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Abstract

We investigate classification results for general quadratic functions on torsion abelian groups. Un-
like the previously studied situations, general quadratic functions are allowed to be inhomogeneous or
degenerate. We study the discriminant construction which assigns, to an integral lattice with a distin-
guished characteristic form, a quadratic function on a torsion group. When the associated symmetric
bilinear pairing is fixed, we construct an affine embedding of a quotient of the set of characteristic
forms into the set of all quadratic functions and determine explicitly its cokernel. We determine a
suitable class of torsion groups so that quadratic functions defined on them are classified by the stable
class of their lift. This refines results due to A.H. Durfee, V. Nikulin, and E. Looijenga and J. Wahl.
Finally, we show that on this class of torsion groups, two quadratic functipgsare isomorphic if
and only if they have equal associated Gauss sums and there is an isomorphism between the associ-
ated symmetric bilinear pairings, andb,, which sendsi, to d,/, whered, is the homomorphism
defined byd, (x) = ¢(x) — g(—x). This generalizes a classical result due to V. Nikulin. Our results
are elementary in nature and motivated by low-dimensional topology.
© 2004 Published by Elsevier B.V.
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0. Introduction

A quadratic functiorg on an abelian grouf® is a map, with values in an abelian group
such that the map: (x,y) — ¢g(x + y) — g(x) — ¢g(y) is Z-bilinear. Such a map
satisfiesy (0) = 0. If, in addition,q satisfies the relation(nx) = nq(x) foralln € Z and
x € G, thenqis homogeneous. In general, a quadratic function cannot be recovered from
the associated bilinear pairifig Homogeneous quadratic functions on torsion groups first
appeared as quadratic enhancements of the linking pairing on the torsion subgroup of the
(2n — 1)—th homology group of an orientgdn — 1)-manifold. Typically, these quadratic
enhancements appear in topology when the manifold is equipped with a frty8nb0]

They were used as a fundamental ingredient in the classification up to regular homotopy of
immersed surfaces iR [12]. They were extensively studied from the algebraic viewpoint

of Witt and Grothendieck groups, see for instafise7]. However, there are topological
motivations to consider inhomogeneous enhancements of the linking pErBiglt is

also convenient to consider possibly degenerate quadratic funf&ipiie motivation for
consideringgeneralguadratic functions stems from our work on closed Spiranifolds of
dimension 3 and their finite type invariarity.

This paper studies and gives classification results for quadratic functions on torsion
abelian groups with values i@/Z. These results are relatively well known in the case of
nondegeneratgymmetric bilinear pairings arftbmogeneouguadratic functions. However,
the authors have not succeeded in finding in the literature the general results for quadratic
functions.

To describe the first result, we review (Section 2.2) a construction, known as the discrim-
inant construction. This construction assigns to a symmetric bilinear |attiequipped
with a certain element (called a characteristic forr®) Hom(M, Z), a quadratic function
on a torsion abelian group, with values@yZ. The first result is an embedding theorem
(Theorem 2.10) which describes the quadratic functions on a torsion abelian group with
values inl)/Z, come from a characteristic form (for a fixed symmetric bilinear pairing). Un-
like the previously studied situations, the quadratic functions obtained by the discriminant
construction may be degenerate and the torsion abelian group may be infinite.

The second result addresses the problem of classifying up to isomorphism the quadratic
functions arising from the discriminant construction. This problem is closely related to
the stable classification of symmetric bilinear lattices equipped with characteristic forms.
More precisely, we prove (Section 3) that the stable equivalence on lattices is equivalent
to a particular class of isomorphism between the associated quadratic functions, which we
determine (Theorem 3.2). The main application of this result has a particularly simple form:
the stable equivalence can be realized by adding 1-dimensional unimodular lattices (Corol-
lary 3.5). This generalizes a classical result for lattices without distinguished characteristic
forms.

While the second result theoretically solves the classification problem of a vast class of
guadratic functions (which includes all nondegenerate quadratic functions when the group
is finite), or at least reduces it to a stable classification problem for lattices with characteristic
forms, it does not seem to allow to decide concretely whether two quadratic functions are
isomorphic. This leads to the problem of classification of quadratic functions by means
of invariants. We propose a solution to the problem on finite abelian groups by giving a
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short proof (Section 4, Theorem 4.1) that the isomorphism class of a quadratic function
g on a finite abelian grouf is determined by the isomorphism class of the associated
bilinear pairingb equipped with a distinguished elemeijt € Hom(G, Q/Z), called the
homogeneity defect af, and the Gauss sui’, ., exp2rig(x)) associated t@. This
result is then extended to a more general class of torsion groups. The particular case of
homogeneous quadratic functiong & 0) on a finite groups was proved by Nikulin by
an induction on the number of generator$xfl1, Theorem 1.11.3]

These three results were applied to the classification of degree 0 finite type invariants of
Spirf 3-manifolds[4].

