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Abstract

This work deals with the numerical solution of a complex mathematical model arising in theoretical glaciol-
ogy. The global moving boundary problem governs thermomechanical processes jointly with ice sheet hydro-
dynamics. One major novelty is the inclusion of the ice velocity $eld computation in the framework of the
shallow ice model so that it can be coupled with pro$le and temperature equations. Moreover, the proposed
basal velocity and shear stress laws allow the integration of basal sliding e7ects in the global model. Both
features were not taking into account in a previous paper (Math. Model. Methods Appl. Sci. 12 (2) (2002)
229) and provide more realistic convective terms and more complete Signorini boundary conditions for the
thermal problem. In the proposed numerical algorithm, one- and two-dimensional piecewise linear Lagrange
$nite elements in space and a semi-implicit upwinding scheme in time are combined with duality and New-
ton’s methods for nonlinearities. A simulation example involving real data issued from Antarctic shows the
temperature, pro$le and velocity qualitative behaviour as well as the free boundaries and basal e7ects.
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1. Introduction

Mathematical modelling and numerical simulation of the large ice sheet mechanics and thermo-
dynamics is not an easy task since certain open questions concerning some ice Iux conditions both
in the domain and on the boundary still remain. In fact, thermodynamic models, isothermal mod-
els of ice dynamics, thermomechanical models and the speci$c ones for the Antarctic ice sheet
appearing in the literature illustrate the intrinsic diJculties associated to these physical problems
[9,11]. Therefore, some studies address to certain simpli$ed models, like the shallow ice approx-
imation proposed in [7,9], to analyze some isolated (thermal, mechanical or dynamical) phenom-
ena. For example, an isothermal ice pro$le evolution model is stated in [7] by using asymptotic
techniques, temperature mathematical models for polythermal ice sheets are proposed in [7,8] and
some behaviour laws for the basal thermoelastohydrodynamic phenomena are discussed in [6] ac-
cording to heuristic considerations and emphazising the lack of numerical simulation studies on basal
rheology.

In Huybrechts [10], an important work concerning numerical simulation of a global thermome-
chanical model for the behaviour of great ice masses is developed and $nite di7erences methods
for three-dimensional geometries are proposed. Nevertheless, the model equations are much simpler
than those ones here proposed because, for example, the more realistic moving boundary problems
governing the pro$le and temperature evolution have not been considered.

The shallow ice approach takes into account the orders of magnitude of the real ice sheet (i.e.,
width far smaller than length) for neglecting some terms in the original mass, momentum and en-
ergy conservation equations. More precisely, the shallow ice scaling of equations introduces the
small parameter � = d2=d1 where d1 and d2 denote the length and width orders of magnitude (typ-
ically, d1 = 3000 km and d2 = 3 km in Antarctic). Next, the terms of order �2 are neglected in the
equations.

In order to simplify the ice sheet model, a bidimensional ice Iux in a polar cap is commonly
assumed so that the same pro$le is considered for the di7erent longitudinal sections. Thus, the
coordinates (x; z) take values in a section whose time dependent upper boundary is de$ned by
z = �(t; x) and whose Iat lower boundary is given by z = 0. In the pro$le problem, the unknown ice
sheet extent and pro$le depend on the ice accumulation-ablation ratio and the basal velocity among
other factors [4]. Two di7erent numerical approaches to the second order nonlinear parabolic model
for � are described in [2,4].

Moreover, for a given pro$le, in the polythermal model for the ice temperature the presence of
a thin basal layer at the melting temperature becomes relevant for imposing the lower boundary
conditions [7]. A numerical solution technique for this shallow ice free boundary thermal prob-
lem is proposed in [3]. More recently, a $rst attempt to solve numerically, a semicoupled prob-
lem involving the ice sheet pro$le and its temperature for a prescribed velocity has been made
in [5].

