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We study the dynamics of the standard model Higgs field in the inflationary cosmology. Since 
metastability of our vacuum is indicated by the current experimental data of the Higgs boson and 
top quark, inflation models with a large Hubble parameter may have a problem: In such models, the 
Higgs field rolls down towards the unwanted true vacuum due to the large fluctuation in the inflationary 
background. However, this problem can be relaxed by supposing an additional mass term for the Higgs 
field generated during and after inflation. We point out that it does not have to be larger than the 
Hubble parameter if the number of e-folds during inflation is not too large. We demonstrate that a high 
reheating temperature is favored in such a relatively small mass case and it can be checked by future 
gravitational wave observations. Such an induced mass can be generated by, e.g., a direct coupling to the 
inflaton field or nonminimal coupling to gravity.

© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Recent results at the Large Hadron Collider (LHC) [1,2] are in 
excellent agreement with the Standard Model (SM) with a 125 GeV 
Higgs boson and thus far any significant deviation from the SM has 
not been reported. On the other hand, the current measurements 
of the Higgs and top quark masses [3] suggest the metastability of 
our vacuum [4–6] (see also Ref. [7]); the Higgs potential becomes 
negative typically at h � 1011 GeV [6]. It may be an important hint 
for high-energy physics.

One of the important ingredients in modern cosmology is in-
flation. It expands the primordial Universe at an accelerating rate. 
It solves the flatness and horizon problems and sows the seeds 
of the large scale structure of the present Universe. Within the 
current errors, there still remains a possibility of the SM-Higgs-
driven inflation [8]. However, if the Higgs potential is negative 
at h � 1011 GeV, such Higgs inflation models cannot occur unless 
there is a physics beyond the SM that keeps the Higgs potential 
positive up to the inflationary scale because the Higgs field value 
during inflation is required to be larger than 1016–17 GeV in these 
models. In this paper, we assume that the electroweak vacuum is 
metastable and inflation is driven by a scalar field other than the 
SM Higgs field, called inflaton.
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The current data suggests that the lifetime of the electroweak 
vacuum is longer than the age of the Universe [9], and there 
is no constraint on the reheating temperature from the thermal-
fluctuation-triggered electroweak vacuum decay [4,5,10]. However, 
the vacuum fluctuation in the quasi-de Sitter background of the 
Higgs field during inflation may also push it to the unwanted Anti 
de Sitter (AdS) vacuum if the Hubble parameter during inflation 
is large, e.g., as the recent BICEP2 result suggests [11].1 Thus, it 
may spoil inflation or, at least, our Universe that lands in the 
metastable vacuum may be unlikely.2 Therefore, low-energy scale 
inflation may be favored in this viewpoint, contrary to the BICEP2 
result [11], as discussed in other recent literatures [15,16].3

As pointed out in Refs. [4,14,18], it can be avoided by supposing 
a coupling between inflaton and the SM Higgs field without giv-
ing any major effects on the dynamics of inflaton. This is because 
the coupling produces the “Hubble-induced mass” during inflation, 
which pushes the field value where the Higgs potential goes neg-
ative to a much larger value. In the case where the induced mass 
is much larger than the Hubble parameter [18] and the Higgs po-

1 The recent result of Planck [12] suggests that the signals that BICEP2 observed 
may mainly come from the dust foreground. But one cannot conclude it at least 
before Planck B-mode results.

2 Note that there are still discussions whether it is catastrophe for cosmology or 
not [4,13,14].

3 See also Ref. [17] for the gravitational wave background generated by the dy-
namics of the SM Higgs field after inflation.
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tential remains positive up to the Planck scale, the Higgs field is 
quickly pushed to the origin and its fluctuation is suppressed. Thus, 
the unwanted vacuum decay can be avoided even if the initial field 
value of the Higgs field is relatively large, ∼ 0.1MPl with MPl being 
the reduced Planck mass. Consequently, the electroweak vacuum 
can be naturally selected.

On the other hand, if the induced mass is smaller than the Hub-
ble parameter, it seems to be difficult to suppress the quantum 
fluctuations and hence the vacuum decay cannot be avoided even 
if the Higgs field initially sits at the origin. In this paper, how-
ever, we point out that if the number of e-folds during inflation 
is not too large, we can construct a scenario with a high-scale in-
flation in which most part of the Universe can avoid the vacuum 
decay while the induced mass is not so large, as is also recently 
suggested in Ref. [14]. This is because the evolution of the ex-
pectation value of the Higgs field during inflation is suppressed 
and it can be than the field value of the potential barrier if the 
Hubble-induced mass mH is large enough, �m2

h/H2
inf � 2 × 10−2

and the number of e-folds during inflation is not too large. In ad-
dition, if the reheating temperature is high enough, the present 
Universe can be safely realized. Note that after inflation the Higgs 
field still slow-rolls and the time-dependent potential barrier may 
catch it up. The Higgs field will roll down towards the unwanted 
AdS vacuum in this case. If the Higgs field is thermalized before 
being caught up by the potential barrier, the Higgs field safely set-
tles down to the electroweak vacuum. Owing to a relatively high 
reheating temperature, the Higgs field is thermalized earlier. Here 
we give a rough estimate for such a healthy scenario. We also point 
out that it would be possible to verify such a high reheating tem-
perature by the future gravitational wave experiments.

