definition of contrast in Section 2, we define the 1D
contrast as C: �IL−IR�/IDx, where IL and IR are the
intensities of the left and right neighbor points respec-
tively, and Dx is the distance between them. Because
Eq. (3) governs the noise everywhere (see discussion
after that equation), it follows that

Pn(C �I( )=2I( &
I

PQ(I �I( ) PQ(I+I( C �I( ) if C\0 (8)

and half that if C=0, where the factor of 2 is to take
into account that positive and negative instances of
IL−IR can yield the same contrast. Substituting Eq. (3)
for PQ in Eq. (8), one gets

Pn(C �I( )=' I(
pa

e−I( C2/4a if C\0 (9)

and half that if C=0.
We now calculate Db(C �I( ). As for Dn, Db is the

fraction of the number (M) of occluding borders with
contrast C, that is,

Db(C �I( )=M · Pb(C �I( ) (10)

where Pb(C �I( ) is the probability that in two neighbor
points, the contrast is C due to both an occluding
border and noise. Now, IL and IR come from a combi-
nation of PQ(I �I( ) and the distribution of image intensi-
ties, PI(I �I( ). Thus,

Pb(C �I( )

=2I( &
I L

T

&
o L

&
I R

T

PI(IL
T�I( ) PQ(oL) PI(IR

T �I( )

× PQ(IL
T+oL−IR

T −CI( �I( ) if C\0 (11)

and half that if C=0. Substituting Eqs. (3) and (4) for
PQ and PI respectively, one obtains

Pb(C �I( )=' I(
p(a+b2I( ) e−C2I( /4(a+b2I( ) if C\0

(12)
and half that if C=0.

From Eqs. (5), (7), (9), (10) and (12), the distribution
of contrasts is

D(C �I( )

=N
'I(

p

�'1
a

e−C2I( /4a+ f
' 1

a+b2I( e−C2I( /4(a+b2I( )n if

C\0 (13)

and half that if C=0, where we define M= f · N, with
f�1 associating the amount of points due to occluding
borders to the total amount of points in the image.

From Eqs. (6), (7), (9), (10) and (12), the POB-con-
trast curve is

PO(C �I( )= 1

1+ f −1'1+
b2I(
a

e−C2I( b2/4a(a+b2I( )

(14)

4.3.2. Results of the model on the POB-contrast cur6e
Plotting Eq. (14) (left panel, Fig. 7), shows that the

model can account for the main features of the POB-
contrast curve obtained from natural images (Figs. 3
and 4). Fig. 7 illustrates these curves’ rise from near
zero to one and their supralinearity, which is enhanced
by reducing I( , consistently with our results (Fig. 4). One
can understand how the model achieves these results
almost straight from the definition of POB-contrast
curve in Eq. (6). From that definition, PO=1/(1+Dn/
Db), and thus the POB-contrast curve depends on the
ratio between the distribution of contrasts due to noise
(Dn) and at occluding borders (Db). Because the num-
ber of points at borders is much smaller than outside
them (N�M), Dn�Db for most contrasts, which is
confirmed in Fig. 5. Therefore, PO:0 for most con-
trasts. However, while Dn only depends on noise for its
contrasts, Db depends on both noise and actual reflec-
tance differences in the world. Consequently, Db has a
wider distribution of contrasts than Dn (formally, while
the latter’s standard deviation only depends on a —
Eq. (9) —, the former’s depends on a and b — Eq.
(12)). Hence, at large contrasts, Db overtakes Dn (Fig.
5), making PO rise towards 1. Because this only occurs
at large contrasts, PO is supralinear. Furthermore, as
noise increases (low light levels), both Db and Dn be-
come wider, such that higher contrasts are required for
Db to overtake Dn. This explains the higher threshold
for the POB-contrast curve to rise.

