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Fibrosis is a major cause of morbidity and mortality worldwide. Currently, therapeutic options for tissue fi-
brosis are severely limited, and organ transplantation is the only effective treatment for end-stage fibrotic
disease. However, demand for donor organs greatly outstrips supply, and so effective anti-fibrotic treatments
are urgently required. In recent years, the integrin family of cell adhesion receptors has gained prominence as
key regulators of chronic inflammation and fibrosis. Fibrosis models in multiple organs have demonstrated
that integrins have profound effects on the fibrotic process. There is now abundant in vivo data demonstrat-
ing critical regulatory roles for integrins expressed on different cell types during tissue fibrogenesis. In this
review, we will examine the ways in which integrins regulate these processes and discuss how the manipu-
lation of integrins using function blocking antibodies and small molecule inhibitors may have clinical utility
in the treatment of patients with a broad range of fibrotic diseases. This article is part of a Special Issue entitled:
Fibrosis: Translation of basic research to human disease.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Fibrosis represents a massive health care burden worldwide. Chronic
tissue injurywith fibrogenesis results in disruption of tissue architecture,
organ dysfunction and eventually organ failure. Our therapeutic reper-
toire for the treatment of tissue fibrosis is severely limited and organ
transplantation is currently the only effective treatment in end-stage fi-
brotic disease. However, organ transplantation has several disadvantages
including limited donor organ availability, high cost, co-morbidities in
potential recipients and on a global scale, organ transplantation can
only be offered to a small percentage of the patients suffering from the
complications of fibrosis. Therefore there is an urgent imperative to
develop effective anti-fibrotic therapies.

A universal feature of tissue fibrogenesis is the complex interplay
between the inflammatory, epithelial, myofibroblast and extracellu-
lar matrix components of the wound healing response [1–3]. Further-
more, the pericellular extracellular matrix is a highly dynamic
environment known to exert profound influences on cell behavior.
Many of the key cell–cell and cell–matrix interactions which regulate
fibrosis are mediated by members of the integrin family of cell
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adhesion molecules, of which there are 24 known members in
humans (noncovalent α/β heterodimers composed from 18 different
α subunits and 8 β subunits). Integrins represent a major mode of
communication between the extracellular matrix, inflammatory
cells, fibroblasts and parenchymal cells, and hence are intimately in-
volved in the processes that govern the initiation, maintenance and
resolution of tissue fibrosis. Integrins are transmembrane proteins
and are major receptors for cell adhesion to extracellular matrix pro-
teins and cell–cell adhesion [4]. These molecules can therefore medi-
ate the translation of spatially fixed extracellular signals into a wide
variety of changes in cell behavior including cell adhesion, migration,
proliferation, differentiation and apoptosis [4,5]. In addition to their
direct effects on cellular proliferation and survival, integrins can
also potentiate signals from soluble growth and survival factors. For
example, nearly all of the pro-fibrogenic cytokine transforming
growth factor beta 1 (TGFβ1) is secreted and bound to the extracel-
lular matrix in a latent form, and therefore conversion to an active
form is an important step in the regulation of TGFβ1 activity. In re-
cent years it has become clear that a subset of the integrin family
(αv integrins) play a key role in the activation of latent TGFβ1. Spe-
cifically, the integrins αvβ3, αvβ5, αvβ6 and αvβ8 have been shown
to bind the RGD sequence in the latency associated peptide (LAP) of
TGF-β1 and -β3, and have the potential to activate latent TGF-β
[6–10]. In this review we will highlight recent data demonstrating
the profound effects of integrins in modulating the fibrotic process
via activation of TGFβ, and how pharmacologic manipulation of
specific integrins may lead to the development of new antifibrotic
treatments.
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2. Lung fibrosis