1. Preliminaries

Let G be an abelian group. A s&ton whichG acts freely and transitively is aaffine
space over GFor such actions, the left multiplicative notation is used. Any bilinear pairing
b: Gx G’ — H,whereG, G/ andH are abelian groups, has a left (resp. right) adjoint map
b G — Hom(G’, H) (respb G’ — Hom(G, H)), defined byb(x)(y) =b(x, y) (resp.
b.(y)(x) =b(x,y)),x € G,y € G'. We say that the bilinear pairirigis left nondegenerate
(resp.left nonsingulaior left unimodulay if its left adjoint map is injective (resp. bijective).
We define similarly right nondegenerate and right nonsingular. The bilinear p#irisg
nondegeneratgresp.nonsingulaj if b is both left and right nondegenerate. In the case
whenG = G’ andbis symmetric, b=b. is denoted by> Throughout the paper, the abelian
groupG will be a finitely generated free module ovRr= Z or Q, or a torsion group. We
setCg = R if Gis free and’g = Q/Z if Gis torsion. It is convenient to define the dual of
G by G* = Hom(G, Cg).

Amapg : G — Q/Zonatorsion abelian groupis aquadratic functiorif the associated
mapb,: G x G — Q/Z, defined byb, (x, y) = q(x + y) — q(x) — q(»), is a bilinear
pairing. Note that this definition implies tha{0) = 0 for any quadratic functiom). A
quadratic functiony : G — Q/Z satisfyingg (nx) =n?q(x) forallx € Gand alln € Z is
said to benomogeneousVe say that a map: G — Q/Z is quadratic overa symmetric
bilinear pairingb: G x G — Q/Z if b, = b. A quadratic functiorg is nondegenerate
(resp.nonsingularor unimodulaj if 5, is. The difference between two quadratic functions
q, q' over the same bilinear pairing lies@. In particular, the set Qual) of all quadratic
functionsq: G — Q/Z over a symmetric bilinear pairing: G x G — Q/Z is affine
over the groupG*. The groupG acts also on Quad) via the adjoint map: G — G*:

G x Quadb) — Quadb), (x,q) > o-q=q + b(0).

If gis nonsingular, then Quahl) is affine over the grous. To anyg € Quadb), we

associate the quadratic functiorg; € Quad—b) andg € Quadb), respectively, by
(—g)(x) = —¢q(x) andg(x) = g(—x), x € G. Clearly the mapg — —q andq — g are
involutive bijections. Thehomogeneity defeet, of a quadratic functioy € Quadb) is

defined byd, =g — g € G*. Since

nn—1
2

a quadratic function is homogeneous if and onlydf, = 0.

nzq(x) —qg(nx) = dy(x),
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Letg: G — Q/Z be a quadratic function with, = b. Lety: G' — G be a group
isomorphism. We defing*b: G’ x G’ — Q/Z to be the symmetric bilinear pairing
defined by

Vib(x,y) =bW(x),Y(y)) forallx,yeG.
Similarly we define the quadratic functigiiq : G’ — Q/Z by

Viq(x) =q(x)) forall x e G'.

We say that two symmetric bilinear pairings 2’ (resp. two quadratic functions ¢’)
defined onG andG’ with values inQQ/Z areisomorphic and we writeb ~ b’ (resp.q ~
q'), if there exists a group isomorphisfn G’ — G such that)™b = b’ (resp.yy*q = ¢').
An isomorphismy: G’ — G induces a bijective correspondence between Quvaand
Quady/*b). In particular, the subgroup 16l of automorphisms o6 preservingd acts on

Quadb): Y - g = y’q.

2. Presentations of quadratic functions
2.1. Lattices and their characteristic forms

A lattice Mis a finitely generated free abelian groupsiifimetrigbilinear lattice(M, f)
is a symmetric bilinear fornyf: M x M — Z on a latticeM. Consider the vector space
V =M ® Q overQ. The dimension oY is finite and equal to the rank ®&. Any bilinear
lattice (M, f) gives rise by extension of scalars to a bilinear pairfag: V x V — Q.
Let M* = {x € V: fo(x, M) C Z} be thedual latticefor (M, f). ClearlyM c M°".
More generally, for any subgroup of V, we can defineV? = {x € V: fg(x, N) C Z}.
A fractional (resp.integral) Wu classfor (M, f) is an elemenw € V (resp. an element
w € M) such that

VxeM, f(x,x)— folw,x)e?2Z.

The set of fractional (resp. integral) Wu classes is denoted By M (resp. Wu f)) and
is contained in/?. Furthermore, WH ( f) is an affine space oven2”.
A characteristic fornfor f is an element € M* satisfying

VxeM, f(x,x)—ckx)e2”Z.

The set Charf) of characteristic forms fdiis an affine space over Ham, 27). Sincex +—
f(x, x)mod 2Z is a homomorphism, Chéf) is not empty. Each fractional Wu class gives
a characteristic form by the equivariant map—> fg(w, —)|y, Wu2(f) — Char(f).

Lemma 2.1. If f is nondegeneratehen the mapw — fo(w, —)|a IS a bijective corre-
spondence betweé/Mu@(f) andChar( f).

Proof. Sincef is nondegeneratef: M — M* is injective. Thenﬁ;p: V - V*=
Hom(V, Q) is bijective. Hence, the map — fo(x, —)|m, Wu@(f) — Chanf) is
also bijective. I
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The quotientV = M/Kerfis finitely generated free. Hence, the short exact sequence
0 Kerf>M=B M0 2.1)
is split. Any sectiors of p induces an isomorphism
(M, f)~ (M, f)® (Ker f, 0),

wheref: M x M — 7 is the nondegenerate pairing inducedfby

Lemma 2.2. Thereis an injectiorp*|Cha,(f) : Char f) — Char f) induced by pand any
section s of p induces an affine retractifichar r) : Char f) — Char f) for p*|Cha,(7).