2. Fluctuation of the Higgs field with a small induced mass 
during inflation

Let us start from the SM Higgs potential. At the large field val-
ues h � v ≡ 246 GeV, it is well described by

V (h) = 1

4
λ(h)h4, (1)

in the unitary gauge. The Higgs quartic coupling λ(h) runs loga-
rithmically with respect to h from λ(Mh) � 0.13 where Mh is the 
Higgs mass. As is studied in Refs. [4–6,19], the Higgs quartic cou-
pling becomes negative at h ∼ 1011 GeV. Though the uncertainties 
in the Higgs and top mass data lead to the uncertainty in the point 
where the potential goes negative ranging from 109 GeV to the 
Planck scale or higher, here we consider the case where the Higgs 
potential vanishes typically at 1011 GeV. Then, the Higgs poten-
tial has also a maximum or a “barrier” at h = Λ0 ∼ 1011 GeV. If 
the Hubble parameter during inflation4 H inf is larger than Λ0, the 
fluctuation of the Higgs field easily climbs up the potential barrier 
and rolls down to the unwanted true vacuum during inflation even 
when it initially sits at the origin [4,13–15]. It is claimed in Ref. [4]
that the regions or the bubbles where the Higgs field falls into 
the unwanted true vacuum collapse due to the AdS instability and 
hence only the regions where the Higgs field is inside the poten-
tial barrier may remain. Consequently the metastable electroweak 
vacuum and high-scale inflation may be compatible.5 However, it 
is not clear whether the Universe expands properly by inflation 
and the AdS bubble does not cause any cosmological disasters. In 
particular, if the AdS bubbles of the true vacuum “eat” the region 

4 The subscript “inf” represents that the variable is evaluated at the inflationary 
era.

5 See also the discussion in Ref. [14].
where the present electroweak vacuum is selected, the existence of 
our Universe falls into a crisis. Therefore, we can say inflation with 
a relatively small Hubble parameter H inf < Λ0 is safe in the light 
of the current data of the Higgs and top mass. It is contradictory 
to the recent BICEP2 result, which suggests H inf � 1014 GeV [11], if 
the observed B-mode is generated by the primordial gravitational 
waves.

As is pointed out in Refs. [4,14] and studied in detail in 
Ref. [18], the Higgs field can acquire a Hubble-induced mass due to 
its interaction with the inflaton φ. For example, the “Higgs-portal” 
coupling

�V = 1

2
κφ2h2 (2)

with κ > 0 gives an effective positive mass squared κ〈φ2〉 during 
and after inflation. Here the bracket represents the time average. 
In the case of massive chaotic inflation V (φ) = m2φ2/2, we have
3H2

infM2
Pl = m2φ2

inf/2 during inflation and 3〈H2〉M2
Pl = m2〈φ2〉 in 

the inflaton oscillation dominated era after inflation.6 Thus, the ef-
fective Higgs mass squared is proportional to the Hubble squared 
both during and after inflation, �m2

h � κ(MPl/m)2 H2. Note that in 
order for the quantum correction not to dominate the tree level 
potential, κ � 10−6 is required [18].

A similar effect can be achieved by a non-minimal coupling of 
the Higgs field to gravity.7 Suppose that the Einstein–Hilbert action 
is replaced by

L√−g
= −1

2

(
M2

Pl + ξh2)R, (3)

where g is the determinant of the metric, ξ is a negative parame-
ter, and R is the scalar curvature. The effect of this term can be 
seen easily in the Einstein frame. By performing the conformal 
transformation and changing the frame to the Einstein frame, we 
get the effective Higgs potential as

�V � −
(

2V (φ) − φ̇2

2

)
ξ

M2
Pl

h2
(

1 +O
(

ξh2

M2
Pl

))
. (4)

During inflation we have 3H2M2
Pl � V (φ), and during inflaton os-

cillation dominated era after inflation we have 3H2 M2
Pl = V (φ) +

φ̇2/2 with 〈V (φ)〉 � 〈φ̇2〉/2. Here we assumed that the inflaton os-
cillates in the quadratic potential around its potential minimum. 
Thus, the Higgs field acquires positive mass squared −γ ξ H2 dur-
ing and after inflation with γ being a parameter of order of 
O(1 − 10).

Motivated by the interactions discussed above, now we consider 
a simple modification of the Higgs potential during inflation,

�V (h) = 1

2
cinf H2

infh
2 (5)

with cinf being a positive numerical parameter. Here we consider 
the case cinf �O(1) and study vacuum fluctuation in this potential. 
For H inf � Λ0, the Hubble-induced potential overwhelms the orig-
inal potential around h ∼ Λ0 and the potential barrier moves to 
a higher field value. In principle, we should calculate the running 
of the couplings to study the dynamics of the Higgs field. How-
ever, they vary only logarithmically with respect to h and hence 

6 Note that the kinetic energy and potential energy are equilibrated, m2〈φ2〉/2 =
〈φ̇2〉/2, at the oscillating phase.

7 Such a coupling is also studied recently in Ref. [16], where the running of the 
nonminimal coupling to gravity up to the electroweak scale is carefully studied. 
Since here we study the dynamics of the SM Higgs during and after inflation in 
detail, our study is complementary to Ref. [16].
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Fig. 1. The histogram of the Higgs field value at N∗ = 50 (left) and 100 (right) with 105 trials. Dotted lines represent the Gaussian fitting, ρ ∝ exp[−h2/2〈h2〉inf], with 
N∗ → ∞ (Eq. (7)).
we can treat them as constants, e.g., a negative quartic coupling 
λ(h) = λ̃ � −0.01, in the first approximation. Then, we obtain the 
field value at the potential barrier as

Λh �
√

cinf

−λ̃
H inf, (6)

which is roughly ten times larger than the Hubble parameter dur-
ing inflation for cinf =O(1).