2.1. αv integrin-mediated activation of latent TGFβ

Secreted transforming growth factor beta 1 (TGFβ1) is a major
pro-fibrogenic cytokine and a key regulator of fibrosis in multiple or-
gans [11–13]. Therefore, the molecular pathways that regulate
TGFβ1 activity and signaling are attractive targets for novel anti-
fibrotic therapies. There are three mammalian isoforms of TGFβ, and
all are synthesized as precursor proteins that are processed by proteo-
lytic cleavage in the endoplasmic reticulum and assembled as a
non-covalent complex of a disulfide linked homodimer of the mature
cytokine (a short C-terminal fragment) and a disulfide linked
homodimer of a larger amino terminal fragment called the latency as-
sociated peptide (LAP), forming the “small latent complex”. In this
form the associated LAP homodimer prevents the mature C-terminal
fragment from binding to its receptors and inducing TGFβ's known ef-
fects. This “small latent complex” is further modified in the endoplas-
mic reticulum by disulfide linkage to another family of gene proteins
called latent TGFβ binding proteins, which, upon secretion, are them-
selves chemically cross-linked to the extracellular matrix, to store and
tether TGFβ in a latent form in the extracellular space. Much of the
regulation of TGFβ biology thus occurs at the level of extracellular
activation of this stored latent complex [14,15].

Because the active form of TGFβ is non-covalently linked to the laten-
cy associated peptide and easily dissociates upon changes in tempera-
ture or pH [15], in vitro examination of TGFβ activation has been
difficult. Therefore, the in vivo mechanisms of matrix-bound latent
TGFβ conversion into an active cytokine are the subject of intense re-
search. Two of the three mammalian TGFβ isoforms (TGFβ1 and 3)
can be activated by members of the integrin family that interact
with a linear arginine–glycine–aspartic acid (RGD) motif present in the
latency associated peptide [6,7,16]. Inhibition and blockade of two of
these integrins (αvβ6 and αvβ8) phenocopies all of the developmental
effects of loss of TGFβ1 and 3 [17], suggesting that these two integrins
are required for most or all important roles of these TGFβ isoforms
during development. However, the mechanisms of TGFβ activation that
contribute to tissue pathology in adults are less well understood.

In the lung, the αvβ6 integrin is minimally expressed in alveolar epi-
thelial cells at baseline but is rapidly induced in this cell type following
lung injury [18]. Evidence supporting an important role for the αvβ6
integrin in TGFβ1 activation came from observation of the phenotype of
β6 integrin subunit knockout mice. These mice develop exaggerated
inflammatory responses in the lungs and skin, reminiscent of, but less
severe than the exaggerated inflammation seen in mice homozygous for
a null mutation of TGFβ1 [19]. Furthermore, following treatment with
bleomycin (a widely used inducer of pulmonary fibrosis), β6 null mice
develop exaggerated inflammation but are dramatically protected from
subsequent pulmonary fibrosis [6]. β6 inhibition (both by genetic knock-
out and blockade by anti-αvβ6 antibodies) was also protective in
radiation-inducedpulmonaryfibrosis [20]. Theαvβ6 integrin can binddi-
rectly to the LAP of TGFβ1 and TGFβ3 [16] and cells expressingαvβ6 gen-
erate TGFβ1 activity in vitro that can be completely inhibited by β6
blocking antibodies. In addition, microarray analysis of the lungs of wild
typeorβ6nullmice following intratracheal instillationof bleomycin iden-
tified a large groupof TGFβ-inducible genes thatwere induced at substan-
tially lower levels in β6 knockout mice [21]. Taken together, these data
demonstrate that αvβ6 integrin expression on lung epithelial cells is a
major regulator of TGFβ1 activation during lung fibrosis.

Activation of TGFβ1 was inhibited by blockade of actin polymeriza-
tion [6] and by Rho kinase inhibition [22], suggesting a role for force
generation by the actin cytoskeleton. Indeed, the recently solved crystal
structure of the small latent complex of TGFβ1 demonstrated that
mechanical force generated by integrins is a common mechanism for
activating latent TGFβ1 [23]. Shi and colleagues found that crystals of
dimeric porcine proTGF-β1 revealed a ring-shaped complex, a novel
fold for the prodomain (LAP) of TGFβ1, and demonstrated that the
prodomain shields the growth factor from recognition by receptors
and alters its conformation. Furthermore, complex formation between
αvβ6 integrin and the prodomain of TGFβ1 was insufficient for TGFβ1
release, and force-dependent activation of TGFβ1 required unfastening
of a “straitjacket” that encircles each growth factor monomer.