Proof. Sincep o s =Idy;, we haves* o p* = Id;.. Moreover, one easily verifies that
p*(Char f)) c Chan f) ands*(Char f)) c Charf). O

2.2. The discriminant construction

Suppose we are given a bilinear lattice, f) as above. Consider the torsion group
Gr= M*®/M and the symmetric bilinear pairing

L;:GyxGp— Q)7
defined by

Ly(Ix), [y) = fa(x, yymodZ, x,y € M. (2.2)
SinceM™ = M + Ker fg, the radical ofL ; is

KerL; = (M + Ker fg)/M = Ker fg/Ker f = (Ker /) ® Q/Z. (2.3)

In particular,L  is nondegenerate if and onlyfifs nondegenerate.

Consider the torsion subgroup TColgélof Cokerf The adjoint mapf@ V — V*
restricted toM® induces a canonical epimorphisBy : Gy — TCokerf Hence there is
a short exact sequence

0— KerL; — G — TCokerf — 0. (2.4)
It follows that the symmetric bilinear form ; factors to a nondegenerate pairing
Af T Cokerf x TCokerf — Q/Z.

It also follows from (2.4) thaG ; =0 if and only if M¥ = M if and only if f is unimodular.
The mapB;: Gy — TCokerf induces a canonical isomorphis¢h Cokerf Af)
(G Lp). In general, observe that a sect®of pin (2.1) induces a section of (2.4). Hence
there |s a (noncanonical) orthogonal decomposition:

(G, L)~ (TCokerf, is) & (KerLy,0). (2.5)

For future use, we notice that the converse of our previous observation holds.
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Lemma 2.3. Any sectionoB;: G5 — TCokerfis induced by a section gf: M — M.

Proof. The underlying map of the affine map from sectiongdb section ofBy is the
natural homomorphism HotW, Ker f) — Hom(G 7, KerLy). It suffices to lifto €

Hom(G 7, Kerff) to a mapx € Hom(M?, Ker g); the restrictions| ;; will be the de-
sired section op. SinceM? is free, the lift exists. O

Suppose next thaiV, f, ¢) is a bilinear lattice equipped with a characteristic farra
M*. Denote byg : V — Qthe linear extension af. We associate tV, f, ¢) a quadratic
function¢,.: Gy — Q/Z overL by

GpoxD = $(falx,x) — cg(x)) modZ, x e M".
Observe that the homogeneity defégl;__lj € G% =Hom(G ¢, Q/Z) is given by

dg, (x]) = —cg(x)ymodZ, «x e M*. (2.6)

Definition 2.4. The triple (M, f, ¢) is said to be gresentatiorof the quadratic function
¢ .. on the torsion grouyl; s. The assignatioM, f, ¢) = (G, ¢ ) is called thedis-
criminantconstruction.

Lemma 2.5. The discriminant construction preserves orthogonal sums

Remark 2.6. The following conditions are seen to be equivalent from (2.3) and (2.4):

fis nondegenerate;

Ly is nondegenerate;

Gy is afinite product of cyclic groups;
Coker f is a finite product of cyclic groups;
G ; and Cokerf are isomorphic.

If one of these conditions is satisfieB; : Gy — Cokerf is an isomorphism which
induces a bijective correspondence Quad ~ QuadLy). Henced ;. factors viaBy
to a nondegenerate quadratic function oxer More generallyg (. factors viaBy to a
nondegenerate quadratic function ovgrif and only if ¢ can be taken to be the image
of a fractional Wu class (cf. Lemma 2.1). This particular case coincides with the usual
discriminant construction, as presented for examp[@,iisection 1.2.1]

The map(M, f,¢) — (Gy, d)f,c)’ from the monoid of nondegenerate bilinear lattices
equipped with characteristic forms to the monoid of isomorphism classes of nondegenerate
quadratic functions on finite groups, is known to be surjedtiva.

Remark 2.7. There exists a discriminant construction which applies to arbitrary Dedekind
rings (but produces onlyomogeneouguadratic functions) instead &f se€5]. This leads
to the following

Question. Does there exist a generalization of the discriminant construction producing
from lattices over Dedekind domains quadratic functions on torsion modules over Dedekind
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domains? (The notion of quadratic function should be generalized first.) More generally,
can one define alocalization of quadratic functions? (For homogeneous quadratic functions,
see[6].)

2.3. Properties of the discriminant construction

Consider the bilinear maj@* x M* — Q defined by(«, x) — ox(x). This map induces
a bilinear pairing

(—, —): Cokerf x G — Q/Z.

Lemma 2.8. The bilinear pairing(—, —): Cokerfx Gy — Q/Zis left nondegenerate
(respectively left nonsingular if and only if f is nondegenéyated right nonsingular

Proof. Considerthe IeftadjointmapCokEr—> Hom(G ¢, Q/7), [oc] — ([a], =) (modZ).
Let[«] lie in the kernel, that |az@(Mﬁ) C Z.To prove thato] = 0, it is sufficient to show
that there exists € M such thatt= f(v) Assume first thattis nondegenerate Thg‘i@; is
bijective, so there is an elemant V such thatig = f@(v) Sincexg (M%) = fo (v, M®) C
Z, this means that € M* = M. To deal with the general casé ossibly degenerate),
we consider the nondegenerate symmetric bilinear paifingduced byf on the lattice
M = M/Ker f. We shall use the following observation.

