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Abstract

We investigate classification results for general quadratic functions on torsion abelian groups. Un-
like the previously studied situations, general quadratic functions are allowed to be inhomogeneous or
degenerate. We study the discriminant construction which assigns, to an integral lattice with a distin-
guished characteristic form, a quadratic function on a torsion group. When the associated symmetric
bilinear pairing is fixed, we construct an affine embedding of a quotient of the set of characteristic
forms into the set of all quadratic functions and determine explicitly its cokernel. We determine a
suitable class of torsion groups so that quadratic functions defined on them are classified by the stable
class of their lift. This refines results due to A.H. Durfee, V. Nikulin, and E. Looijenga and J. Wahl.
Finally, we show that on this class of torsion groups, two quadratic functionsq, q ′ are isomorphic if
and only if they have equal associated Gauss sums and there is an isomorphism between the associ-
ated symmetric bilinear pairingsbq andbq ′ which sendsdq to dq ′ , wheredq is the homomorphism
defined bydq(x) = q(x) − q(−x). This generalizes a classical result due to V. Nikulin. Our results
are elementary in nature and motivated by low-dimensional topology.
© 2004 Published by Elsevier B.V.
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0. Introduction

A quadratic functionq on an abelian groupG is a map, with values in an abelian group
such that the mapb : (x, y) �→ q(x + y) − q(x) − q(y) is Z-bilinear. Such a mapq
satisfiesq(0)= 0. If, in addition,q satisfies the relationq(nx)= n2q(x) for all n ∈ Z and
x ∈ G, thenq is homogeneous. In general, a quadratic function cannot be recovered from
the associated bilinear pairingb. Homogeneous quadratic functions on torsion groups first
appeared as quadratic enhancements of the linking pairing on the torsion subgroup of the
(2n− 1)–th homology group of an oriented(4n− 1)–manifold. Typically, these quadratic
enhancements appear in topology when the manifold is equipped with a framing[1,8,10].
They were used as a fundamental ingredient in the classification up to regular homotopy of
immersed surfaces inR3 [12]. They were extensively studied from the algebraic viewpoint
of Witt and Grothendieck groups, see for instance[5–7]. However, there are topological
motivations to consider inhomogeneous enhancements of the linking pairing[3,9]. It is
also convenient to consider possibly degenerate quadratic functions[2]. The motivation for
consideringgeneralquadratic functions stems from our work on closed Spinc-manifolds of
dimension 3 and their finite type invariants[4].

This paper studies and gives classification results for quadratic functions on torsion
abelian groups with values inQ/Z. These results are relatively well known in the case of
nondegeneratesymmetric bilinear pairings andhomogeneousquadratic functions. However,
the authors have not succeeded in finding in the literature the general results for quadratic
functions.

To describe the first result, we review (Section 2.2) a construction, known as the discrim-
inant construction. This construction assigns to a symmetric bilinear latticeM equipped
with a certain element (called a characteristic form)c ∈ Hom(M,Z), a quadratic function
on a torsion abelian group, with values inQ/Z. The first result is an embedding theorem
(Theorem 2.10) which describes the quadratic functions on a torsion abelian group with
values inQ/Z, come from a characteristic form (for a fixed symmetric bilinear pairing). Un-
like the previously studied situations, the quadratic functions obtained by the discriminant
construction may be degenerate and the torsion abelian group may be infinite.

The second result addresses the problem of classifying up to isomorphism the quadratic
functions arising from the discriminant construction. This problem is closely related to
the stable classification of symmetric bilinear lattices equipped with characteristic forms.
More precisely, we prove (Section 3) that the stable equivalence on lattices is equivalent
to a particular class of isomorphism between the associated quadratic functions, which we
determine (Theorem 3.2). The main application of this result has a particularly simple form:
the stable equivalence can be realized by adding 1-dimensional unimodular lattices (Corol-
lary 3.5). This generalizes a classical result for lattices without distinguished characteristic
forms.

While the second result theoretically solves the classification problem of a vast class of
quadratic functions (which includes all nondegenerate quadratic functions when the group
is finite), or at least reduces it to a stable classification problem for lattices with characteristic
forms, it does not seem to allow to decide concretely whether two quadratic functions are
isomorphic. This leads to the problem of classification of quadratic functions by means
of invariants. We propose a solution to the problem on finite abelian groups by giving a
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short proof (Section 4, Theorem 4.1) that the isomorphism class of a quadratic function
q on a finite abelian groupG is determined by the isomorphism class of the associated
bilinear pairingb equipped with a distinguished elementdq ∈ Hom(G,Q/Z), called the
homogeneity defect ofq, and the Gauss sum

∑
x∈G exp(2�iq(x)) associated toq. This

result is then extended to a more general class of torsion groups. The particular case of
homogeneous quadratic functions (dq = 0) on a finite groupG was proved by Nikulin by
an induction on the number of generators ofG [11, Theorem 1.11.3].

These three results were applied to the classification of degree 0 finite type invariants of
Spinc 3-manifolds[4].

1. Preliminaries

Let G be an abelian group. A setX on whichG acts freely and transitively is anaffine
space over G. For such actions, the left multiplicative notation is used. Any bilinear pairing
b : G×G′ → H , whereG, G′ andH are abelian groups, has a left (resp. right) adjoint map
·b̂ : G→ Hom(G′, H) (resp.̂b· : G′ → Hom(G,H)), defined by·b̂(x)(y)=b(x, y) (resp.
b̂·(y)(x)= b(x, y)), x ∈ G, y ∈ G′. We say that the bilinear pairingb is left nondegenerate
(resp.left nonsingularor left unimodular) if its left adjoint map is injective (resp. bijective).
We define similarly right nondegenerate and right nonsingular. The bilinear pairingb is
nondegenerate(resp.nonsingular) if b is both left and right nondegenerate. In the case
whenG=G′ andb is symmetric,·b̂= b̂· is denoted bŷb. Throughout the paper, the abelian
groupG will be a finitely generated free module overR = Z or Q, or a torsion group. We
setCG = R if G is free andCG =Q/Z if G is torsion. It is convenient to define the dual of
G byG∗ = Hom(G,CG).