Myofibroblasts are a further cell type intrinsically involved in the
fibrotic process, as they are the major source of extracellular matrix pro-
teins during organ scarring. These contractile cells express several αv
integrins and force generated by the actomyosin cytoskeleton can be
transmitted to the extracellular matrix by αv integrins. Elegant in vitro
studies of myofibroblasts have shown that these cells can utilize alterna-
tiveαv integrins to activate TGFβ1, and demonstrates thatmyofibroblasts
can liberate and activate TGFβ1 from pre-existing and self-generated
deposits in the extracellular matrix by transmitting their high contractile
force to the large latent complex through αvβ5 integrin and as yet
unidentified β1 and 3 integrins [10].

The integrin αvβ8 is also capable of binding to and activating TGFβ1
[7]. This was an unexpected finding, as αvβ6-mediated activation was
found to depend critically on sequences within the β6 cytoplasmic
domain [6], however the β8 cytoplasmic domain and the β6 cytoplasmic
domain are completely divergent. In addition, even deletion of theβ8 cy-
toplasmic domain did not diminish αvβ8-mediated TGFβ1 activation,
suggesting that these integrins (which both bind to the same RGD
sequence in the TGFβ1 and TGFβ3 latency associated peptides)might ac-
tivate the TGFβ1 latent complex by differing mechanisms. Further work
demonstrated this to be the case. In contrast toαvβ6mediated activation
of TGFβ1, which depends on direct cell–cell contact,αvβ8-mediated ac-
tivation releases active TGFβ1 into the culturemedium ofαvβ8 express-
ing cells. In addition, whereas αvβ6-mediated activation is completely
resistant to inhibition by a variety of protease inhibitors,metalloprotease
inhibitors abolish αvβ8-mediated TGFβ1 activation, and transfection
studies in cells demonstrated a role for the protease MT1-MMP
(MMP14) in this process. Therefore αvβ8 appears to activate TGFβ1 by
presenting latent complexes to cell–surface metaloproteases which
degrade the latency associated peptide and release free TGFβ1 into the
extracellularmilieu. An important role forαvβ8-mediated TGFβ1 activa-
tion in vivo is supported by studies of β8 knockout mice. Some of these
mice die in mid-gestation from a defect in vascular development remi-
niscent of that seen in some TGFβ1 null mice [24]. Mice that survive to
birth die soon after from brain hemorrhage that could be explained by
loss of developmental vascular effects of TGFβ1. Furthermore, many of
these mice have a cleft palate, a prominent feature in TGFβ-3 knockout
mice [25].

These data strongly suggest that the αvβ8 integrin is an important
regulator of TGFβ1 and TGFβ3 activation in vivo, but does manipulation
of this integrin have any modulatory effect on the fibrotic process? Pre-
vious studies have shown that αvβ8 expression is increased in the air-
way fibroblasts of COPD (chronic obstructive pulmonary disease)
patients and expression correlated with the extent of airway wall fibro-
sis. Furthermore, αvβ8-mediated activation of TGFβ1 by COPD fibro-
blasts increased pro-fibrogenic differentiation [26]. Recently studies
conducted by the same group have examined the role of fibroblast
αvβ8 in murine airway fibrosis [27]. Kitamura et al. demonstrated that
conditional deletion of lung fibroblast αvβ8 inhibited airway fibrosis in
both IL-1β and ovalbumin-induced murine models of airway fibrosis.
Furthermore, deletion of αvβ8 reduced TGFβ1 activation by cultured
mouse lung fibroblasts. Extending their studies to human lung fibro-
blasts, the authors also found that IL-1β enhanced αvβ8-dependent
TGFβ activation, collagen expression andpro-inflammatory geneexpres-
sion in COPD compared with normal lung fibroblasts.