In this work, the main innovative goals concern to the velocity $eld computation in a shallow ice
framework jointly with a basal sliding velocity law that depends on temperature and shear stress.
Additionally, the inIuence of basal magnitudes on the Signorini boundary condition for the thermal
problem is modelled. Finally, a complex coupled problem can be solved by means of an algorithm
where the di7erent subproblems are sequentially treated.
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2. Thermoelastohydrodynamic mathematical model

In order to pose the dimensionless coupled problem a $xed rectangular domain 	 is considered.
It includes not only a longitudinal section of the ice sheet but also the part of the atmosphere placed
above the ice mass. Thus, the domain is de$ned by

	 = {(x; z)= − 16 x6 1; 06 z6 zmax}; (1)

and the ice mass domain is given, in terms of the unknown upper pro$le �, by

	I(t) = {(x; z)=S−(t)6 x6 S+(t); 06 z6 �(t; x)}; (2)

so that for any time t the inclusion 	I(t) ⊂ 	 holds. Therefore, we can write

	 = 	I(t) ∪ 	A(t); (3)

where 	A(t) denotes the atmospheric domain. Notice that since the ice layer longitudinal extent is
not $xed, the interval (S−(t); S+(t)) ⊂ (−1; 1) is an additional unknown.

First, the moving boundary pro$le problem is posed over the $xed domain (−1; 1). Let tmax ¿ 0
be a large time instant and let a : (0; tmax) × (−1; 1) → R and �0 : (−1; 1) → R be the given
accumulation-ablation rate and initial pro$le, respectively. Then, for t ∈ [0; tmax], the formulation
can be stated as follows [4]:

Find 
0(t) = (S−(t); S+(t)) and � :Q =
⋃

t∈[0; tmax] 
0(t) → R such that

D∗�
Dt

=
e−�

�
9
9x

(
�n+2

n + 2

∣∣∣∣9�9x
∣∣∣∣
n−1 9�

9x

)
+ a in Q;

�¿ 0 in Q;

(
D∗�
Dt

− e−�

�
9
9x

(
�n+2

n + 2

∣∣∣∣9�9x
∣∣∣∣
n−1 9�

9x

)
− a

)
� = 0 in Q; (4)

� = 0 on {S−(t)} ∪ {S+(t)}; t ∈ (0; tmax);

�(0; x) = �0(x) in (−1; 1);

where

D∗�
Dt

=
9�
9t +

9
9x (ub�): (5)

ub is the given basal sliding velocity and � and � are two dimensionless parameters. Thus, the
solution of (4) provides, for each time t, the ice sheet boundaries de$ned by


0(t) = {(x; z)=x∈ (S−(t); S+(t)); z = 0}; (6)


1(t) = {(x; z)=x∈
0(t); z = �(t; x)}: (7)
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In the shallow ice approach, after neglecting 0(�2) in the momentum equation, we can deduce the
following expression for the z-derivative of the horizontal velocity u:

9u
9z =

−A(T )
�

(�− z)n
∣∣∣∣9�9x
∣∣∣∣
n−1 9�

9x ; (8)

where the term A(T ) = e�T is associated with viscous dissipation e7ects, T being the temperature
[3]. Next, by integrating Eq. (8) from 0 to z, we obtain the ice horizontal velocity

u = ub −
∫ z

0

A(T )
�

(�− s)n|�x|n−1�x ds: (9)

Next, we extend to the whole domain the stream function associated to the ice velocity $eld in the
form

 (x; z) =




∫ z

0
u(x; s) ds if z6 �;∫ �

0
u(x; s) ds if z¿�;

(10)

so that the vertical velocity, v, can be obtained from  as follows:

v(x; z) =


− 9

9x ( (x; z) if z6 �;

0 if z¿�:
(11)

Concerning the shallow ice approximation of the energy equation, as we are interested in polyther-
mal ice sheets, which include the presence of temperate ice (i.e. at the melting temperature T = 0)
and possibly water regions, an appropriate two phase Stefan model is proposed. So, for each time
t, we obtain the temperature by solving the following equations [3]:

9T
9t + ṽ · ∇T − �

92T
9z2 + F = 0; T ¡ 0 in 	C(t);

T¿ 0 in 	T(t);

�
9T
9̃n(t)

= Lc
ds
dt

on �(t); (12)

where ṽ = (u; v) is the velocity and the nonlinear viscous dissipation term F is given by

F = F(T; x; z) = −
(�
�

)
((�(x) − z)�x)4e�T ; (13)