The Higgs field receives quantum fluctuations during inflation 
and acquires nonvanishing expectation value. If cinf is not too 
small, we can neglect the quartic term in the potential for the 
Higgs field. For the Higgs field that initially sits at the origin, the 
expectation value of the Higgs field is evaluated as [20]

〈
h2〉

inf = 3H2
inf

8π2cinf

[
1 − exp

(
−2cinf

3
N∗

)]
, (7)

where N∗ is the number of e-folds during inflation. It is still un-
der discussion what is the correct survival condition,8 and here we 
require 〈h2〉 < Λ2

h as its representative. Then, we acquire the con-
straint on the Hubble-induced mass as

cinf >

√
−3λ̃

8π2
� 1.9 × 10−2

(
λ̃

−0.01

)1/2

, (8)

regardless of the Hubble parameter during inflation. Here we have 
approximated 1 − exp(−2cinfN∗/3) � 1.9 Note that Eq. (7) neglects 
the quartic term in the potential, and hence at the boundary val-
ues of cinf in Eq. (8), this approximation is no longer valid. The 
expectation value should be a little larger. However, the validity of 

8 If the regions where experiences vacuum decay collapse into black holes and 
they evaporate quickly without destroying the stable electroweak vacua, vacuum 
decay during inflation is not dangerous (most optimistic case). On the other hand, 
if even only one region that experienced vacuum decay takes over all the space 
and dominates the Universe, a vacuum decay in the past light cone of the observ-
able Universe causes catastrophe (most pessimistic case). In Ref. [14], the follow-
ing discussion was held: In the former case, just a few more number of e-folds 
during inflation than the would-be number of e-folds is required to compensate 
the collapsed AdS regions and to reproduce our Universe. In the latter case, the 
Hubble-induced mass must be larger than δm2

h � 0.5H2
inf . In Ref. [16], the condition 

V 1/4
max > H inf is adopted for the stability condition. Here V max is the potential energy 

at the potential barrier.
9 The constraint Eq. (8) is weaker than the one given in Ref. [14] since we are 

less pessimistic and we allow some vacuum decays in the past light cone of the 
observable Universe.
Fig. 2. The numerical results of the expectation values of the Higgs field at N∗ =
50 and 100. Blue dashed line represents Eq. (7) with N∗ → ∞. Purple dotted line 
represents Λh (Eq. (6)). (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

this approximation recovers for a little larger value of cinf . In this 
sense, Eq. (8) gives a most optimistic constraint that can be used 
as a reference.

Strictly speaking, we must calculate the probability distri-
bution function (PDF) by using the stochastic approach or the 
Fokker–Planck approach [21,22] to estimate the survival probabil-
ity. We have instead performed numerical calculation to solve the 
Langevin equations [23]. See Appendix A for the detail of the nu-
merical calculation. Fig. 1 shows the histogram of the Higgs field 
value at N∗ = 50 and 100 for cinf = 10−2, 10−1.5, 10−1, 10−0.5, 1
and λ̃ = −0.01, with 105 trials. We find that for cinf > 0.1, the dis-
tribution is fitted by the Gaussian function with Eq. (7) (N∗ → ∞). 
One may be surprised that the distribution is narrower than those 
expected Eq. (7) (N∗ → ∞) for smaller cinf. This is because the 
distribution is during the course of (linear) spreading. As a result, 
many trials end inside the potential walls. Due to the negative 
quartic term, the tail of the distribution is broader than that of 
the Gaussian distribution and the Higgs field expectation value 
is not so small. Fig. 2 shows the cinf dependence of the Higgs 
field expectation value with N∗ = 50 and 100. We can find for 
the “just enough inflation”, N∗ = 50, the expectation value of the 
Higgs field is well described by Eq. (7) with N∗ = ∞. Therefore, 
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we conclude that for the parameter that satisfies Eq. (8), the prob-
ability for the Higgs field to sit inside the potential barrier during 
inflation is not suppressed exponentially and it gives an appro-
priately optimistic condition for the survival of the electroweak 
vacuum. Hereafter we use Eq. (7) with N∗ = ∞ as a representa-
tive constraint. We also use cinf > 10−1.5, which is the constraint 
for N∗ = 100, as a reference. Note that for inflation with a larger 
number of e-folds, N∗ � 50, the expectation value of the Higgs 
field diverges since the potential is not unbounded from the below, 
and the survival probability is, again, exponentially small. There-
fore, the small Hubble-induced mass does not help the stability 
of the electro weak vacuum during inflation. However, since for 
N∗ � 50, the expectation value we evaluated is the average in the 
whole Universe that is covered dominantly by unobservable region, 
anthropic principle would also matter, and hence we focus on the 
case where N∗ � 50.

3. Dynamics of the Higgs field after inflation

In the previous section, we give a(n approximate) condition in 
which the Higgs field does not roll down towards the unwanted 
true vacuum during inflation in many regions in space in the pres-
ence of the Hubble-induced mass. Is this condition a sufficient 
condition for us to live in the electroweak vacuum likely? The an-
swer is no. Since the expectation value of the Higgs field just after 
inflation can be larger than the zero-temperature barrier Λ0, we 
must consider the condition for the Higgs field to settle down to 
the electroweak vacuum through the dynamics after inflation.

Let us consider a case where the Higgs field still receives a pos-
itive Hubble-induced mass during inflaton oscillation dominated 
phase,10

�V (h) = 1

2
cosc H(t)2h2, (9)

where cosc �O(1) is a numerical parameter. It would have a rela-
tion to cinf but is model-dependent. Thus, we treat it as a different 
parameter. Note that the mechanism that induces the Hubble-
induced mass discussed in the previous section does not exactly 
give the effective interaction described by Eq. (9), since it in-
duces an oscillating term coming from the inflaton oscillation, say, 
φ(t) = √

2φ̄(t) cos mt where φ̄ is the slowly decreasing function 
and m is the inflaton mass around its potential minimum. How-
ever, if the time scale of inflaton oscillation is much smaller than 
that of the Higgs field dynamics, the dynamics of the Higgs field 
and inflaton is decoupled and it is valid to take the time average 
of the oscillating part of inflaton. As a result, Eq. (9) gives the suf-
ficiently well-approximated solution. In our present case, the time 
scale of the Higgs field dynamics is given by (c1/2

osc H(t))−1 whereas 
that of inflaton oscillation is given by m−1. Since during oscillating 
stage the condition m > H(t) is manifestly satisfied, it is safe to 
use the approximation Eq. (9) for cosc �O(1) as an analytic esti-
mation. In Appendix B, we show the validity of this approximation 
by performing numerical calculation in a specific model.