Sublemma 1. Let N be a free abelian group and [ét = N ® Q. Lety € Homg (W, Q).
We have) = 0if and only ify(W) C Z.

Recall that Kerf is a free subgroup dfl and Kerf@ (Kerf)®@ We haveg (Ker f@)
C ag(M*®) C Z.Apply the sublemma above witfi= Kerfth@|Kerf yleldsa@(Kerf@)

=0.1In partlcular,oc(Kerf) 0. Hencey induces a fornk: M — Z such that(M?) C
Z. Applying the previous (nondegenerate) casé tgelds an elemeni e M such that
a= f(v). Any lift v € M of v satisfiesx = f(v). So[a] = 0 as desired.

Suppose thdtis nondegenerate. By Remark 205 (resp. Cokeﬁis a product of cyclic
groups(1/n)Z/7Z (respZ/nZ). Theinjective left adjoint map Cokegr — Hom(G ;, Q/Z)
is between two groups of the same finite order, so must be surjective as well. Suppose that
f is not nondegenerate. Then Cokgr(resp.G ) has a summand (resp. a summand
which is Q/Z). It suffices to show that the map — Hom(Q/Z, Q/Z), r + r ldg,z
is not surjective. Recall tha®/Z = P, A, where the direct sum is over all primes and
A, is the subgroup consisting of elements Q/Z such thatp*x = 0 for somek. Con-
sider the mapr,: A, — A, which is multiplication byp. Then the producﬂpnp €
]_[ Hom(A,, Q/Z) =Hom(Q/Z, Q/Z) is not in the image

Consider the right adjoint ma@ ; — Hom(Cokerf Q/7Z). An elementx] € G lies
in the kernel if and only ifig (x) = 0modZ for all « € M*. In particular, for a unimodular
bilinear pairingg on M, go (v, x) =0modZ for all v € V. Unimodularity ofg implies that
x € M. Thus[x] =

We now prove that the right adjoint map is surjective. Consider the canonical isomorphism
V — V™ v > (—,v). This map sends/? ontoN = {(—, w) € V**: (f(M) w) C 7}
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which is a subgroup o’ **. The subgroupV® = {x € Hom(M*, Q): (f(M), x) € 7}

embeds irN by linear extension ove@: M* — M* ® Q =V*. Any x € NO induces
a homomorphism Cokef — @/Z, hence there is an induced homomorphiaity —

Hom(Cokerf, Q/2), which is obviously surjective (sinc&* is free). Hence any €

Hom(Cokerf, Q/7) lifts to an elementt € N° € N wherex = (—, v) for somev €

M®Thusp = (—, [v]). O

Lemma 2.9. The cokernel of the inclusioRCoker f <> Cokerf is (Ker f)*.

Proof. SlnceM/Kerf|s free, the inclusion Kef% M induces a surjective homomor-
phismM* — (Kerf)* which sendg‘(M) to 0. Hence we obtain a well-defined surjective
homomorphism Cokef — (Kerf)* the kernel of which, smc(aKerf)* is free of same
rank as Cokef, consists of all torsion elements]

By (2.3), any homomorphism Kef — Z induces by tensoring witli/Z a homo-
morphism KerL ; — Q/Z. Denote byj: (Kerf)* (KerL,c)* the corresponding
homomorphism.

Letc € Charf). Observe thal;ﬁf,chzfA(u) = ¢y foranyu € M. Henced ;. depends

onc only mod 2 (M). Furthermore, the abelian groug*/ f (M) = Cokerf acts freely
and transitively on Char)/2f (M) by

[o] - [c] = [c + 24] € Char( f)/2f (M), « € M*, ¢ e Chatf).
The following result is the main result of this section.

Theorem 2.10. The mapr — ¢ ;. induces an affine embedding

¢ Char f)/2f (M) < QuadLy)

over the opposite of the group monomorphism, —): Cokerf — Hom(G, Q/7).
Furthermore

(KerL p)*
jr((Ker f)*)

and givery € QuadL y), the following two assertions are equivalent

Cokerg , =~ Cokerjs =

e gelm ¢y
° ‘1|Kerff elm jr.

As a consequence of Lemma 2.8, we have:
Corollary 2.11. The mapp ; is bijective if and only if f is nondegenerate

Combining Corollary 2.11 and Lemma 2.2, we obtain the following result.
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Corollary 2.12. For any sections op: M — M, the map

Charnf) — Quadif), c~ ‘pf_,s*\cmnf)(c)

is onta

Remark 2.13. This construction applies in particular wheM, f) is the homology group
H>(X) of a compact connected oriented simply-connected 4-maniaddjuipped with its
symmetric bilinear intersection pairing. Thén can be identified with the torsion linking
pairing on TH1(0X) (up to sign depending on the orientation @f, 0X)). For details,
see for examplg2,5]. FurthermoreG  identifies withHz(0X; Q/Z) and the affine space
Char f)/2 f (M) identifies with the affine space of Spistructures oroX. See[4] for
further details about the last point.