�; � and � being given dimensionless parameters. The subsets 	C(t) and 	T(t) denote the cold and
the temperate ice regions, respectively. More precisely,

	C(t) = {(x; z)∈	I(t)=T (t; x; z)¡ 0};

	T(t) = {(x; z)∈	I(t)=T (t; x; z)¿ 0}:
The surface �(t) is the free boundary between both subregions, ñ(t) notes the unitary normal

vector to �(t) pointing to 	C(t) and Lc = 3:4 is the dimensionless latent heat.
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In order to complete the formulation (12) boundary and initial conditions must be prescribed.
First, in terms of the dimensionless geothermic Iux, gb, the ice basal velocity and the basal stress,
 b, the following Signorini condition is posed at the lower boundary 
0(t):

−9T9z = gb +  bub if T ¡ 0;

− 9T9z = 0 if T ¿ 0;

0¡− 9T
9z ¡gb +  bub if T = 0:

(14)

Modelling and numerical simulations including the term  bub is an important original aspect of this
work and requires behaviour laws for both magnitudes. Theoretically, the ice begins to slide when
basal temperature reaches the melting point and, consequently, basal melt water is produced. But,
also sliding processes have been experimentally observed on sub-temperate regions (T = −4:6◦C,
approximately). So, taking this into account and following [6], we propose a basal velocity law in
the form ub =f( b; Tb) so that ub must be fastly decreasing when the basal temperature, Tb, decreases
below and nearby the melting point (T = 0). More precisely, the basal shear stress and velocity,
appearing in (14), are modelled by expressions

 b = −�
9�
9x ; ub = cb| b| b exp(T=#b); (15)

where the parameters cb ∈ (0:1; 10) and #b�1. Notice that the coupling among the sliding basal
velocity, the basal shear stress, the pro$le and the temperature involves a new advance respect to
the previous models described in [3,5].

At the upper boundary 
1(t) a Dirichlet condition, T = TA, is considered. The choice TA = −1
corresponds to 223 K mean real atmospheric temperature. Moreover, in numerical simulation the
temperature TA is also imposed in the atmospheric region 	A(t).

Finally, an initial temperature, T0, on the evolution equations (12) is prescribed.

3. Discretization and variational formulation

For the time semidiscretization of the nonlinear parabolic pro$le problem (4) an upwind scheme of
characteristics has been chosen to approximate the total derivative (5). So, we achieve a sequence of
nonlinear elliptic complementarity problems that are solved by combining Lagrange $nite elements
approximations of degree one for Eq. (4) and duality type algorithms for the nonlinearities involved
(see [2,4], for two di7erent techniques).

Once the pro$le function � has been obtained at each time step, in terms of previous values of the
temperature we compute the velocity $eld ṽ by using numerical quadrature formulae in (9) and (11).
This numerical integration procedure being highly technique due to that only temperature values at
the mesh points are available.

Next, for the updated pro$le and velocity $eld, we propose a variational formulation of the Stefan–
Signorini thermal problem in terms of two multivalued operators. Thus, the multivalued Heaviside
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operator H is introduced to rewrite the boundary condition (14):

9T
9z ∈ (gb +  bub)(H (T ) − 1) ⇔ 9T

9z + (gb +  bub)∈ (gb +  bub)H (T ); (16)

and the two phase Stefan problem is posed in terms of the enthalpy operator

E(T ) =




T if T ¡ 0;

[0; Lc] if T = 0;

Lc if T ¿ 0:

So, we establish the variational formulation for the thermal problem in the form:
Find y(t; :)∈VA(t) such that∫

	

De
Dt

’ d	 +
∫
	

9y
9z
9’
9z d	 + #

∫
	

9y
9x
9’
9x d	

+
∫
	

(F ◦ *−1)(y)’ d	 −
∫

0(t)

g’ d


+
∫

0(t)

g+’ d
 = 0; ∀’∈V0(t); (17)

e∈ (E ◦ *−1)(y); (18)

+∈ (H ◦ *−1)(y); (19)

where the classical Kircho7 change

y = *(T ) =
∫ T

0
� ds = �T (20)

and a small horizontal di7usion term controlled by the parameter # have been introduced. Moreover,
for simplicity we have noted g = �gb +  bub. In the previous formulation, the following sets have
been considered:

V0(t) = {’∈H 1(	)=’ = 0 on 
1(t) ∪ 	A(t)};

VA(t) = {’∈H 1(	)=’ = *(TA) on 
1(t) ∪ 	A(t)}:
For the time discretization of (17)–(19) an upwind characteristics scheme has been developed [3].