A mapq : G→ Q/Z on a torsion abelian groupG is aquadratic functionif the associated
mapbq : G × G → Q/Z, defined bybq(x, y) = q(x + y) − q(x) − q(y), is a bilinear
pairing. Note that this definition implies thatq(0) = 0 for any quadratic functionq. A
quadratic functionq : G→ Q/Z satisfyingq(nx)= n2q(x) for all x ∈ G and alln ∈ Z is
said to behomogeneous. We say that a mapq : G→ Q/Z is quadratic overa symmetric
bilinear pairingb : G × G → Q/Z if bq = b. A quadratic functionq is nondegenerate
(resp.nonsingularor unimodular) if bq is. The difference between two quadratic functions
q, q ′ over the same bilinear pairing lies inG∗. In particular, the set Quad(b) of all quadratic
functionsq : G → Q/Z over a symmetric bilinear pairingb : G × G → Q/Z is affine
over the groupG∗. The groupG acts also on Quad(b) via the adjoint map̂b : G→ G∗:

G×Quad(b)→ Quad(b), (�, q) �→ � · q = q + b̂(�).
If q is nonsingular, then Quad(b) is affine over the groupG. To anyq ∈ Quad(b), we
associate the quadratic functions−q ∈ Quad(−b) and q̄ ∈ Quad(b), respectively, by
(−q)(x) = −q(x) andq̄(x) = q(−x), x ∈ G. Clearly the mapsq �→ −q andq �→ q̄ are
involutive bijections. Thehomogeneity defectdq of a quadratic functionq ∈ Quad(b) is
defined bydq = q − q̄ ∈ G∗. Since

n2q(x)− q(nx)= n(n− 1)

2
dq(x),

a quadratic functionq is homogeneous if and only ifdq = 0.
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Let q : G → Q/Z be a quadratic function withbq = b. Let � : G′ → G be a group
isomorphism. We define�∗b : G′ × G′ → Q/Z to be the symmetric bilinear pairing
defined by

�∗b(x, y)= b(�(x),�(y)) for all x, y ∈ G′.
Similarly we define the quadratic function�∗q : G′ → Q/Z by

�∗q(x)= q(�(x)) for all x ∈ G′.
We say that two symmetric bilinear pairingsb, b′ (resp. two quadratic functionsq, q ′)
defined onG andG′ with values inQ/Z areisomorphic, and we writeb ∼ b′ (resp.q ∼
q ′), if there exists a group isomorphism� : G′ → G such that�∗b = b′ (resp.�∗q = q ′).
An isomorphism� : G′ → G induces a bijective correspondence between Quad(b) and
Quad(�∗b). In particular, the subgroup Iso(b) of automorphisms ofG preservingb acts on
Quad(b): � · q = �∗q.

2. Presentations of quadratic functions

2.1. Lattices and their characteristic forms

A lattice Mis a finitely generated free abelian group.A (symmetric) bilinear lattice(M, f )
is a symmetric bilinear formf : M ×M → Z on a latticeM. Consider the vector space
V =M ⊗Q overQ. The dimension ofV is finite and equal to the rank ofM. Any bilinear
lattice (M, f ) gives rise by extension of scalars to a bilinear pairingfQ : V × V → Q.
Let M� = {x ∈ V : fQ(x,M) ⊂ Z} be thedual lattice for (M, f ). ClearlyM ⊂ M�.
More generally, for any subgroupN of V, we can defineN� = {x ∈ V : fQ(x,N) ⊂ Z}.
A fractional (resp.integral) Wu classfor (M, f ) is an elementw ∈ V (resp. an element
w ∈ M) such that

∀x ∈ M, f (x, x)− fQ(w, x) ∈ 2Z.

The set of fractional (resp. integral) Wu classes is denoted by WuQ(f ) (resp. Wu(f )) and
is contained inM�. Furthermore, WuQ(f ) is an affine space over 2M�.

A characteristic formfor f is an elementc ∈ M∗ satisfying

∀x ∈ M, f (x, x)− c(x) ∈ 2Z.

The set Char(f )of characteristic forms forf is an affine space over Hom(M,2Z). Sincex �→
f (x, x)mod 2Z is a homomorphism, Char(f ) is not empty. Each fractional Wu class gives
a characteristic form by the equivariant mapw �→ fQ(w,−)|M , WuQ(f )→ Char(f ).

Lemma 2.1. If f is nondegenerate, then the mapw �→ fQ(w,−)|M is a bijective corre-
spondence betweenWuQ(f ) andChar(f ).

Proof. Since f is nondegenerate,̂f : M → M∗ is injective. Thenf̂Q : V → V ∗ =
Hom(V ,Q) is bijective. Hence, the mapx �→ fQ(x,−)|M, WuQ(f ) → Char(f ) is
also bijective. �
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The quotientM̄ =M/Ker f̂ is finitely generated free. Hence, the short exact sequence

0→ Ker f̂
i→M

p→ M̄ → 0 (2.1)

is split. Any sections of p induces an isomorphism

(M, f ) � (M̄, f̄ )⊕ (Ker f̂ ,0),

wheref̄ : M̄ × M̄ → Z is the nondegenerate pairing induced byf.

Lemma 2.2. There is an injectionp∗|Char(f̄ ) : Char(f̄ )→ Char(f ) induced by p, and any

section s of p induces an affine retractions∗|Char(f ) : Char(f )→ Char(f̄ ) for p∗|Char(f ).