Proof of Theorem 2.10. Let us prove that the map, is indeed affine over the homomor-
phism stated above. Lete M* andx € M*: ‘f’f‘[a] 1([xD — qu 1([xD = ¢f¢+2a([x])
¢ 5.0 ([x]) = —og(x) modZ. Hencee ; 5.y ([x]) = ¢>f’ (XD — ([a] [x]). The fact that
¢ ¢ is injective follows from the fact that the maf-, —) : Cokerf—> Hom(G, Q/2)is
injective and this was proved in Lemma 2.8.

Next, we proceed to determine Cokgy. Consider the following diagram:

0 —— (T Cokerf) Cokerf ———— (Kerf)———0

:Jff [ &,-0 jjf

0——(T Cokerf)*—> Hom (Gy, @/Z)——(Ker L —— 0

The first row is given by Lemma 2.9. The second row is obtained from the short exact
sequence (2.4) by applying the exact functor HemQ/Z) (sinceQ/Z is divisible). It
follows from the definitions that the diagram is commutative.

A standard argument (for instance, the “snake lemma”) applied to the diagram leads to
Coker.(—, —) ~ Cokerjs.

Finally we prove the last statement of the theorem. By definitigker f) C 27.1n
particular, ¢f,c|KerL,- KerLf — @/7Z is a homomorphism given by

¢ro(lx]) = —2cgymodZ, x e M +Ker fo € M*. (2.7)

Hence / .|kerz, = js(—%c) € Im j;. Conversely, le§ € QuadL ;) such tha |y 7, €

Im j¢.Picke € Char(f). Thenthe restriction homomorphigid ;)* — (Kerzf)* induced
by KerL; < Gy sends; — ¢ intoIm j. Since

Coker.(—, —) >~ Cokerj,

there is an elemer[ndx] € Cokerf such thayy — (bf o= {[a], —). Since the mar;bf is affine
over Cokerf < Hom(G s, Q/2), itfollows thatg = ¢ |_,p. - U
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Corollary 2.14. Ahomomorphism: Gy — Q/Zisintheimage of(—, —): Cokerf —
Hom(G s, @/2) ifand only ifh|ge, 7, - KerL; — Q/Z liftsto ahomomorphisider f —

Z.

Proof. Seth’ = hlye, 7, By definition, " lifts to Ker f if and only if /' € Im j;. Now
apply Theorem 2.10. [J

We complete this section with a simple observation on CdiserLet p be a prime. Let
Z,= Ii(r_n 7/ p* 7 be the ring of-adic numbers. Sét = ]_[pr where the product is taken

over all primes. The map — (n modpk)k>0 defines a natural embedding — Z,,.
Consequently, there is a diagonal embeddirg- Z. SinceQ)/Z is a direct limit of finitely
generated subgroups and since any finitely generated torsion group decomposes as a direct
sum of cyclic subgroups, we see the following:

Lemma 2.15. There is an isomorphism : Hom(Q/Z, Q/7) ~ i

Denote byj the embedding — Hom(Q/Z, Q/7Z), 1+ ldg,z. The diagram
z

| S

72—~ Hom@/Z.Q/2)

is commutative. Recall, from (2.3), tha} is the canonical injection Ho(Kerf 7) —
Hom(Ker f®®/Z Q/7). Since Kerf is free abelian, we may regard (by means of Lemma
2.15) jr simply as the diagonal embedditig Ker f — Ker f ® Z. Therefore,

(Kerf)®Z

Coker¢ , >~ Cokerjs =~ b(Kerf)

(2.8)

3. The stable classification theorem

The goal is to generalize a result due to Wall and Dufi&e Corollary 1] [5, Theorem
4.1]. We define a natural notion of stable equivalence on lattices equipped with a character-
istic form. The resulting stable classification problem is shown to be essentially equivalent
to the classification of the quadratic functions induced by the discriminant construction
(Section 2).

There is a natural notion of isomorphism among tripl#s, f, ¢) defined by bilinear
lattices with characteristic forms: we say that two tripi@$, f, ¢) and (M’, /', ¢) are
isomorphic (denotedM, f,c) ~ (M’, f', ¢')) if there is an isomorphisny: M — M’
such thaty* f' = f andy*c’ = cmod 2f(M). All such triples form a monoid for the
orthogonal sunb. Two triples (M, f, ¢) and (M’, f', ¢’) are said to bestably equiva-
lentif they become isomorphic after stabilizations with some unimodular lattices, that is,
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there is an isomorphism (calledstable equivalengebetween(M, f,c¢) & (U, g, u) and

M, ', e (U', g, u') for some unimodular latticed/, g, u) and(U’, g’, u") equipped

with characteristic forms andu’, respectively. Since, as we have seen in Section 2, uni-
modular lattices induce trivial discriminant bilinear forms and quadratic functions, a stable
equivalence between two triples induces an isomorphism of the corresponding quadratic
functions. We are interested in whether the converse holds and to what extent. In fact, a
positive answer is provided in the case of nondegenerate lattices.