2.2. α3β1-mediated regulation of lung fibrosis

In recent years the origin of myofibroblasts in pulmonary fibrosis has
been intensely studied, with potential sources including resident
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fibroblasts, circulating progenitors and epithelial–mesenchymal transi-
tion (EMT) [28–30]. Because the extracellular matrix is a key regulator
of alveolar epithelial cell responses to TGFβ1 (and this cytokine is a po-
tent inducer of EMT in vitro), Kim et al. investigated the role of the prom-
inent epithelial integrin α3β1 (a laminin receptor known to co-localize
with E-cadherin and β-catenin at adherens junctions [31]) in a mouse
model of pulmonary fibrosis using mice with conditional epithelial
cell-specific deletion ofα3 integrin expression [32]. Despite a normal re-
sponse to acute bleomycin-induced lung injury, these mice demonstrat-
ed a reduction in lung myofibroblasts and type I collagen and did not
progress to fibrosis. To investigate whether this phenotype was second-
ary to a reduction in EMT, the authors examined β-catenin signaling as
β-catenin has been implicated in EMT. They found that in primary alve-
olar epithelial cellsα3 integrin was required for β-catenin phosphoryla-
tion at tyrosine residue 654 (Y654), formation of a pY654–β-catenin–
p-SMAD2 complex, and initiation of EMT both in vitro and in vivo during
fibrosis following bleomycin-induced lung injury. Furthermore, analysis
of human lung tissue from idiopathic pulmonary fibrosis (IPF) patients
demonstrated pY654–β-catenin–pSMAD2 complexes and accumulation
of pY654–β-catenin inmyofibroblasts. This suggests that alveolar epithe-
lial integrin-dependent crosstalk between β-catenin and Smad signaling
is important during the evolution of lung fibrosis, and that EMT plays a
role in the development of lung fibrosis. However, it should also be
noted that a number of recent cell fate mapping studies in multiple or-
gans including the lung, have shown that EMT does not directly contrib-
ute to the pool of collagen-producingmyofibroblasts during fibrogenesis
in vivo [33–35]. Themolecularmechanisms of integrin-mediated regula-
tion of lung fibrosis are summarized in Fig. 1.

3. Liver fibrosis

Integrinαvβ6mRNA expression is increased in patients with fibrotic
liver disease secondary to a variety of etiologies (primary biliary cirrho-
sis, alcohol-induced, and hepatitis B and C) and expression increases
with fibrosis stage in hepatitis C [36]. Furthermore αvβ6 expression is
virtually absent in normal liver but is significantly upregulated in rodent
models of liver fibrosis [36,37]. Using the bile duct ligation model of
Fig. 1. Mechanisms of integrin-mediated regulation of lung fibrosis. α3β1-mediated promot
with TGFβ receptor I (TBRI), E-cadherin and β-catenin. In the presence of TGFβ1, α3 integ
necessary for formation of a pY654–β-catenin–p-SMAD2 complex. This pY654–β-catenin–p-SM
transition). αvβ6-mediated activation of latent TGFβ: αvβ6 binds to the RGD sequence in th
essential for TGFβ activation. Binding alone is insufficient to activate latent complexes. Activa
a conformational change in the latent complex. This conformational change presents the activ
acute biliary fibrosis Wang et al. [37]. demonstrated that bile duct ob-
struction induces a marked increase in cholangiocyte αvβ6 expression.
Furthermore, biliary fibrosis is reduced by 50% in β6 integrin null mice
compared to wild type controls, and administration of a blocking anti-
body to αvβ6 significantly decreased acute fibrosis after bile duct liga-
tion. A recent study has also examined the effect of a small molecule
inhibitor ofαvβ6 (EMD527040) during biliary fibrosis [38]. Biliary fibro-
sis was studied in rats after bile duct ligation and in Mdr2(abcb4)−/−

mice. Differing doses of EMD527040 were given to rats from weeks 2
to 6 after BDL and to Mdr2(abcb4)−/− mice from weeks 4 to 8.
EMD527040 reduced bile duct proliferation and peribiliary collagen de-
position by 40–50%, decreased pro-fibrotic gene expression and up-
regulated fibrolytic genes.