Proof. Sincep ◦ s = IdM̄ , we haves∗ ◦ p∗ = IdM̄∗ . Moreover, one easily verifies that
p∗(Char(f̄ )) ⊂ Char(f ) ands∗(Char(f )) ⊂ Char(f̄ ). �

2.2. The discriminant construction

Suppose we are given a bilinear lattice(M, f ) as above. Consider the torsion group
Gf =M�/M and the symmetric bilinear pairing

Lf : Gf ×Gf → Q/Z

defined by

Lf ([x], [y])= fQ(x, y)modZ, x, y ∈ M�. (2.2)

SinceM�� =M + Ker f̂Q, the radical ofLf is

Ker L̂f = (M + Ker f̂Q)/M = Ker f̂Q/Ker f̂ = (Ker f̂ )⊗Q/Z. (2.3)

In particular,Lf is nondegenerate if and only iff is nondegenerate.
Consider the torsion subgroup T Cokerf̂ of Coker f̂ . The adjoint map̂fQ : V → V ∗

restricted toM� induces a canonical epimorphismBf : Gf → T Cokerf̂ . Hence there is
a short exact sequence

0→ Ker L̂f → Gf → T Cokerf̂ → 0. (2.4)

It follows that the symmetric bilinear formLf factors to a nondegenerate pairing

�f : T Cokerf̂ × T Cokerf̂ → Q/Z.

It also follows from (2.4) thatGf = 0 if and only ifM� =M if and only if f is unimodular.
The mapBf : Gf → T Cokerf̂ induces a canonical isomorphism(T Cokerf̂ , �f ) �
(Gf̄ , Lf̄ ). In general, observe that a sectionsof p in (2.1) induces a section of (2.4). Hence
there is a (noncanonical) orthogonal decomposition:

(Gf , Lf ) � (T Cokerf̂ , �f )⊕ (Ker L̂f ,0). (2.5)

For future use, we notice that the converse of our previous observation holds.
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Lemma 2.3. Any section ofBf : Gf → T Cokerf̂ is induced by a section ofp : M → M̄.

Proof. The underlying map of the affine map from sections ofp to section ofBf is the
natural homomorphism Hom(M̄,Ker f̂ ) → Hom(Gf̄ ,Ker L̂f ). It suffices to lift � ∈
Hom(Gf̄ ,Ker L̂f ) to a map�̃ ∈ Hom(M̄�,Ker f̂Q); the restriction�̃|M̄ will be the de-

sired section ofp. SinceM̄� is free, the lift exists. �

Suppose next that(M, f, c) is a bilinear lattice equipped with a characteristic formc ∈
M∗. Denote bycQ : V → Q the linear extension ofc . We associate to(M, f, c) a quadratic
function�f,c : Gf → Q/Z overLf by

�f,c([x])= 1
2(fQ(x, x)− cQ(x))modZ, x ∈ M�.

Observe that the homogeneity defectd�f,c ∈ G∗f = Hom(Gf ,Q/Z) is given by

d�f,c ([x])=−cQ(x)modZ, x ∈ M�. (2.6)

Definition 2.4. The triple(M, f, c) is said to be apresentationof the quadratic function
�f,c on the torsion groupGf . The assignation(M, f, c) �→ (Gf ,�f,c) is called thedis-
criminantconstruction.

Lemma 2.5. The discriminant construction preserves orthogonal sums.

Remark 2.6. The following conditions are seen to be equivalent from (2.3) and (2.4):

• f is nondegenerate;
• Lf is nondegenerate;
• Gf is a finite product of cyclic groups;
• Cokerf̂ is a finite product of cyclic groups;
• Gf and Cokerf̂ are isomorphic.

If one of these conditions is satisfied,Bf : Gf → Cokerf̂ is an isomorphism which
induces a bijective correspondence Quad(�f ) � Quad(Lf ). Hence�f,c factors viaBf
to a nondegenerate quadratic function over�f . More generally,�f,c factors viaBf to a
nondegenerate quadratic function over�f if and only if c can be taken to be the image
of a fractional Wu class (cf. Lemma 2.1). This particular case coincides with the usual
discriminant construction, as presented for example in[2, Section 1.2.1].

The map(M, f, c) �→ (Gf ,�f,c), from the monoid of nondegenerate bilinear lattices
equipped with characteristic forms to the monoid of isomorphism classes of nondegenerate
quadratic functions on finite groups, is known to be surjective[14].

Remark 2.7. There exists a discriminant construction which applies to arbitrary Dedekind
rings (but produces onlyhomogeneousquadratic functions) instead ofZ, see[5]. This leads
to the following

Question. Does there exist a generalization of the discriminant construction producing
from lattices over Dedekind domains quadratic functions on torsion modules over Dedekind
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domains? (The notion of quadratic function should be generalized first.) More generally,
can one define a localization of quadratic functions? (For homogeneous quadratic functions,
see[6].)

2.3. Properties of the discriminant construction

Consider the bilinear mapM∗×M�→ Q defined by(�, x) �→ �F (x). This map induces
a bilinear pairing

〈−,−〉 : Cokerf̂ ×Gf → Q/Z.

Lemma 2.8. The bilinear pairing〈−,−〉 : Cokerf̂ × Gf → Q/Z is left nondegenerate
(respectively left nonsingular if and only if f is nondegenerate) and right nonsingular.

Proof. Consider the left adjoint map Coker̂f → Hom(Gf ,Q/Z), [�] �→ 〈[�],−〉 (modZ).
Let [�] lie in the kernel, that is,�Q(M

�) ⊆ Z. To prove that[�] = 0, it is sufficient to show
that there existsv ∈ M such that�= f̂ (v). Assume first thatf is nondegenerate. Then̂fQ is
bijective, so there is an elementv ∈ V such that�Q=f̂Q(v). Since�Q(M

�)=fQ(v,M
�) ⊂

Z, this means thatv ∈ M�� =M. To deal with the general case (f possibly degenerate),
we consider the nondegenerate symmetric bilinear pairingf̄ induced byf on the lattice
M̄ =M/Ker f̂ . We shall use the following observation.

Sublemma 1. Let N be a free abelian group and letW =N ⊗Q. Let � ∈ HomQ(W,Q).
We have�= 0 if and only if�(W) ⊆ Z.