The Hubble parameter during inflaton oscillation dominated 
phase is well-approximated as

H(t) = 2

3t
. (10)

This is the case when inflaton oscillates in the quadratic potential 
after inflation. During this phase before the complete reheating, 
partial decay of inflaton produces relativistic particles as a sub-

10 The subscript “osc” represents that the parameter is evaluated at the inflaton 
oscillation dominated era.
dominant component of the Universe. If their scattering cross sec-
tion is large enough, they are thermalized with a temperature [24]

T (t) =
(

72

5π2 g∗(T )

)1/8(
H(t)MPlT

2
R

)1/4
, (11)

where g∗ is the effective number of relativistic degrees of freedom, 
and T R is the reheating temperature. We here assume that at least 
the fields that do not have direct couplings to the Higgs such as 
gluons are thermalized just after inflation.

If the reheating temperature is not high enough, the Higgs field 
is not thermalized just after the end of the inflation since the fields 
that coupled to the Higgs field acquire large mass which prevents 
them from thermalization, and hence Higgs field itself also cannot 
be thermalized. The Higgs field is thermalized when the particles 
that couples to Higgs field becomes light enough, h(t) < T (t), and 
the interaction rate is rapid enough, Γ ∼ T (t) > H(t). Thus, in the 
case when the following conditions〈
h2〉1/2

inf < T (tinf)

⇔ T R >
3

8π2cinf

(
5π2 g∗(T (tinf))

72

)1/4 H3/2
inf

M1/2
Pl

≡ T 1
R , (12)

and

T (tinf) > H inf ⇔ T R >

(
5π2 g∗(T (tinf))

72

)1/4 H3/2
inf

M1/2
Pl

≡ T 2
R ,

(13)

are satisfied, the Higgs field is thermalized just after the end of 
inflation. Otherwise, it takes some time for the Higgs field to be 
thermalized. (Or it is never thermalized as we will see.) One may 
wonder if the Higgs field is pushed to the unwanted AdS vacuum 
at the time of thermalization. It would be avoided if the Higgs 
field value is sufficiently small compared to the potential barrier 
Λth � T (tinf)/

√−λ generated by the thermal potential V th � T 2h2. 
From Eq. (12), we can easily see that if T R > T 1

R , the Higgs field 
value just after inflation is roughly ten times smaller11 than the 
potential barrier, which would be sufficiently small to avoid the 
disaster. Here we take 〈h2〉1/2

inf (Eq. (7)) with N∗ → ∞ as a ref-
erence value of the Higgs field just after inflation. Note that for 
cinf � 0.02, Eq. (7) is not precise and gives a lower bound of the 
expectation value as discussed, but the error is not so large as long 
as the number of e-folds is around 50. For larger values of cinf, the 
approximation Eq. (7) gets more precise. Therefore, we will use T 1

R
and T 2

R as references. We also do not write the coupling constants 
of the order of the unity, such as top Yukawa coupling, explicitly.

Let us study the dynamics of the Higgs field before thermaliza-
tion. The Higgs field evolves according to the potential

V (h) = 1

2
cosc H2(t)h2 + 1

4
λ(h)h4. (14)

This potential has a time-varying maximum at

h = Λt �
√

cosc

−λ
H(t), (15)

for Λt > Λ0 where λ � −O(10−2) is negative. Thus, for the 
healthy realization of the present Universe, h(t) < Λt must be sat-
isfied in the course of the evolution of the Higgs field in substantial 
part of the Universe. Otherwise the Higgs field rolls down towards 
the unwanted AdS vacuum in many regions of the Universe, which 
may cause a cosmological disaster.

11 Note that √−λ � 10−1.
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Now we evaluate the Higgs field dynamics taking 〈h2〉1/2
inf

(Eq. (7)) with N∗ → ∞ as the initial condition.12 If the Higgs field 
does not roll down towards the unwanted AdS vacuum from this 
initial condition until its thermalization, the Higgs field success-
fully settles down to the electroweak vacuum in many regions of 
the Universe. Note that, again, there are two extreme possibilities. 
One is the possibility that the region where the Higgs field rolls 
down to the AdS vacuum collapses to a black hole without de-
stroying neighboring regions and evaporate quickly, any vacuum 
decay in the Universe is not problematic. The other is the one that 
even one vacuum decay in the past light cone of the observable 
Universe is dangerous if the bubble expands and takes over all 
the regions of the Universe and it is dominated by the AdS vacua. 
Here, again, we instead give the survival condition as a condition 
that the Higgs field with the initial condition 〈h2

inf〉1/2 does not 
roll down to the AdS vacuum. In principle, it would be better to 
perform a lattice simulation taking into account the spatial distri-
bution of the Higgs fields. However, the spatial derivative of the 
Higgs field is suppressed due to inflation, and hence we here only 
consider the homogeneously distributed Higgs field.13 Then, the 
equation of motion (EOM) is given by

ḧ(t) + 3H(t)ḣ + cosc H2(t)h(t) + λ(h)h3(t) = 0. (16)

As long as h(t) < Λt is satisfied, we can neglect the last term in 
the EOM and get a solution,

h(t) = 〈
h2〉1/2

inf

(
H(t)

H inf

)(1−√
1−16cosc/9)/2

�
√

3

2cinf

H inf

2π

(
H(t)

H inf

)(1−√
1−16cosc/9)/2

. (17)

Here we consider the case where cosc < 9/16 and the Higgs field 
does not oscillate. Since the Higgs field value decreases slower 
than the potential barrier, Λt , we must seek for the way to avoid 
for the Higgs field to be caught up by the potential barrier after in-
flation for the successful Universe. Otherwise it rolls down to the 
unwanted AdS vacuum. This catching up would happen when

h(t)�Λt ⇔ H(t)�
( −3λ

8π2cosccinf

)1/(1+√
1−16cosc/9)

H inf ≡ Hc.