Proposition 3.1. Two nondegenerate symmetric bilinear latti¢as, f, ¢) and(M’, 1/, ¢/)
equipped with characteristic forms are stably equivalent if and only if their associated
quadratic functiongG , qﬁf,c) and(G s, gbf/,c/) are isomorphic. In fagtany isomorphism

Y between their associated quadratic functio@s, ¢ ;) and(G s/, ¢ 4 ) lifts to a stable
equivalence betweegi, f, c) and(M’, f', c').

Proof. It is sufficient to prove the second statement. There is an obvious notion of stable
equivalence for symmetric bilinear lattices (simply forget the characteristic form). Consider
the symmetric bilinear lattice§V, f) and (M’, f'). The hypothesis implies thdt ; =
Y*L¢. It follows from [5, Proof of Theorem 4.1that there is stable equivalenseetween

(M, f) and (M’, f') inducing . Explicitly, s is an isomorphismM, f) & (U, g) =~

M, f'y ® (U, g’'), where (U, g) and (U’, g’) are unimodular lattices. In particulas,
induces an affine isomorphism Ch#ir®d g) ~ Char(f’ @ g'). Letu € Chang). We
haves(c ®u)=c"@u € Charf @g')=Charf") x Charg’). We have to show that

¢’ =¢'mod 2f/(M) By hypothesis¢ ;. oy = ¢ ;.. Sinceys is induced bys, we have

G .o =G p o). The desired result follows from Theorem 2.1

In the general case, we have to deal with the potential degeneracy of lattices. The first
observation is that it inot truethat any isomorphism betweg@ , d)f,c) and(G s, d’f/,c/)
will lift to a stable equivalence betwediM, f,c) and(M’, f/, ¢). In fact, the simplest
counterexample is given by the degenerate bilinear latéice, 0) (with O as characteristic
form). We haveGo=0Q/Z, ¢ o([x])=0. Trivially any automorphism df/ Z is an automor-
phism of the degenerate quadratic functi@/ Z, 0). However, not every automorphism
of Q/7 lifts to an automorphism of .

For each bilinear latticéM, /), Lemma 2.8 gives an |somorphlsm —).:Gy —
Hom(Cokerf @/Z) Therefore any isomorphism : Cokerf — Cokerf’ induces an
isomorphismj* : Gy — Gy.The map

¥ — yF,  Iso(Cokerf, Cokerf’) — 1S0(G /, G f)

is injective (but not surjective in general: see Lemma 3.4 below). We now state the main
theorem of this section.

Theorem 3.2. Two bilinear lattices(M, f, c) and (M’, f’, ¢’) with characteristic forms
are stably equivalent if and only if there exists an element

Y e Im(Iso(Coker f, Coker /') — 1s0(G f/, G f))
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such that the associated quadratic functiqus, ¢fﬁc) and (G s, qsf/,c/) are isomorphic

via W. Furthermore any such isomorphism betweéa ;/, qbf,’c,) and(G, ¢f,c) lifts to
a stable equivalence betweéM, f, c) and(M’, f', ).

Inthe sequekM, f, c)and(M’, f', ¢') denote bilinear lattices with characteristic forms.
SetNy=KerLyandN; =KerL.

Lemma 3.3. Any isomorphisng : Cokerf—> Cokerf/induces an isomorphisKerf/ —
Kerf. Furthermore if y([c]) = [c] trlgn Y induces an isomorphism from the triple
(Ker f7, 0, ¢'|ger p) ONtO the triple(Ker f, 0, clxe 7)-

Proof. Consider the following diagram:

0—— T Coker f —— Coker f —— (Ker f)' ——0

l//TCokerfA‘z :‘lﬁ l['ﬁ]

0— T Coker f'—— Coker f —— (Ker f’)*—> 0

where the two exact rows are given by Lemma 2.9 and whgrés induced by) and is an
isomorphism. Applying Hort—, Z) to [y/] yields an isomorphisniKer f/)** Ker /" —
(Ker f)** = Ker f. For the second statement, the |mage§a)fe Cokerf in (Ker f)* i
justcler 7- Thusy ([c]) = [¢'] implies thatfy/](cler 7) = ¢'Iker 77 s desired. [J

Lemma 3.4. Let ¥ € Iso(G s/, G y). Then the following assertions are equivalent

(1) there exists) Iso(Cokerf Cokerf ) such that? = /*;
(2) Y(Ns)=Nrsandthemapl|y, : Ny — Ny liftstoan |somorph|ererf/ — Kerf
! f g Ny !

Proof. (1) = (2): Lemma 3.3 gives an isomorphism Hw1, Z) : Ker? — Kerf.
Since¥ =y/* corresponds to Hofiy, @/Z) via the right adjoint map—, —)., Hom([/1, Z)
is a lift of l1U|Nf, Ny — Ny.

(2) = (1): for o] € Cokerf, consider the homomorphism

B x] e (o, ¥(xD), Gp — Q/Z.