Recall that Ker̂f is a free subgroup ofM and Kerf̂Q=(Ker f̂ )⊗Q.We have�Q(Ker f̂Q)

⊆ �Q(M
�) ⊆ Z.Apply the sublemma above withN=Ker f̂ to�Q|Ker f̂Q

yields�Q(Ker f̂Q)

= 0. In particular,�(Ker f̂ ) = 0. Hence,� induces a form̄� : M̄ → Z such that̄�(M̄�) ⊆
Z. Applying the previous (nondegenerate) case to�̄ yields an element̄v ∈ M̄ such that

�̄= ̂̄f (v̄). Any lift v ∈ M of v̄ satisfies�= f̂ (v). So[�] = 0 as desired.
Suppose thatf is nondegenerate. By Remark 2.6,Gf (resp. Coker̂f ) is a product of cyclic

groups(1/n)Z/Z (resp.Z/nZ). The injective left adjoint map Coker̂f → Hom(Gf ,Q/Z)
is between two groups of the same finite order, so must be surjective as well. Suppose that
f is not nondegenerate. Then Coker̂f (resp.Gf ) has a summandZ (resp. a summand
which is Q/Z). It suffices to show that the mapZ → Hom(Q/Z,Q/Z), r �→ r IdQ/Z

is not surjective. Recall thatQ/Z =⊕
pAp, where the direct sum is over all primes and

Ap is the subgroup consisting of elementsx ∈ Q/Z such thatpkx = 0 for somek. Con-
sider the map�p : Ap → Ap which is multiplication byp. Then the product

∏
p�p ∈∏

p Hom(Ap,Q/Z)= Hom(Q/Z,Q/Z) is not in the image.

Consider the right adjoint mapGf → Hom(Cokerf̂ ,Q/Z). An element[x] ∈ Gf lies
in the kernel if and only if�Q(x)= 0 modZ for all � ∈ M∗. In particular, for a unimodular
bilinear pairingg onM, gQ(v, x)= 0 modZ for all v ∈ V . Unimodularity ofg implies that
x ∈ M. Thus[x] = 0.

We now prove that the right adjoint map is surjective. Consider the canonical isomorphism
V → V ∗∗, v �→ 〈−, v〉. This map sendsM� ontoN = {〈−, w〉 ∈ V ∗∗ : 〈f̂ (M),w〉 ⊆ Z}
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which is a subgroup ofV ∗∗. The subgroupN0 = {x ∈ Hom(M∗,Q) : 〈f̂ (M), x〉 ⊆ Z}
embeds inN by linear extension overQ: M∗ → M∗ ⊗ Q = V ∗. Any x ∈ N0 induces
a homomorphism Coker̂f → Q/Z, hence there is an induced homomorphismN0 →
Hom(Cokerf̂ ,Q/Z), which is obviously surjective (sinceM∗ is free). Hence any� ∈
Hom(Cokerf̂ ,Q/Z) lifts to an elementx ∈ N0 ⊆ N wherex = 〈−, v〉 for somev ∈
M�.Thus�= 〈−, [v]〉. �

Lemma 2.9. The cokernel of the inclusionT Cokerf̂ ↪→ Cokerf̂ is (Ker f̂ )∗.

Proof. SinceM/Ker f̂ is free, the inclusion Ker̂f ↪→ M induces a surjective homomor-
phismM∗ → (Ker f̂ )∗ which sendŝf (M) to 0. Hence we obtain a well-defined surjective
homomorphism Coker̂f → (Ker f̂ )∗, the kernel of which, since(Ker f̂ )∗ is free of same
rank as Coker̂f , consists of all torsion elements.�

By (2.3), any homomorphism Ker̂f → Z induces by tensoring withQ/Z a homo-
morphism Ker̂Lf → Q/Z. Denote byjf : (Ker f̂ )∗ → (Ker L̂f )∗ the corresponding
homomorphism.

Let c ∈ Char(f ). Observe that�
f,c+2f̂ (u) = �f,c for anyu ∈ M. Hence�f,c depends

on c only mod 2̂f (M). Furthermore, the abelian groupM∗/f̂ (M) = Cokerf̂ acts freely
and transitively on Char(f )/2f̂ (M) by

[�] · [c] = [c + 2�] ∈ Char(f )/2f̂ (M), � ∈ M∗, c ∈ Char(f ).

The following result is the main result of this section.

Theorem 2.10.The mapc �→ �f,c induces an affine embedding

�f : Char(f )/2f̂ (M) ↪→ Quad(Lf )

over the opposite of the group monomorphism·〈−,−〉 : Cokerf̂ ↪→ Hom(Gf ,Q/Z).
Furthermore,

Coker�f � Cokerjf = (Ker L̂f )∗

jf ((Ker f̂ )∗)

and givenq ∈ Quad(Lf ), the following two assertions are equivalent:

• q ∈ Im �f ;
• q|Ker L̂f

∈ Im jf .

As a consequence of Lemma 2.8, we have:

Corollary 2.11. The map�f is bijective if and only if f is nondegenerate.

Combining Corollary 2.11 and Lemma 2.2, we obtain the following result.
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Corollary 2.12. For any section s ofp : M → M, the map

Char(f )→ Quad(�f ), c �→ �f̄ ,s∗|Char(f )(c)

is onto.

Remark 2.13. This construction applies in particular when(M, f ) is the homology group
H2(X) of a compact connected oriented simply-connected 4-manifoldX, equipped with its
symmetric bilinear intersection pairing. Then�f can be identified with the torsion linking
pairing on TH1(�X) (up to sign depending on the orientation of(X, �X)). For details,
see for example[2,5]. FurthermoreGf identifies withH2(�X;Q/Z) and the affine space
Char(f )/2f̂ (M) identifies with the affine space of Spinc-structures on�X. See[4] for
further details about the last point.