So, the material derivative at time tm+1 = (m + 1)Pt is approximated by

De
Dt

((m + 1)Pt; x; z) ≈ em+1 − em ◦ -m

Pt
; (21)

where

em+1 = e((m + 1)Pt; x; z); (22)
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-m is de$ned by

-m(x; z) = S((m + 1)Pt; x; z;mPt);

S being the trajectory of the velocity $eld which is the solution of the $nal value problem


dS(t; x; z; s)
ds

= ṽ(S(t; x; z; s); s);

S(t; x; z; t) = (x; z):

Then, we can pose the following sequence of problems:
Find ym+1 ∈VA(tm+1) such that

1
Pt

∫
	
em+1’ d	 − 1

Pt

∫
	
em ◦ -m’ d	 + #

∫
	

9ym+1

9x
9’
9x d	

+
∫
	

9ym+1

9z
9’
9z d	 +

∫
	

(F ◦ *−1)(ym+1)’ d	

+
∫

0(tm+1)

g+ m+1’ d
 −
∫

0(tm+1)

g’ d
 = 0 ∀’∈V0(tm+1); (23)

em+1 ∈ (E ◦ *−1)(ym+1); (24)

+ m+1 ∈ (H ◦ *−1)(ym+1): (25)

Next, for the spatial discretization of Eqs. (23)–(25), we introduce a $nite element triangular mesh
of the domain 	;  ∗h . By using the classical linear piecewice Lagrange $nite elements, the space Vh

and its subsets V0h and VAh are de$ned by

Vh = {’h ∈C0( Q	)=’h|P ∈P1; P ∈  ∗h}

V0h = {’h ∈Vh=’h = 0 on 
1(tm+1) ∪ 	A(tm+1)}

VAh = {’h ∈Vh=’h = *(TA) on 
1(tm+1) ∪ 	A(tm+1)}:
Notice that for a nonconstant Dirichlet condition TA an appropriate projection of TA onto Vh has to
be considered.

Therefore, in order to obtain the reduced temperature, ym+1, we need to overcome three nonlinear
aspects: a Signorini type condition on the boundary 
0(t), the enthalpy operator E and the viscous
dissipation function F . As the two $rst nonlinearities can be associated to maximal monotone oper-
ators, we treat them by means of duality methods. For this, we introduce two new unknowns, qm+1

and pm+1, given by

qm+1 ∈ (H ◦ *−1)(ym+1) − !1ym+1; (26)

pm+1 ∈ (E ◦ *−1)(ym+1) − !2ym+1; (27)
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in terms of two positive real parameters !1 and !2, respectively. Next, we use the equivalences (see
[1] for details):

qm+1 ∈ (H ◦ *−1 − !1I)(ym+1) ⇔ qm+1 = (H ◦ *−1)!1
51

(ym+1 + 51qm+1);

pm+1 ∈ (E ◦ *−1 − !2I)(ym+1) ⇔ pm+1 = (E ◦ *−1)!2
52

(ym+1 + 52pm+1); (28)

(H ◦*−1)!1
51

being the Yosida approximation of the operator ((H ◦*−1)−!1I) with parameter 51 ¿ 0
and (E ◦ *−1)!2

52
being the Yosida approximation of the operator ((E ◦ *−1) − !2I) with positive

parameter 52. For convergence purposes, the choice 5i!i = 0:5; i = 1; 2 has been considered. Next,
we replace (26) and (27) in (23)–(25) and use the equivalences (28).

Finally, for the treatment of the nonlinear term F we follow [3] where a numerical technique
based on Newton’s method to linearise the problem and a $nite element product approximation is
developed. The linear system obtained at each Newton’s iteration is solved by means of a precondi-
tioned biconjugate gradient method because the system matrix is not necessary positive de$nite nor
well conditioned.