4.3.3. Results of the model on the distribution of
contrasts

The model can also account for the main features of
the distribution of contrasts obtained from natural

Fig. 7. Results of the model for the POB-contrast curve (Eq. (14))
and the distribution of contrasts (Eq. (13)) parametric on mean light
intensity (I( ). The others parameters to obtain these curves are N=
104, a=1, b=0.1, and f=0.08. The POB-contrast curves rise supra-
linearly from nearly 0 to 1 and as the intensity falls, they shift toward
higher contrasts. In turn, the distribution of contrasts falls approxi-
mately exponentially with contrast after a noise-induced peak or
plateau at low contrasts. As in the case of the POB-contrast curve,
the distribution of contrasts shifts toward higher contrast as the
intensity drops.
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images. For instance, Eq. (13) can explain the approxi-
mately exponential fall of the distribution of contrasts at
intermediate and high contrasts (Fig. 6; see also Ruder-
man & Bialek, 1994 and Zhu & Mumford, 1997). The
right panel of Fig. 7 shows rough linear falls on a semilog
scale. This apparent linear fall is due to the sum of two
Gaussian falls (one due to noise and one due to occluding
borders plus noise) with different spreads (as explained
in Section 4.3.2). Hence, different from the supralinearity
of the POB-contrast curves, the apparent exponential fall
of the distribution of contrasts may depend on the details
of PI. Before this fall, at low contrasts, both the data (Fig.
6) and the model (Fig. 7) can exhibit a peak. Further-
more, this peak becomes prominent with noise. From the
model, we learned that the peak is due to the condition
C=0 (where C is contrast) requiring perfect equality of
intensities around a point in space, whereas the condition
C\0 only requires that the equality is broken, which can
occur in one of several directions in 2D space (see factor
of half in the 1D Eqs. (8), (9), (11) and (12)). When the
noise increases, perfect equality and thus C=0 becomes
rarer. Another effect of noise is to shift the falling portion
of the distribution of contrasts toward higher contrasts
(Figs. 6 and 7). This is not surprising, since noise widens
Dn and Db, by increasing the intensity fluctuation at
occluding borders and away from them.

4.4. Implications for retinal biology

In recent years, several authors advanced information-
optimizing theories of early visual processing based on
a host of natural-image statistics, including contrast
(Srinivasan et al., 1982; Atick & Redlich, 1992; Field,
1994; McCarthy & Owen, 1996; Balboa & Grzywacz,
2000a). Our results on the POB-contrast curve and the
distribution of contrasts have implications for these
theories and their applicability to retinal processing. For
instance, some theories use the mean contrast as a
parameter (Srinivasan et al., 1982; Atick & Redlich,
1992). Although analysis of these theories (Balboa &
Grzywacz, 2000a) show that they cannot account for the
adaptive behavior of retinal horizontal cells (Xin &
Bloomfield, 1999), the possibility remains that these
theories could be successfully modified.

The results on the POB-contrast curve in this paper
have particular relevance for another information-opti-
mizing hypothesis, the Minimal Local-Asperity hypoth-
esis (Balboa & Grzywacz, 2000b; Grzywacz & Balboa,
2000). This hypothesis accounts successfully for the
adaptation behavior of the lateral inhibition mediated by
horizontal cells (Xin & Bloomfield, 1999). To do so, the
hypothesis requires natural images to yield supralinear
POB-contrast curves (Balboa & Grzywacz, 2000b). Be-
cause this is exactly what one finds (Figs. 3 and 4), this
paper lends support to the Minimal Local-Asperity
hypothesis. Hence, we would like to conclude by propos-

ing a goal for early retinal lateral inhibition based on the
POB’s findings described here and the Minimal Local-
Asperity hypothesis (see Balboa & Grzywacz, 2000a for
a comparison between the Minimal Local Asperity
Hypothesis and other theories that try to maximize
extraction of luminance information). Deciding whether
a point lies on an occluding border by visual means can
be a difficult task. It may involve learning early in
development and almost certainly, has applied significant
evolutionary pressure on the visual system. The right
decision varies at each instant with the statistics of the
varying visual habitat, including illumination level, con-
trast, and sizes of objects. Therefore, adaptive mecha-
nisms are necessary to adjust the animal’s early visual
system to its environment. We propose based on our
hypothesis that such adaptation modifies horizontal cells’
receptive fields to deal optimally with different intensities
and habitats. To achieve such an optimality, that is, to
minimize the number of errors in performing the desired
tasks (for instance, edge extraction, and contrast and
intensity measurements), the visual system must use
relevant statistical knowledge about natural images. In
the case of the Minimal Local-Asperity hypothesis, the
required knowledge is the POB-contrast curve. There-
fore, we propose that armed with this knowledge, the
early retinal lateral-inhibition process contributes to edge
and contrast extraction with minimal noise and avoiding
as much as possible the straddling of occluding borders.
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