Proof of Theorem 2.10.Let us prove that the map�f is indeed affine over the homomor-
phism stated above. Let� ∈ M∗ andx ∈ M�: �f,[�]·[c]([x])−�f,[c]([x])=�f,c+2�([x])−
�f,c([x]) = −�Q(x)modZ. Hence�f,[�]·[c]([x]) = �f,[c]([x]) − 〈[�], [x]〉. The fact that

�f is injective follows from the fact that the map·〈−,−〉 : Cokerf̂ → Hom(Gf ,Q/Z) is
injective and this was proved in Lemma 2.8.

Next, we proceed to determine Coker�f . Consider the following diagram:

0

0

Coker f (Ker f )

jf

(Ker L f )Hom (Gf , �/�)(T Coker f )

0

0

*

* *

(T Coker f )

.〈−,−〉� f�

The first row is given by Lemma 2.9. The second row is obtained from the short exact
sequence (2.4) by applying the exact functor Hom(−,Q/Z) (sinceQ/Z is divisible). It
follows from the definitions that the diagram is commutative.

A standard argument (for instance, the “snake lemma”) applied to the diagram leads to
Coker·〈−,−〉 � Cokerjf .

Finally we prove the last statement of the theorem. By definition,c(Ker f̂ ) ⊆ 2Z. In
particular,�f,c|Ker L̂f

: Ker L̂f → Q/Z is a homomorphism given by

�f,c([x])=−1
2 cQ(x)modZ, x ∈ M + Ker f̂Q ⊆ M�. (2.7)

Hence�f,c|Ker L̂f
= jf (−1

2c) ∈ Im jf . Conversely, letq ∈ Quad(Lf ) such thatq|Ker L̂f
∈

Im jf . Pickc ∈ Char(f ).Then the restriction homomorphism(Gf )∗ → (Ker L̂f )∗ induced
by Ker L̂f ↪→ Gf sendsq − �f,c into Im jf . Since

Coker·〈−,−〉 � Cokerjf ,

there is an element[�] ∈ Cokerf̂ such thatq−�f,c=〈[�],−〉. Since the map�f is affine

over Cokerf̂ ↪→ Hom(Gf ,Q/Z), it follows thatq = �f,[−�]·[c]. �
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Corollary 2.14. A homomorphismh : Gf → Q/Z is in the image of·〈−,−〉 : Cokerf̂ →
Hom(Gf ,Q/Z) if and only ifh|Ker L̂f

: Ker L̂f → Q/Z lifts to a homomorphismKer f̂ →
Z.

Proof. Seth′ = h|Ker L̂f
. By definition,h′ lifts to Ker f̂ if and only if h′ ∈ Im jf . Now

apply Theorem 2.10. �

We complete this section with a simple observation on Coker�f . Let p be a prime. Let

Zp = lim← Z/pkZ be the ring ofp-adic numbers. Set̂Z=∏
pZp where the product is taken

over all primes. The mapn �→ (nmodpk)k�0 defines a natural embeddingZ ↪→ Zp.
Consequently, there is a diagonal embeddingZ ↪→ Ẑ. SinceQ/Z is a direct limit of finitely
generated subgroups and since any finitely generated torsion group decomposes as a direct
sum of cyclic subgroups, we see the following:

Lemma 2.15. There is an isomorphism� : Hom(Q/Z,Q/Z) � Ẑ.

Denote byj the embeddingZ → Hom(Q/Z,Q/Z), 1 �→ IdQ/Z. The diagram

�

� Hom(�/�,�/�)
�

j

is commutative. Recall, from (2.3), thatjf is the canonical injection Hom(Ker f̂ ,Z) →
Hom(Ker f̂⊗Q/Z,Q/Z). Since Kerf̂ is free abelian, we may regard (by means of Lemma
2.15)jf simply as the diagonal embedding� : Ker f̂ → Ker f̂ ⊗ Ẑ. Therefore,

Coker�f � Cokerjf � (Ker f̂ )⊗ Ẑ

�(Ker f̂ )
. (2.8)

3. The stable classification theorem

The goal is to generalize a result due to Wall and Durfee[15, Corollary 1]; [5, Theorem
4.1]. We define a natural notion of stable equivalence on lattices equipped with a character-
istic form. The resulting stable classification problem is shown to be essentially equivalent
to the classification of the quadratic functions induced by the discriminant construction
(Section 2).

There is a natural notion of isomorphism among triples(M, f, c) defined by bilinear
lattices with characteristic forms: we say that two triples(M, f, c) and (M ′, f ′, c′) are
isomorphic (denoted(M, f, c) � (M ′, f ′, c′)) if there is an isomorphism� : M → M ′
such that�∗f ′ = f and �∗c′ = cmod 2f̂ (M). All such triples form a monoid for the
orthogonal sum⊕. Two triples (M, f, c) and (M ′, f ′, c′) are said to bestably equiva-
lent if they become isomorphic after stabilizations with some unimodular lattices, that is,
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there is an isomorphism (called astable equivalence) between(M, f, c) ⊕ (U, g, u) and
(M ′, f ′, c′)⊕ (U ′, g′, u′) for some unimodular lattices(U, g, u) and(U ′, g′, u′) equipped
with characteristic formsu andu′, respectively. Since, as we have seen in Section 2, uni-
modular lattices induce trivial discriminant bilinear forms and quadratic functions, a stable
equivalence between two triples induces an isomorphism of the corresponding quadratic
functions. We are interested in whether the converse holds and to what extent. In fact, a
positive answer is provided in the case of nondegenerate lattices.

Proposition 3.1. Two nondegenerate symmetric bilinear lattices(M, f, c) and(M ′, f ′, c′)
equipped with characteristic forms are stably equivalent if and only if their associated
quadratic functions(Gf ,�f,c) and(Gf ′ ,�f ′,c′) are isomorphic. In fact, any isomorphism
� between their associated quadratic functions(Gf ,�f,c) and(Gf ′ ,�f ′,c′) lifts to a stable
equivalence between(M, f, c) and(M ′, f ′, c′).