Since by hypothesiéﬂN , lifts to Ker f the map|y also lifts to a homomorphism Ker
f/ — Z. Hence by Corollary 2.14 applied quf/, we obtain that:: G, — Q/Z lies

in the image of (—, —): Cokerf — Hom(G s, Q/Z). Thus there exist§] € Cokerf’
such that: = ([f], —). In other words,

Vixle Gy, (lol, Y(IxD) = ([l [x]) € Q/Z.
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The assignment : [o] — [f] is additive and is bijective sincé# is bijective. By construc-
tion, ¥ =y*. O

Proof of Theorem 3.2. The nondegenerate case is treated by Proposition 3.1. Consider
now the general case. Lebe a stable equivalence between lattices, that is, an isomorphism
of symmetric bilinear lattices: (M’, f',cY® (U’, g',u’) — (M, f,c)® (U, g, u) Where
(U, ¢g’,u")y and(U, g, u) are unimodular lattices equipped with characteristic forms. The
maps induces via the discriminant construction an isomorph#mG ;» — G y between
¢ ¢+ and¢ ;. since unimodular lattices induce trivial quadratic functions. The s&po
induces in the obvious way an isomorphigmCoker f — Cokerf’ and itis easily verified
thaty® = ¥

Conversely, suppose that the given isomorphtistetweenG s, qbf,gc,) and(Gy, gbf’c)
is induced by an isomorphism: Cokerf — Cokerf’. First, the homogeneity defects
are preserved byr: dd>f/ , d¢f o Y. Since¥ = lpj it follows from (2.6) that

Y ([c])=[c']. By Lemma 3.3, the induced map Kﬁf—> Kerf is anisomorphism between
(Kerf/ 0,c |Kerf,) and(Ker f, 0, Cler -

Let (M, f) be the nondegenerate lattice inducedfl{gee (2.1)). Choose a sectien
of the canonical projectiop: M — M. Lemma 2.2 yields a characteristic forin=
s*|char ) (¢) € Char f). The sectiors of pinduces a map: Gf — Gy such that;’)fyz, =
¢ os. Thens' = P loso (IMT(CokerfA))il is a section of8;: G i+ — T(Cokerf").
Note that by Lemma 2.3/is induced by a section of : M’ — M’, again denoted'. If
we setc’ = (s)* Ichar /) (¢') € Char(f"), we find that(f)f, i=Qp o s’. It follows from
the that¢ 7 5 o Yl cokerp) = 7.e- Thus¢ 7 o =~ ¢ 7 ;.Since these quadratic functions
are nondegenerate, Proposition 3.1 applies: the isomorphigpa,e, 7) lifts to a stable

equivalence between the lattiogd, f, ¢) and(M’, f', &).
Finally, there is a stable equivalence betwéf f, c) ~ (M, f, c)ea(Kerf 0, C|Kerf)

and(M', f', )~ (M', ', &)@ (Ker f,0, ¢ 'ler 77) Where the isomorphisms are induced
by the sectionsands’, respectively. By construction, the isomorphiéiy — G ¢ induced
by this stable equivalence . [

Consider two bilinear pairings, denotedl, defined onZ by (1,1) — =+1, and both
equipped with the Wu class & Z. Forn € N, we denote by:(Z, £1, 1) an n-fold
orthogonal sum of some copies(@, +1, 1). The next result says that the stable equivalence
in Theorem 3.2 can be realized by adding orthogonal summarids df 1) and(Z, —1, 1).

Corollary 3.5. Let(M, f,c) and(M’, f/, ¢') be two symmetric bilinear lattices equipped
with characteristic forms. We haveG ¢, q’) ) = (Gy, ¢f,,c,) if and only if there exists
n,n’ € N such that(M, f, ¢) ®n(Z, £1, 1) ~ M, f,en(Z,£1,1).

Proof. One direction is obvious. For the converse, we apply Theorem 3.2. We obtain uni-
modular latticegU, g) and(U’, g’), equipped with characteristic fornssands’, respec-
tively, such that there is an isomorphism sending f, ¢) ® (U, g, u) onto(M’, ', ") &

(U’, g’, u’). By stabilizing if necessary wittZ, 1) and(Z, —1), we may assume that as a
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symmetric bilinear pairingU, g) is indefinit¢ and notevef . Then a theorem asserts that
(U, g) is isomorphic to an orthogonal sum of copieqdf 1) and(Z, —1) [13]. It follows
that (U, g, u) is isomorphic to a sum of copies ¢¥, 1, 1) and(Z, —1, 1). (Here we use
the fact that any odd integere Z induces a characteristic form f¢Z, £1) and any such
triple (Z, +1, a) is isomorphic to(Z, +1, 1). More generally, it follows from Section 2.1
that any unimodular bilinear lattiaé/, g) has only one characteristic form modulg®/).)

A similar observation holds fafU’, g’, u"). We conclude that there is a stable equivalence
between(M, f, c) andM’, f/, ¢’) involving only a stabilization with copies aZ, 1, 1)
and(Z, —1, 1), which is the desired result.]

Remark 3.6 (and erratum. This is a generalization ¢2, Lemma 2.1(b)[whose proof is
unfortunately incorrect).

4. A complete system of invariants

We present a complete system of invariants for a certain class of quadratic functions on
torsion abelian groups, including the nondegenerate quadratic functions defined on finite
abelian groups.

First, we assume that the abelian gr@ijs finite. LetS? be the multiplicative group of
complex numbers of absolute value 1. For any quadratic fungtioai — /7, we define
the Gauss sum

() =1GI72 > exp2miq(x)) € C.

xeG

It is not difficult to see thap(q) € St if qis nondegenerate. An important observation is
the relation

Yo-q) =€ 2MIDyg), aeG. (4.1)

Recall thab, (respd, =q —q € G*) is the bilinear pairing (resp. the homogeneity defect)
associated tqg. The following result is the main result of this section.