4. Numerical algorithm for the coupled problem

In this section, a scheme of the numerical method to solve the coupled problem is presented. The
objective is to compute the pro$le, the velocity and the temperature distribution of the ice sheet as
well as the corresponding basal magnitudes. For this, we solve sequentially the speci$c equations by
using the previously described numerical strategies. In fact, the pseudocode of the algorithm remains
as follows:

(1) Step 0:

• Fixed domains meshing: [ − 1; 1] for pro$le and 	 for velocity and temperature.
• Initialize basal velocity (u0

b), temperature (T 0 = T0) and pro$le (�0 = �0).

(2) Step m + 1: Compute the unknowns at time tm+1 = (m + 1)Pt.

• From um
b and Tm, computation of �m+1(x); S−(tm+1); S+(tm+1), by solving (4).

• Identi$cation of the sets 	I(tm+1); 	A(tm+1); 
0(tm+1) and 
1(tm+1) by using (2), (3) and
(6)–(7).

• Computation of the velocities, um+1 and vm+1, with expressions (9)–(11).
• Obtain ym+1 and, consequently, Tm+1, by solving (23)–(25).
• Update basal velocity and shear stress, um+1

b and  m+1
b , with expression (15).

For the numerical solution of Eqs. (23)–(25) we use the equivalences (28) which allow us to
develop in the m + 1 iteration an inner iterative procedure. In such procedure, one step to update
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pm+1 and qm+1 plus one step to update ym+1 are performed until convergence. Moreover, at each
step of the ym+1 updating we use Newton’s method to solve the nonlinear equations system.

5. Numerical example

A numerical example associated to a real data set issued from the Antarctic ice sheet is presented.
Thus, the value zmax = 1:2 guarantees that 	I(t) ⊂ 	 for all t. The dimensionless physical constants

� = 11:3; � = 0:01; � = 0:3; � = 0:12; # = 0;

Lc = 3:4; g = 0:18; TA(t; x; z) = −1;

have been considered (see [7]). The initial pro$le and temperature are given by

�0(x) = 0:5(1 − |x|4=3)3=8; x∈ [ − 1; 1];

T (0; x; z) =

{−1 if z¿ �0(x);

−0:5 if z¡�0(x)

and the accumulation–ablation function is

a(t; x) =




a0(1 − 1:5|x|4=3)
(1 − |x|4=3)5=8 if 06 |x|¡L− �;

a0(1 − 1:5(L− �)4=3)
(1 − (L− �)4=3)5=8 if (L− �)6 |x|6L;

where L = 1; � = 10−4 and a0 = 1:24 × 10−5. In the basal velocity law (15) the constants cb = 0:1
and #b = 0:001 have been taken.

For the numerical algorithm, a uniform $nite element mesh with 2001 nodes for the interval
[ − 1; 1] and an unstructured and locally re$ned triangular $nite element mesh with 4977 nodes for
the domain 	 = [ − 1; 1] × [0; zmax] have been used. The time step Pt = 10−1 (which represents 104

years) and the parameters !1 = 0:005; !2 = 0:05 in the duality method have been considered.
Figs. 1 and 2 show the evolution of basal magnitudes Tb and ub, respectively. First, notice the

expansion process of the ice base from t = 25 to t = 75, the temperate basal ice being located at the
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Fig. 1. Basal temperature: t = 25 (−); t = 50(−−); t = 75 (· · ·).
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Fig. 2. Basal velocity: t = 25 (−), t = 50 (−−); t = 75 (· · ·).

Fig. 3. Velocity $eld at time t = 50.

center. In Fig. 2, basal sliding from the center to the margins even occurs in small cold ice regions
as stated by the model.

For t = 50, Figs. 3 and 4 show the computed velocity $eld and the isotherms, respectively. Notice
the qualitative aspect of the velocity and the behaviour of the moving boundaries appearing in the
problem: the ice sheet base free boundary S−(t) and S+(t), the ice–atmosphere interface �(t) and
the cold ice–temperate region interface (melting point isotherm adhered at the ice-sheet bottom).
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Fig. 4. Isotherms at time t = 50.
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