Hepatic stellate cells are themajor source of extracellularmatrix pro-
teins during hepatic fibrogenesis [39,40], and therefore represent an
important target in the development of anti-fibrotic therapies for liver
fibrosis. Zhou et al. examined the possibility that stellate cell fate
is influenced by the extracellular matrix through the intermediary
of αvβ3 integrin [41]. αvβ3 was expressed by rat and human
culture-activated liver myofibroblasts, and blockade of this integrin
inhibited stellate cell proliferation and increased apoptosis of cultured
stellate cells. A recent study using cilengitide (an antagonist mainly se-
lective for αvβ3 and αvβ5, with less potency towards αvβ6) demon-
strated a 30% increase in hepatic collagen in two models of liver
fibrosis (bile duct ligation and thioacetamide (TAA)-induced) [42].

4. Kidney fibrosis

αvβ6 integrin expression is low in the normal kidney, but marked
induction of this integrin occurs in a wide range of renal diseases asso-
ciated with chronic inflammation and fibrosis. Human biopsy samples
frommembranous glomerulonephritis, diabetes mellitus, IgA nephrop-
athy, Goodpasture's syndrome, Alport syndrome and lupus all demon-
strated prominent αvβ6 staining in the epithelial lining of dilated and
damaged tubules [43]. To assess the potential regulatory role of αvβ6
in renal fibrosis, Hahm et al. investigated the effects of function-
blocking αvβ6 antibodies and genetic ablation of the β6 subunit using
ion of myofibroblast formation: In uninjured alveolar epithelial cells α3β1 co-localizes
rin is required for β-catenin phosphorylation at tyrosine residue 654 (Y654), which is
AD2 complex then translocates to the nucleus and induces EMT (epithelial–mesenchymal
e LAP of TGFβ1 and 3. This complex is tethered by a disulfide linkage to LTBP1, which is
tion requires extracellular signals that lead to epithelial cell contraction and induction of
e site on the mature TGFβ dimer to TGFβ receptors on adjacent cells, such as fibroblasts.
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a mouse model of Alport syndrome (Col4A3−/− mice). αvβ6-blocking
antibody treatment attenuated accumulation of activated fibroblasts
and deposition of interstitial collagen matrix, and similar inhibition of
renal fibrosis was observed in β6-deficient Alport mice. Renal fibrosis
is also decreased in β6 null mice following unilateral ureteric obstruc-
tion [44], further demonstrating that αvβ6 plays a central regulatory
role in the pathogenesis of kidney fibrosis.

5. Skin fibrosis

In recent years, there have been a number of studies focusing on the
role of the αv integrins in skin fibrosis and wound healing. Systemic
sclerosis or scleroderma is an acquired disease typically leading to fibro-
sis of the skin and internal organs [3]. αvβ3 and αvβ5 expression are
upregulated on human scleroderma fibroblasts and both of these
integrins are involved in activation of latent TGFβ1 in primary cultures
of these cells. Furthermore, treatment of scleroderma fibroblasts with
anti-αvβ3 and αvβ5 antibodies reduced type I procollagen ex-
pression [8,9,45–47]. A role for αvβ6 in skin wound healing has also
been examined. αvβ6 expression is strongly upregulated in the epider-
mis of human chronic wounds. Furthermore, transgenic mice harboring
the human β6 integrin gene under the control of the cytokeratin 14 pro-
moter (to target constitutive expression of the αvβ6 integrin in epider-
mal basal cells) develop spontaneous chronic skin wounds surrounded
by progressive fibrosis [48]. In addition, aged β6 null mice demonstrate
a significant delay in wound healing when compared to age-matched
controls [49].

Skin scleroderma can be modeled in mice by repetitive subcuta-
neous injection of bleomycin. To investigate the role of β1 integrin
in cutaneous sclerosis Liu et al. generated mice with fibroblast specific
deletion of the β1 integrin (using mice expressing a tamoxifen-
inducible Cre recombinase driven by the mouse collagen type 1, alpha
2 promoter) [50]. Bleomycin treatment induced marked cutaneous
thickening and fibrosis in control mice, however, fibroblast specific dele-
tion of β1 integrins resulted in resistance to bleomycin-induced skin
fibrosis.