(18)

Here we assumed that the approximations Eqs. (15) and (17) hold 
until that time.

The first way to avoid the falling down to the unwanted AdS 
vacuum is that the Higgs field gets thermalized before being 
caught up. Let us take the criteria for the Higgs field thermaliza-
tion as T (t) > h(t) and T (t) > H(t).14

Then, we have two cases for the successful Universe when the 
Higgs field is not thermalized just after inflation15;

12 Note once more that Eq. (7) is not precise and just give an approximation for 
cinf ∼ 0.02, though for our purpose the error is small enough, in particular for 
N∗ � 50.
13 We emphasize that since at later epoch causally disconnected region enter in-

side the horizon and hence gradient term may become important. Therefore, the 
results should be taken as only approximate ones and the gradient term may change 
the result slightly.
14 Note that in reality, thermalization does not complete instantaneously and com-

pletes a little later time than the one estimated in the below. This effect can be 
absorbed by the numerical factor α with the order of unity. See also Refs. [4,5,10]
for the potentially dangerous thermal-fluctuation-triggered electroweak vacuum de-
cay.
15 In the case with T R < T 1

R and T R > T 2
R , h(t) < T (t) will never be satisfied be-

cause T (t) decreases much more rapidly than h(t) in this parameter region.
1. The case with T R > T 1
R and T R < T 2

R : H(t) = T (t) gets satisfied 
at a later time. For the successful Universe, both the conditions 
T (t) > h(t) and Λt > αh(t) should be satisfied at H(t) = T (t).

2. The case with T R < T 1
R and T R < T 2

R : For the successful Uni-
verse, the conditions T (t) > h(t), H(t) should be simultane-
ously satisfied before it gets Λt < αh(t). Note that it must 
be also satisfied before reheating because there are no longer 
“Hubble-induced mass” after inflaton decay.

One may wonder, again, if at the time when the Higgs field gets 
thermalized, thermal fluctuations may push the Higgs field to the 
unwanted AdS vacuum. At present we do not know how to cal-
culate exactly the tunneling rate of a slow-rolling scalar field dur-
ing the epoch when the system gets thermalized, unlike the case 
discussed in Ref. [10] where the Higgs field is at the potential 
minimum and the system is well-approximated to be in zero-
temperature or fully thermalized. However, we may be allowed 
to guess it will be exponentially suppressed by using triangle ap-
proximation [25] if the scalar field value is far away enough from 
the potential barrier and it is high enough. In this reason, we in-
troduced a numerical parameter α � O(1) in order to take into 
account it, though a careful study would be required to determine 
its value exactly, strictly speaking, but it is beyond the scope of 
this paper.

Case 1: H(t) = T (t) is satisfied when

H(t) =
(

72

5π2 g∗

)1/6(
MPlT

2
R

)1/3 ≡ HT 1. (19)

Then, the conditions T (HT 1) > h(HT 1) and Λt(HT 1) > αh(HT 1) are 
rewritten in terms of the constraint on the reheating temperature 
as

T R >

(
5π2 g∗

72

)1/4( 3

8π2cinf

) 3
2(1+√

1−16cosc/9) H3/2
inf

M1/2
Pl

≡ T 3
R , (20)

T R >

(
5π2 g∗

72

)1/4( −3α2λ

8π2cinfcosc

) 3
2(1+√

1−16cosc/9) H3/2
inf

M1/2
Pl

≡ T 4
R . (21)

Case 2: In this case, H(t) = T (t) is satisfied at H = H T 1 and 
h(t) = T (t) is satisfied when

H(t) =
[

2π

√
2cinf

3

(
72

5π2 g∗

)1/8

×
(

MPlT 2
R

H3
inf

)1/4]4/(1−2
√

1−16cosc/9)

H inf ≡ HT 2, (22)

for cosc > 27/64.16 Then, we find that the rolling down problem is 
avoided if the Hubble parameter becomes H T 2 before the catch-
ing up time and reheating in the parameters we are interested in. 
In other words, the present Universe will be realized if both the 
conditions are satisfied,

Λt(HT 2) > αh(HT 2)

⇔ T R >
3

8π2cinf

(
5π2 g∗

72

)1/4( −3λ

8π2cinfcosc

) 1−2
√

1−16cosc/9
2(1+√

1−16cosc/9)

× α
1−2

√
1−16cosc/9

1+√
1−16cosc/9

H3/2
inf

M1/2
Pl

≡ T 5
R , (23)

16 In the case cosc < 27/64, h(t) will never catch up T (t).
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Fig. 3. The constraint on the reheating temperature according to the coupling constant cinf with cosc = cinf/2. The parameter α is chosen as 1.0 (left) and 10.0 (right). (For 
interpretation of the colors in this figure, the reader is referred to the web version of this article.)

Fig. 4. The same to Fig. 3 but cosc = cinf/4. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)
and

HT 2 > H R =
(

π2 g∗
90

)1/2 T 2
R

MPl

⇔ T R >

(
π2 g∗

90

) 1−2
√

1−16cosc/9
8
√

1−16cosc/9

×
(

1

2π

√
3

2cinf

(
5π2 g∗

72

)1/8)1/
√

1−16cosc/9

× H
1+√

1−16cosc/9
2
√

1−16cosc/9

inf M
−1+√

1−16cosc/9
2
√

1−16cosc/9

Pl ≡ T 6
R . (24)

In summary, if one of the following conditions,

• T R > T 1
R , and T 2

R
• T R < T 2

R , and T R > T 1
R , T 3

R , T 4
R

• T R < T 1
R , T 2

R , and T R > T 5
R , T 6

R

are satisfied, the Higgs fields are thermalized before being caught 
up by the potential barrier and the present electroweak vacuum 
would be successfully selected.