Proof. It is sufficient to prove the second statement. There is an obvious notion of stable
equivalence for symmetric bilinear lattices (simply forget the characteristic form). Consider
the symmetric bilinear lattices(M, f ) and (M ′, f ′). The hypothesis implies thatLf ′ =
�∗Lf . It follows from [5, Proof of Theorem 4.1]that there is stable equivalences between
(M, f ) and (M ′, f ′) inducing �. Explicitly, s is an isomorphism(M, f ) ⊕ (U, g) �
(M ′, f ′) ⊕ (U ′, g′), where(U, g) and (U ′, g′) are unimodular lattices. In particular,s
induces an affine isomorphism Char(f ⊕ g) � Char(f ′ ⊕ g′). Let u ∈ Char(g). We
haves(c ⊕ u) = c′′ ⊕ u′ ∈ Char(f ′ ⊕ g′) = Char(f ′) × Char(g′). We have to show that
c′′ = c′mod 2̂f ′(M ′). By hypothesis,�f ′,c′ ◦ �= �f,c. Since� is induced bys, we have
�f ′,c′ = �f ′,s(c). The desired result follows from Theorem 2.10.�

In the general case, we have to deal with the potential degeneracy of lattices. The first
observation is that it isnot truethat any isomorphism between(Gf ,�f,c) and(Gf ′ ,�f ′,c′)
will lift to a stable equivalence between(M, f, c) and (M ′, f ′, c′). In fact, the simplest
counterexample is given by the degenerate bilinear lattice(Z,0,0) (with 0 as characteristic
form).We haveG0=Q/Z,�0,0([x])=0. Trivially any automorphism ofQ/Z is an automor-
phism of the degenerate quadratic function(Q/Z,0). However, not every automorphism
of Q/Z lifts to an automorphism ofZ.

For each bilinear lattice(M, f ), Lemma 2.8 gives an isomorphism〈−,−〉· : Gf →
Hom(Cokerf̂ ,Q/Z). Therefore any isomorphism� : Cokerf̂ → Cokerf̂ ′ induces an
isomorphism�� : Gf ′ → Gf . The map

� �→ ��, Iso(Cokerf̂ ,Cokerf̂ ′)→ Iso(Gf ′ ,Gf )

is injective (but not surjective in general: see Lemma 3.4 below). We now state the main
theorem of this section.

Theorem 3.2. Two bilinear lattices(M, f, c) and (M ′, f ′, c′) with characteristic forms
are stably equivalent if and only if there exists an element

�� ∈ Im(Iso(Cokerf̂ ,Cokerf̂ ′)→ Iso(Gf ′ ,Gf ))



116 F. Deloup, G. Massuyeau / Journal of Pure and Applied Algebra 198 (2005) 105–121

such that the associated quadratic functions(Gf ,�f,c) and(Gf ′ ,�f ′,c′) are isomorphic

via ��. Furthermore, any such isomorphism between(Gf ′ ,�f ′,c′) and(Gf ,�f,c) lifts to
a stable equivalence between(M, f, c) and(M ′, f ′, c′).

In the sequel,(M, f, c) and(M ′, f ′, c′) denote bilinear lattices with characteristic forms.
SetNf = Ker L̂f andNf ′ = Ker L̂f ′ .

Lemma 3.3. Any isomorphism� : Cokerf̂ → Cokerf̂ ′ induces an isomorphismKer f̂ ′ →
Ker f̂ . Furthermore, if �([c]) = [c′] then � induces an isomorphism from the triple
(Ker f̂ ′,0, c′|Ker f̂ ′) onto the triple(Ker f̂ ,0, c|Ker f̂ ).

Proof. Consider the following diagram:

0

0

T Coker  f

T Coker  f ′

Coker  f *

*Coker  f ′

(Ker  f  ) 0

(Ker  f ′)

[�]�� T Coker  f � �

0

where the two exact rows are given by Lemma 2.9 and where[�] is induced by� and is an
isomorphism. Applying Hom(−,Z) to [�] yields an isomorphism(Ker f̂ ′)∗∗ = Ker f̂ ′ →
(Ker f̂ )∗∗ = Ker f̂ . For the second statement, the image of[c] ∈ Cokerf̂ in (Ker f̂ )∗ is
just c|Ker f̂ . Thus�([c])= [c′] implies that[�](c|Ker f̂ )= c′|Ker f̂ ′ , as desired. �

Lemma 3.4. Let	 ∈ Iso(Gf ′ ,Gf ). Then, the following assertions are equivalent:

(1) there exists� ∈ Iso(Cokerf̂ ,Cokerf̂ ′) such that	= ��;
(2) 	(Nf ′)=Nf and the map	|Nf ′ : Nf ′ → Nf lifts to an isomorphismKer f̂ ′ → Ker f̂ .

Proof. (1)  ⇒ (2): Lemma 3.3 gives an isomorphism Hom([�],Z) : Ker f̂ ′ → Ker f̂ .
Since	=�� corresponds to Hom(�,Q/Z) via the right adjoint map〈−,−〉·, Hom([�],Z)
is a lift of 	|Nf ′ : Nf ′ → Nf .

(2)  ⇒ (1): for [�] ∈ Cokerf̂ , consider the homomorphism

h : [x] �→ 〈[�],	([x])〉, Gf ′ → Q/Z.

Since by hypothesis,	|Nf ′ lifts to Ker f̂ ′, the maph|Nf ′ also lifts to a homomorphism Ker

f̂ ′ → Z. Hence by Corollary 2.14 applied toh|Nf ′ , we obtain thath : Gf ′ → Q/Z lies

in the image of·〈−,−〉 : Cokerf̂ ′ → Hom(Gf ′ ,Q/Z). Thus there exists[
] ∈ Cokerf̂ ′
such thath= 〈[
],−〉. In other words,

∀[x] ∈ Gf ′ , 〈[�],	([x])〉 = 〈[
], [x]〉 ∈ Q/Z.
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The assignment� : [�] �→ [
] is additive and is bijective since	 is bijective. By construc-
tion, 	= ��. �

Proof of Theorem 3.2. The nondegenerate case is treated by Proposition 3.1. Consider
now the general case. Lets be a stable equivalence between lattices, that is, an isomorphism
of symmetric bilinear latticess : (M ′, f ′, c′)⊕ (U ′, g′, u′)→ (M, f, c)⊕ (U, g, u)where
(U ′, g′, u′) and(U, g, u) are unimodular lattices equipped with characteristic forms. The
maps induces via the discriminant construction an isomorphism	 : Gf ′ → Gf between
�f ′,c′ and�f,c since unimodular lattices induce trivial quadratic functions. The mapsalso

induces in the obvious way an isomorphism� : Cokerf̂ → Cokerf̂ ′ and it is easily verified
that�� =	.