Table 1 summarizes themurine fibrosis models which have demon-
strated a role for integrins in the regulation of fibrosis in vivo. Clearly
these studies cannot be translated directly to human disease, but they
do offer very useful insights into the molecular mechanisms driving fi-
brosis, allowing potential therapeutic targets to be identified.

6. Therapeutic targeting of integrins

Although TGFβ1 is a promising target for the treatment of fibrotic
diseases, all of the currently available methods for inhibiting TGFβ
target all three mammalian isoforms. TGFβ inhibitors therefore have
Table 1
Analysis of integrin function in transgenic mouse models of fibrosis.

Integrin Organ Model of fibrosis Manipulation Summa

αvβ6 Lung Bleomycin Global knockout of αvβ6 Absence
lung fib

αvβ6 Lung Radiation Global knockout of αvβ6 Absence
fibrosis

αvβ6 Kidney Mouse model of
Alport syndrome
(Col4A3−/− mice)

Global knockout of αvβ6 Absence
Alport m

αvβ6 Kidney Unilateral ureteric
obstruction (UUO)

Global knockout of αvβ6 Absence

αvβ6 Liver Bile duct ligation Global knockout of αvβ6 Absence
αvβ8 Lung IL-1β and allergen

induced lung injury
Conditional knockout of
αvβ8 in fibroblasts

Reduced
immuni

α3β1 Lung Bleomycin Conditional knockout of
α3β1 in epithelial cells

Decreas
signalin

β1 Skin Subcutaneous injection
of bleomycin

Conditional knockout of
β1 in fibroblasts

Deletion
skin fibr
the potential for important unintended side effects. One concern
relates to the potential for carcinogenesis as TGFβ1 has an
anti-proliferative effect on most epithelial cell types. This is particu-
larly relevant with regard to advanced liver fibrosis in humans, as
most hepatocellular carcinomas originate from underlying cirrhotic
liver tissue. Secondly, owing to the critical role of TGFβ1 in immuno-
suppression (TGFβ1 null mice die at an early age from massive
multi-organ inflammation [51,52]), generalized blockade of TGFβ
activity may also lead to excessive autoimmunity and inflammation
which could be highly detrimental in a patient with advanced fibrosis
and limited organ reserve. Therefore inhibition of TGFβ1 signaling at
specific sites, via inhibition of specific integrins, may yield the desired
anti-fibrotic effects without the unwanted side-effects of pan-TGFβ
blockade.

Specific blocking antibodies to αvβ6 have shown therapeutic
promise in a wide range of pre-clinical models of fibrosis including
lung fibrosis [20,53], renal fibrosis [43,44] and peri-biliary fibrosis
[37,54]. Furthermore, in the lung low doses of αvβ6 blocking anti-
bodies can prevent bleomycin-induced or radiation-induced pulmo-
nary fibrosis in mice, without causing inflammation [20,53]. A
monoclonal antibody targeting αvβ6 (clone 6.3G9) has been human-
ized as STX-100, and is currently being evaluated in phase 2 clinical
trials for the treatment of patients with idiopathic pulmonary fibrosis.
As noted above, pre-clinical data also suggest that targeting α3β1,
αvβ3,αvβ5,αvβ8 or the β1 integrin on fibroblasts that regulate cuta-
neous fibrosis could hold promise for treatment of fibrotic diseases,
however much less is currently known about the risk/benefit ratios
of any of these interventions.

7. Conclusions

In recent years it has become apparent that integrins have profound
effects on fibrosis in multiple organs. There is now abundant in vivo
data demonstrating critical regulatory roles for integrins expressed on
different cell types during the fibrotic process. The component parts of
tissue fibrogenesis are exquisitely complex, and these studies highlight
the important cross-talk between epithelia, tissue myofibroblasts and
the cells of the immune system during the evolution and resolution of fi-
brosis. Strategies tomanipulate integrins, such as antibody blockade and
small molecule inhibitors, will hopefully yield effective anti-fibrotic
therapies.
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