Theorem 4.1. Two nondegenerate quadratic functiansG — Q/Z andq’: G’ — Q/7
on finite abelian groups are isomorphic if and only if there is an isomorplfisid — G’
such that)*b, = by, y*dy = d, andy(q’) = y(q).

That two isomorphic quadratic functions have same Gauss sums and isomorphic associ-
ated bilinear pairings and homogeneity defects is straightforward. The nonobvious part lies
in the converse.

Since homogeneous quadratic functions have trivial homogeneity defect, we deduce the
following result (seg11, Theorem 1.11.3]

lie. g takes both positive and negative values.
2 even means that(x, x) € 2Z forall x € U.
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Corollary 4.2 (Nikulin [11]). Two nondegenerate homogeneous quadratic functions
q: G — Q/7Zandq’: G' — Q/Z on finite abelian groups are isomorphic if and only if
there is an isomorphismi : G — G’ such that)*b, = b, andy(q") = y(q).

The key step in the proof of Theorem 4.1 is the following fundamental lemma.

Lemma 4.3 (Fundamental Lemma Letq : G — Q/Z be a quadratic function on a tor-
sion abelian group G. I € G is an element of orde2 such thaty (o) = 0, theno - ¢ ~ gq.

Proof of Theorem 4.1 from Lemma 4.3. With no loss of generality, we may assume that
G=G',by;=by,d;=d, andy(q)=7(q") and then show that ~ ¢’. The equality, = b,/
implies (cf. Section 1) tha’ =« - g for somex € G. The equalityl, =d, implies 2x=0.
The equalityy(q) = y(¢’), together with (4.1) imply thag () = 0. Therefore Lemma 4.3
applies.

Hence it remains to prove Lemma 4.3.

Proof of the Fundamental Lemma. If we were just looking for a permutation of G
such thaty o ¢ = « - ¢, we could simply choose the involutidn +— x + o) sinceq(x +
o) =q(x) + by (x, o) +g() =g (x) + by(a, x) = (a- g)(x), x € G. So it is sufficient to
find ¢ € End(G) such that

(dg + ¢)?>=1dg and g(x + ¢(x)) =g +a) foranyx e G. (4.2)

Sincea has order 2, the malﬁ,(oc) € G*isof order 2. For any € G, definen(x) € 7/27
by

&;) =by (o, x) € Q/Z.

Consider the map: G — G defined by
o(x)=nx)x, xe€G.

It is a well-defined (independent of the lift i of n(x) € Z/27) endomorphism ofs.
Using the fact thag («) = 0, we readily verify thatp satisfies (4.2). [

We now deduce a more general version of Theorem 4.1 which allows for some degeneracy.
Consider the following commutative diagram of extensions of abelian groups:

0 A—L-c-P.p 0
~lwA ~lw ~1w1
0 NP .p 0.

Here[y]: B — B’ is the isomorphism induced hy.
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Definition 4.4. Given a diagram as above, two sectierands’ of p and p’, respectively,
are saidj-compatible or simplycompatibleif s’ =y o s o [y]~L.

Letg: G — Q/Z be a quadratic function on a torsion abelian group. Cle@rban be
regarded as the extension# Ker b, by B = G /Kerb,. We shall say thatG, g) meets
thefiniteness conditioif the following two conditions are satisfied:

° G/Kerb is finite;
e the extensiort of Kerb by G/Kerb is split.

Example 4.5. Let (M, f, ¢) be a symmetric bilinear lattice equipped with a characteristic
form c. Then, the quadratic functio(G , qﬁf,c) meets the finiteness condition since by
(2.5), the short exact sequence (2.4) is split.

For any given sectios of the projectionp: G — G/Kerb,,, g o s is a nondegenerate
guadratic function orG/Kerb Note that the finiteness condition implies th&g o s)
is well-defined for any sectios. In the sequel, we denote by : Kerb — Q/Z the
homomorphisny |y, 7, -

Corollary 4.6. Two quadratic functiong : G — Q/Z andq’: G’ — Q/Z satisfying the
finiteness condition are isomorphic if and only if there is an isomorpljis®@ — G’ such
thaty*b, = by, y*dy =dy, y*ry =ry andy(q’ os") = y(q o s) for yy-compatible sections
s ands’.

Proof. Consider the nondegenerate quadratlcfuncu;qn:sq os andq1 =¢q'os’. Theiso-
morphismy induces an isomorphisifig/] : G/Kerb —- G’ /Kerb . It is readily checked
that[np]*b / _bql, [z//]*d / =dq1 andy(q1) =7y(¢q}). By Theorem 4.14; andg; are isomor-
phic. We c deduce thaiG, q) o~ (G/Kerb q1) D (Kerbq, rq) is isomorphic talG', ¢') ~
(G’ /Kerbq q;) ® (Kerb ). O

Remark 4.7. Theorem 4.1 does not say thatlifb,: = b,, y*d, = d, andy(q") = y(¢),
theny*q’ = ¢. In general, the isomorphism betwegrand ¢’ will be different fromj.

However, how the isomorphism betwegmandg’ will differ from  can be read off from
the proof of the Fundamental Lemma.
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