The second way for the successful cosmic history is that the 
Higgs field value h(t) becomes smaller than the zero-temperature 
barrier Λ0 and gradually its dynamics is dominated by λh4/4 term 
before being caught up by the potential barrier. The Higgs expec-
tation value h(t) gets smaller than Λ0 when
H(t) <

(√
8π2cinf

3

Λ0

H inf

)2/(1−√
1−16cosc/9)

H inf ≡ HΛ. (25)

Thus, if HΛ > Hc , the present electroweak vacuum is successfully 
selected. This condition gives a constraint on the Hubble parameter 
during inflation as

H inf <

(
8π2cinf

3

)1/2( −3λ

8π2cinfcosc

) 1+√
1−16cosc/9

1−√
1−16cosc/9

Λ0. (26)

As an example, we show the allowed region in the T R –cinf
plane in Figs. 3 and 4 for H inf = 1012, 1013 and 1014 GeV, respec-
tively, with the parameters being chosen as Λ0 = 1011 GeV, and 
cosc = cinf/2 (Fig. 3), cinf/4 (Fig. 4). We also chose the value of α
as α = 1.0, 10.0. We find the constraint in analytic expression for 
this case as

T R >

⎧⎪⎪⎨
⎪⎪⎩

T 1
R for cinf < 3

8π2 ,

min .{T 2
R ,max .{T 3

R , T 4
R}} for 3

8π2 < cinf < 27
64 × cinf

cosc
,

T 5
R for 27

64 × cinf
cosc

< cinf <
9

16 × cinf
cosc

.

(27)

We approximate the running of the Higgs quartic coupling near 
μ � 1011 GeV as [6]

λ(μ) = −1.4 × 10−3 ln

(
μ

1011 GeV

)
, (28)

and evaluate it at μ = h(HT ) for T R = 1011.5, 1010, and 108.5 GeV
for H inf = 1014, 1013, and 1012 GeV, respectively, when we give 
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the lower bounds on T R . The thick red colored region is disfa-
vored due to the condition 〈h2〉inf > Λ2

h with Eq. (7) (N∗ → ∞), 
which means the survival probability during inflation is expo-
nentially suppressed.17 We also show the constraint cinf < 10−1.5

that represents 〈h2〉inf < Λ2
h for N∗ � 100 in light red region. The 

blue colored regions are excluded due to the condition for the 
Higgs field not to fall into the unwanted true vacuum. Note that 
there are no constraint for cinf > 10−0.17(100.04) (cosc = cinf/2) and 
cinf > 100.02(100.32) (cosc = cinf/4) in the cases H inf = 1012(13) GeV, 
in which the condition h(t) < Λ0 is always satisfied before the 
rolling down to the unwanted true vacuum. The running of the 
quartic coupling λ is not calculated strictly, but it does not change 
the result so much. We can see that the lower bound of the re-
heating temperature becomes severer as the Hubble parameter 
during inflation is larger. Increasing the parameter α makes the 
lower bound slightly higher, but it does not change the feature 
significantly. For smaller values of cosc/cinf, the excluded region 
is slightly enhanced at larger cinf, but the overall feature does 
not change. For the Hubble parameter H inf � 1014 GeV, which is 
suggested by the recent BICEP2 result, a relatively high reheating 
temperature, T R � 1012–13 GeV is required. This indicates that if 
the B-mode in the CMB polarization observation with r � 0.2 is 
confirmed, the stochastic GW background must be detected in the 
gravitational detectors [26] such as DECIGO [27] or BBO [28] due 
to the relatively large reheating temperature. If not, it suggests that 
there is a physics beyond the SM to stabilize the Higgs potential 
[29] or the Hubble-induced mass for the Higgs field during in-
flation is much larger than the Hubble parameter as is the case 
studied in Ref. [18].

Note that Figs. 3 and 4 assume the approximate expression of 
the expectation value of the Higgs field during inflation Eq. (7)
with N∗ → ∞. As explained in Section 2, this expression is not 
accurate around cinf � 0.02, and the figures should be understood 
as approximate estimates, in particular, for small values of cinf. But 
for N∗ = 50, this approximation is valid enough for our purpose. 
Note also that we here do not take into account the spatial deriva-
tive in this study. This would decrease the lower bound of the 
reheating temperature since it makes the Higgs field damp more 
rapidly. It would be effective for larger cinf . For smaller cinf, how-
ever, our result suggests that the Higgs field must be thermalized 
just after inflation, before the spatial derivative would get effective, 
and hence the constraint will not change significantly. In sum-
mary, Figs. 3 and 4 are just approximate estimates. For smaller 
values of cinf, the expression Eq. (7) will induce slight errors and 
for larger values of cinf, there are small errors from the neglect of 
the gradient terms in Eq. (16). But qualitatively, these figures give 
us approximately correct constraints.

4. Summary

In this article, we studied the evolution of the SM Higgs field 
in the inflationary cosmology in the light of recent collider ex-
periments, which suggests the metastability of the electroweak 
vacuum. If the electroweak vacuum is metastable, high-scale in-
flation may be problematic since the Higgs field rolls down to the 
unwanted AdS vacuum and the probability for the Higgs field to re-
main the electroweak vacuum is exponentially suppressed, though 
it is still under discussion if it is a real catastrophe for our Universe 
or not. We found that the Hubble-induced mass can avoid the 
exponentially suppressed survival probability of the electroweak 

17 Note that Eq. (7) is only an approximate expression, and this constraint is an 
optimistic constraint and should be regarded as a reference. But for N∗ � 50, this 
approximation is accurate enough for our purpose as explained in Section 2.
vacuum during inflation while it is not necessarily larger than the 
Hubble parameter during inflation if the number of e-folds during 
inflation is not too large. We also found that the present Uni-
verse can be successfully realized even in the case of the relatively 
small Hubble-induced mass if the reheating temperature is high 
enough. This is because the Higgs field is thermalized before be-
ing caught up by the time-dependent potential barrier and before 
rolling down to the unwanted AdS vacuum. As a result, relatively 
high-energy scale inflation is allowed, and hence we can expect 
for the detection of GW background in the future experiments. We 
also pointed out that the direct GW background detection will give 
us the clue to study the physics beyond the SM. Note that since 
the Higgs mass during inflation can be smaller than the Hubble 
parameter, it may be possible to generate a feature in the CMB, for 
example, nongaussianity, though it will require nontrivial interac-
tion for the Higgs field.
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Appendix A. Numerical approach to the Langevin equation 
for the Higgs field during inflation