Conversely, suppose that the given isomorphism	 between(Gf ′ ,�f ′,c′) and(Gf ,�f,c)
is induced by an isomorphism� : Cokerf̂ → Cokerf̂ ′. First, the homogeneity defects
are preserved by	: d�f ′,c′ = d�f,c ◦ 	. Since 	 = ��, it follows from (2.6) that

�([c])=[c′]. By Lemma 3.3, the induced map Ker̂f ′ → Ker f̂ is an isomorphism between
(Ker f̂ ′,0, c′|Ker f̂ ′) and(Ker f̂ ,0, c|Ker f̂ ).

Let (M̄, f̄ ) be the nondegenerate lattice induced byf (see (2.1)). Choose a sections
of the canonical projectionp : M → M̄. Lemma 2.2 yields a characteristic form̄c =
s∗|Char(f )(c) ∈ Char(f̄ ). The sectionsof p induces a maps : Gf̄ → Gf such that�f̄ ,c̄ =
�f,c ◦ s. Thens′ = 	−1 ◦ s ◦ (�|T(Cokerf̂ ))

−1 is a section ofBf ′ : Gf ′ → T(Cokerf̂ ′).
Note that by Lemma 2.3,s′is induced by a section ofp′ : M ′ → M̄ ′, again denoteds′. If
we setc̄′ = (s′)∗|Char(f ′)(c′) ∈ Char(f̄ ′), we find that�f̄ ′,c̄′ = �f ′,c′ ◦ s′. It follows from
the that�f̄ ′,c̄′ ◦ �|T(Cokerf̂ ) = �f̄ ,c̄. Thus�f̄ ′,c̄′ � �f̄ ,c̄.Since these quadratic functions
are nondegenerate, Proposition 3.1 applies: the isomorphism�|T(Cokerf̂ ) lifts to a stable

equivalence between the lattices(M̄, f̄ , c̄) and(M̄ ′, f̄ ′, c̄′).
Finally, there is a stable equivalence between(M, f, c) � (M̄, f̄ , c̄)⊕(Ker f̂ ,0, c|Ker f̂ )

and(M ′, f ′, c′) � (M̄ ′, f̄ ′, c̄′)⊕ (Ker f̂ ′,0, c′|Ker f̂ ′)where the isomorphisms are induced
by the sectionssands′, respectively. By construction, the isomorphismGf ′ → Gf induced
by this stable equivalence is	. �

Consider two bilinear pairings, denoted±1, defined onZ by (1,1) �→ ±1, and both
equipped with the Wu class 1∈ Z. For n ∈ N, we denote byn(Z,±1,1) an n-fold
orthogonal sum of some copies of(Z,±1,1). The next result says that the stable equivalence
in Theorem 3.2 can be realized by adding orthogonal summands of(Z,1,1) and(Z,−1,1).

Corollary 3.5. Let (M, f, c) and(M ′, f ′, c′) be two symmetric bilinear lattices equipped
with characteristic forms. We have: (Gf ,�f,c) � (Gf ′ ,�f ′,c′) if and only if there exists
n, n′ ∈ N such that(M, f, c)⊕ n(Z,±1,1) � (M ′, f ′, c′)⊕ n′(Z,±1,1).

Proof. One direction is obvious. For the converse, we apply Theorem 3.2. We obtain uni-
modular lattices(U, g) and(U ′, g′), equipped with characteristic formss ands′, respec-
tively, such that there is an isomorphism sending(M, f, c)⊕ (U, g, u) onto(M ′, f ′, c′)⊕
(U ′, g′, u′). By stabilizing if necessary with(Z,1) and(Z,−1), we may assume that as a
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symmetric bilinear pairing(U, g) is indefinite1 and not even2 . Then a theorem asserts that
(U, g) is isomorphic to an orthogonal sum of copies of(Z,1) and(Z,−1) [13]. It follows
that (U, g, u) is isomorphic to a sum of copies of(Z,1,1) and(Z,−1,1). (Here we use
the fact that any odd integera ∈ Z induces a characteristic form for(Z,±1) and any such
triple (Z,±1, a) is isomorphic to(Z,±1,1). More generally, it follows from Section 2.1
that any unimodular bilinear lattice(U, g) has only one characteristic form modulo 2ĝ(U).)
A similar observation holds for(U ′, g′, u′). We conclude that there is a stable equivalence
between(M, f, c) and(M ′, f ′, c′) involving only a stabilization with copies of(Z,1,1)
and(Z,−1,1), which is the desired result.�

Remark 3.6 (and erratum). This is a generalization of[2, Lemma 2.1(b)](whose proof is
unfortunately incorrect).

4. A complete system of invariants

We present a complete system of invariants for a certain class of quadratic functions on
torsion abelian groups, including the nondegenerate quadratic functions defined on finite
abelian groups.

First, we assume that the abelian groupG is finite. LetS1 be the multiplicative group of
complex numbers of absolute value 1. For any quadratic functionq : G→ Q/Z, we define
the Gauss sum

�(q)= |G|−1/2
∑
x∈G

exp(2�iq(x)) ∈ C.