Here we explain the numerical method we adopt to solve 
Langevin equation in Section 2. The Langevin equation we here 
solve is [23]

˙̄φ(x, t) = π̄ (x, t) + σ(x, t), (A.1)

˙̄π(x, t) = −3Hπ̄ (x, t) − ∂V

∂φ

∣∣∣∣
φ=φ̄

+ τ (x, t), (A.2)

with correlation functions

〈0|σ(x1)σ (x2)|0〉 = Γ (ν)2

21−2ν

H3

4π3
δ(t1 − t2), (A.3)

〈0|τ (x1)τ (x2)|0〉 = Γ (ν)2

21−2ν

∣∣∣∣ν − 3

2

∣∣∣∣
2 H5

4π3
δ(t1 − t2), (A.4)

1

2
〈0|σ(x1)τ (x2) + τ (x1)σ (x2)|0〉

= Γ (ν)2

21−2ν

(
ν − 3

2

)
H3

4π4
δ(t1 − t2). (A.5)

Here φ̄ is the corse-grained Higgs field and π̄ is its canonical con-
jugate momentum. σ and τ are stochastic noise terms. Redefining 
the field as

φ̃ ≡ φ̄ − 1

H(ν − 3/2)
π̄ , (A.6)

the equation of motion is rewritten as

˙̃
φ(x, t) =

(
1 + 3

ν − 3/2

)
π̄ (x, t)

+ 1

H(ν − 3/2)

∂V

∂φ

∣∣∣∣
φ=φ̃+π/(H(ν−3/2))

, (A.7)

˙̄π(x, t) = −3Hπ̄ (x, t) − ∂V

∂φ

∣∣∣∣ ˜
+ τ (x, t), (A.8)
φ=φ+π/(H(ν−3/2))
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with correlation function,

〈0|τ (x1)τ (x2)|0〉 = Γ (ν)2

21−2ν

∣∣∣∣ν − 3

2

∣∣∣∣
2 H5

4π3
δ(t1 − t2). (A.9)

Note that the correlation function vanishes for the stochastic force 
for φ̃.

To solve the Langevin equation for our system with V =
cinf H2φ̄2/2 + λφ̄4/4, numerically, we normalize the time and field 
values with respect to the Hubble parameter; N ≡ Ht , χ ≡ φ/H , 
Π ≡ π̄/H2. Then, the basic equations are as follows,

∂χ

∂N
=

(
1 + 3

ν − 3/2

)
Π(N) + 1

(ν − 3/2)

(
cinf

(
χ + Π

ν − 3/2

)

+ λ

(
χ + Π

ν − 3/2

)3)
, (A.10)

∂Π

∂N
= −3HΠ(N) −

(
cinf

(
χ + Π

ν − 3/2

)

+ λ

(
χ + Π

ν − 3/2

)3)
+ τ̃ (x, t), (A.11)

with

〈0|τ̃ (x1)τ̃ (x2)|0〉 = Γ (ν)2

21−2ν

∣∣∣∣ν − 3

2

∣∣∣∣
2 1

4π3
δ(N1 − N2). (A.12)

We solved them by using the Euler–Maruyama method. We cal-
culated numerically the following equations,

χn+1 = χn + a1(χn,Πn)�N (A.13)

Πn+1 = Πn + a2(χn,Πn)�N + b(χn,Πn)�W (A.14)

with

a1(χn,Πn) =
(

1 + 3

ν − 3/2

)
Πn

+ 1

(ν − 3/2)

(
cinf

(
χn + Πn

ν − 3/2

)

+ λ

(
χn + Πn

ν − 3/2

)3)
, (A.15)

a2(χn,Πn) = −3HΠn −
(

cinf

(
χn + Πn

ν − 3/2

)

+ λ

(
χn + Πn

ν − 3/2

)3)
, (A.16)

b(χn,Πn) = Γ (ν)

2(3−2ν)/2π3/2

∣∣∣∣ν − 3

2

∣∣∣∣, (A.17)

from N = 0 to 50 (100) with the step width �N = 10−3 and the 
initial conditions χ = Π = ∂χ/∂N = ∂Π/∂N = 0. Here subscript 
n represents that the variable is of the n-th step, and �W is 
a random variable that satisfies 〈�W 2〉 = �N generated by the 
Mersenne-Twister method [30]. We performed 106 trials for each 
model parameter, cinf = 10−2 to 1 (and λ = −0.01), and obtained 
the result shown in Figs. 1 and 2. We stopped calculation once it 
gets |φ̄|/H > 30 since in this case the Higgs field goes down to the 
AdS vacuum rapidly and it will go to infinity. We confirmed that 
the proportion of such trials is less than 2% even for cinf = 10−2

and N∗ = 100. Thus it does not affect our result.
Appendix B. The validity of the approximation for the 
Hubble-induced mass during inflaton oscillation dominated era

In our analytic calculation, we integrate out the inflaton dynam-
ics and treat its effect as the “Hubble-induced mass” term in the 
Higgs potential during inflaton oscillation dominated era. Here, we 
calculate the time evolution of the Higgs field h numerically with-
out integrating out of the inflaton field φ in order to demonstrate 
the validity of our approximation.