It is not difficult to see that�(q) ∈ S1 if q is nondegenerate. An important observation is
the relation

�(� · q)= e−2�iq(�)�(q), � ∈ G. (4.1)

Recall thatbq (resp.dq =q−q ∈ G∗) is the bilinear pairing (resp. the homogeneity defect)
associated toq. The following result is the main result of this section.

Theorem 4.1. Two nondegenerate quadratic functionsq : G→ Q/Z andq ′ : G′ → Q/Z

on finite abelian groups are isomorphic if and only if there is an isomorphism� : G→ G′
such that�∗bq ′ = bq , �∗dq ′ = dq and�(q ′)= �(q).

That two isomorphic quadratic functions have same Gauss sums and isomorphic associ-
ated bilinear pairings and homogeneity defects is straightforward. The nonobvious part lies
in the converse.

Since homogeneous quadratic functions have trivial homogeneity defect, we deduce the
following result (see[11, Theorem 1.11.3]).

1 i.e.g takes both positive and negative values.
2 even means thatg(x, x) ∈ 2Z for all x ∈ U .
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Corollary 4.2 (Nikulin [11]). Two nondegenerate homogeneous quadratic functions
q : G→ Q/Z andq ′ : G′ → Q/Z on finite abelian groups are isomorphic if and only if
there is an isomorphism� : G→ G′ such that�∗bq ′ = bq and�(q ′)= �(q).

The key step in the proof of Theorem 4.1 is the following fundamental lemma.

Lemma 4.3(Fundamental Lemma). Let q : G→ Q/Z be a quadratic function on a tor-
sion abelian group G. If� ∈ G is an element of order2 such thatq(�)= 0, then� · q ∼ q.

Proof of Theorem 4.1 from Lemma 4.3.With no loss of generality, we may assume that
G=G′, bq=bq ′ , dq=dq ′ and�(q)=�(q ′) and then show thatq ∼ q ′. The equalitybq=bq ′
implies (cf. Section 1) thatq ′ = � · q for some� ∈ G. The equalitydq = dq ′ implies 2�=0.
The equality�(q) = �(q ′), together with (4.1) imply thatq(�) = 0. Therefore Lemma 4.3
applies. �

Hence it remains to prove Lemma 4.3.

Proof of the Fundamental Lemma. If we were just looking for a permutation� of G
such thatq ◦ � = � · q, we could simply choose the involution(x �→ x + �) sinceq(x +
�) = q(x) + bq(x, �) + q(�) = q(x) + bq(�, x) = (� · q)(x), x ∈ G. So it is sufficient to
find � ∈ End(G) such that

(IdG + �)2= IdG and q(x + �(x))= q(x + �) for any x ∈ G. (4.2)

Since� has order 2, the map̂bq(�) ∈ G∗ is of order 2. For anyx ∈ G, definen(x) ∈ Z/2Z

by

n(x)

2
= bq(�, x) ∈ Q/Z.

Consider the map� : G→ G defined by

�(x)= n(x)�, x ∈ G.
It is a well-defined (independent of the lift inZ of n(x) ∈ Z/2Z) endomorphism ofG.
Using the fact thatq(�)= 0, we readily verify that� satisfies (4.2). �

We now deduce a more general version ofTheorem 4.1 which allows for some degeneracy.
Consider the following commutative diagram of extensions of abelian groups:

0 0A
i p

i′ p′

G B

0 0.A′ G′ B′

� [�]� 
 � ��

Here[�] : B → B ′ is the isomorphism induced by�.
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Definition 4.4. Given a diagram as above, two sectionss ands′ of p andp′, respectively,
are said�-compatible, or simplycompatible, if s′ = � ◦ s ◦ [�]−1.

p′

p

s

s′

G B

G′ B′

� [�]

Let q : G→ Q/Z be a quadratic function on a torsion abelian group. ClearlyG can be
regarded as the extension ofA= Ker b̂q byB =G/Ker b̂q . We shall say that(G, q) meets
thefiniteness conditionif the following two conditions are satisfied:

• G/Ker b̂q is finite;
• the extensionG of Ker b̂q byG/Ker b̂q is split.

Example 4.5. Let (M, f, c) be a symmetric bilinear lattice equipped with a characteristic
form c. Then, the quadratic function(Gf ,�f,c) meets the finiteness condition since by
(2.5), the short exact sequence (2.4) is split.

For any given sections of the projectionp : G → G/Ker b̂q , q ◦ s is a nondegenerate
quadratic function onG/Ker b̂q . Note that the finiteness condition implies that�(q ◦ s)
is well-defined for any sections. In the sequel, we denote byrq : Ker b̂q → Q/Z the
homomorphismq|Ker b̂q .

Corollary 4.6. Two quadratic functionsq : G→ Q/Z andq ′ : G′ → Q/Z satisfying the
finiteness condition are isomorphic if and only if there is an isomorphism� : G→ G′ such
that�∗bq ′ = bq , �∗dq ′ = dq , �∗rq ′ = rq and�(q ′ ◦ s′)= �(q ◦ s) for �-compatible sections
s ands′.

Proof. Consider the nondegenerate quadratic functionsq1=q ◦ s andq ′1=q ′ ◦ s′. The iso-
morphism� induces an isomorphism[�] : G/Ker b̂q → G′/Ker b̂q ′ . It is readily checked
that[�]∗bq ′1=bq1, [�]∗dq ′1=dq1 and�(q1)= �(q ′1). By Theorem 4.1,q1 andq ′1 are isomor-

phic. We deduce that(G, q) � (G/Ker b̂q , q1)⊕ (Ker b̂q , rq) is isomorphic to(G′, q ′) �
(G′/Ker b̂q ′ , q ′1)⊕ (Ker b̂q ′ , rq ′). �

Remark 4.7. Theorem 4.1 does not say that if�∗bq ′ = bq , �∗dq ′ = dq and�(q ′) = �(q),
then�∗q ′ = q. In general, the isomorphism betweenq andq ′ will be different from�.
However, how the isomorphism betweenq andq ′ will differ from � can be read off from
the proof of the Fundamental Lemma.
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