We consider the massive chaotic inflation model with an h2φ2

interaction term as a simple example,

V = 1

2
m2φ2 + λ(h)

4
h4 + κ

2
h2φ2, (B.1)

with m = 1013 GeV. For simplicity, we assume an approximate for-
mula,

λ(μ) = −1.4 × 10−3 ln

(
μ

1011 GeV

)
, (B.2)

to estimate the scale dependence of the Higgs quartic coupling. 
From the potential in Eq. (B.1), the basic equations are given by

ḧ + 3Hḣ + λ(h)h3 + ∂λ(h)

∂h

h4

4
+ κφ2h = 0, (B.3)

φ̈ + 3Hφ̇ + m2φ + κh2φ = 0, (B.4)

3H2M2
Pl = 1

2

(
φ̇2 + ḣ2) + 1

2
m2φ2 + λ(h)

4
h4 + κ

2
h2φ2, (B.5)

where we neglect the spatial derivatives, ∇φ, ∇h.

B.1. Approximate calculation

First, we estimate the time evolution of the Higgs field with 
an approximation in which we assume the Higgs field dynamics 
does not affect on the inflaton dynamics and cosmic expansion. In 
this case, the inflaton oscillation and the Hubble parameter after 
inflation are given as

φ(t) = 2

√
2

3

MPl

mt
sin(mt), H(t) = 2

3t
, (B.6)

respectively. By averaging the inflaton oscillation over time,

φ̄(t) = 2√
3

MPl

mt
= √

3
MPl

m
H(t), (B.7)

the “effective mass” of the Higgs field can be obtained from the 
(κ/2)φ2h2 coupling as,

m2
h(t) = κφ̄(t)2 = cosc H2(t), (B.8)

where cosc = 3κ(MPl/m)2. The averaging of the inflaton oscillation 
can be justified when the time scale of the inflaton field evolution 
is much shorter than the Higgs field evolution.

Neglecting the quartic term, the dynamics of the Higgs field af-
ter inflation is then described by the following equation of motion,

ḧ + 2

t
ḣ + 4cosc

9t2
h = 0. (B.9)

The solution is given by,

h(t) � h0

(
3mt

)−(1−√
1−16cosc/9)/2

(B.10)

2



134 K. Kamada / Physics Letters B 742 (2015) 126–135
Fig. 5. The time evolution of the Higgs field with the Higgs-portal coupling to inflaton during inflaton oscillation dominated era. Curved red lines represent the numerical 
result and straight blue lines represent the analytic solution. Vertical green lines represent the analytic estimation of the Higgs fall time (Eq. (B.12)). Here we take the initial 
value of the Higgs field as (0.1 (dashed), 0.3 (dotted), 1 (straight)) ×√

κMPl . The Higgs-portal couplings are chosen as 10−12 (left) and 5 × 10−13 (right). (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)
with h0 being the initial condition for cosc < 9/16 which we are 
now interested in. The quartic coupling can be neglected only if

1

2
m2

h(t)h2(t) � |λ(h)|
4

h4(t)

⇔ h(t) �
√

2

|λ|mh(t) = 2

√
2κ

3|λ|
MPl

mt
, (B.11)

where we neglect the h dependence of λ. If h(t) becomes less than 
that value, the above approximation no longer valid and it rolls 
down to the unwanted true vacuum due to the negative quartic 
term. Combining Eq. (B.10) and Eq. (B.11), we now have an ana-
lytic estimate for the time when the Higgs field falls down to the 
unwanted true vacuum,

mt �
(

2

3

) √
1−16cosc/9

1+√
1−16cosc/9

(
κ

|λ|
) 1

1+√
1−16cosc/9

(
2Mpl

h0

) 2
1+√

1−16cosc/9

.

(B.12)

B.2. Numerical calculation

Next, we calculate the time evolution of the Higgs field numer-
ically. Using the following dimensionless variables,

ĥ = h/m, φ̂ = φ/m, Ĥ = H/m, η = mt, (B.13)

Eqs. (B.3)–(B.5) are rewritten as

∂2ĥ

∂η2
+ 3Ĥ

∂ĥ

∂η
+ λ(

¯̂h)ĥ3 + 1

4

∂λ

∂ĥ
ĥ4 + κĥφ̂2 = 0, (B.14)

∂2φ̂

∂η2
+ 3Ĥ

∂φ̂

∂η
+ φ̂ + κφ̂ĥ2 = 0, (B.15)

3

(
MPl

m

)2

Ĥ2 = 1

2

((
∂φ̂

∂η

)2

+
(

∂ĥ

∂η

)2

+ φ̂2
)

+ λ(
¯̂h)

4
ĥ4 + κ

2
φ̂2ĥ2.

(B.16)

Here, we investigate the time evolution of this system by using 
4-th order Runge–Kutta method with the adaptive step size control 
taking the initial conditions at η = 10−4 as
φ̂ = 2
MPl

m
,

∂φ̂

∂η
= 0, ĥ = ĥ0,

∂ĥ

∂η
= 0, (B.17)

with h0 = (0.1 − 1)
√

κMPl.
In Fig. 5, we show the numerical results of tracing the Higgs 

field time evolution (by curved red lines) and the results from 
approximate calculation, Eq. (B.10) (by blue dotted lines) with 
κ = (1.0 ×10−12, 5.0 ×10−13).18 The analytic fall times (Eq. (B.12)) 
are indicated by vertical green lines. In both results, the initial 
value of the Higgs field is taken as h0/(

√
κMPl) = 0.1, 0.3 and 1.0

from above.
The Higgs field starts slow-rolling at mt = 1 and goes to the 

true vacuum, finally, when the negative quartic term gets effec-
tive. The time when the Higgs field falls into the true vacuum is 
a little later than the approximated result (Eq. (B.12)), but this is 
because it takes time for the Higgs field really to fall down to the 
unwanted vacuum after it starts to feel the negative quartic term. 
Note that the numerical result starts to deviate from the analytic 
estimate exactly at the time evaluated in Eq. (B.12). Thus, our ap-
proximate calculation can be useful to estimate the time evolution 
of the Higgs field approximately as shown in Fig. 5.
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