JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 130, 538-544 (1988)

How to Fuzzify a Closure Space

A. ACHACHE

140, Rue Dedieu, 69100 Villeurbanne, France Submitted by L. A. Zadeh Received May 17, 1985

It is shown here how the Galois connections theory provides a canonical procedure to fuzzify a crisp closure space. Roughly speaking, if S is a space equipped with an \cap -closed set \mathscr{F} of subsets (the closed subsets), the closed fuzzy subsets of $S \ll \operatorname{are}$ the Galois connections between \mathscr{F} and the valuation set. The closed crisp subsets are particular closed fuzzy subsets. \bigcirc 1988 Academic Press, Inc.

PRELIMINARIES

Let us recall what a Galois connection is. A Galois connection between the ordered sets P and Q is a couple of mappings $P \rightleftharpoons_g^f Q$ (or $(f,g) \in Q^P \times P^Q$) such that f and g are decreasing, $1_P \leq g \circ f$ and $1_Q \leq f \circ g$. Let us denote by $\Gamma(P, Q)$ the set of such Galois connections. This set can clearly be cartesianily ordered.

When P and Q are complete lattices, it is known that $\Gamma(P, Q)$ is itself a complete lattice. In this case, it is also known that, whenever $(f, g) \in \Gamma(P, Q)$ and $A \subset P$, $f(\lor A) = \bigwedge_{a \in A} f(a)$. But we have better. Let us define

$$\Delta(\mathbf{P},\mathbf{Q}) = \left\{ h \in \mathbf{Q}^{\mathbf{P}} / \forall A \subset \mathbf{P}, h(\forall A) = \bigwedge_{a \in A} h(a) \right\}.$$

The mapping $(f, g) \mapsto f$ from $\Gamma(P, Q)$ toward $\Delta(P, Q)$ is an isomorphism (of complete lattices). (See [1 or 3]).

RESULTS

In the whole following text, S is a set, equipped with a closure structure: \mathscr{F} is an \cap -closed set of subsets of S. The associated closure $F: 2^S \to \mathscr{F}$ is defined by $F(X) = \bigcap \{ Y \in \mathscr{F} / X \subset Y \} (= \overline{X}).$

Let L be a *complete lattice* (with 0 < 1). The fuzzy subsets of S are (by definition) the members of L^{S} .

THEOREM 1. The complete lattice $\Gamma(L, \mathcal{F})$ is isomorphic to:

$$\mathscr{G} = \bigg\{ \alpha \in L^{S} / \forall X \subset S, \bigwedge_{x \in X} \alpha(x) = \bigwedge_{x \in \overline{X}} \alpha(x) \bigg\}.$$

More precisely, we have the following reciprocal isomorphisms (of complete lattices):

$$\Gamma(L,\mathscr{F}) \xrightarrow{u}_{v} \mathscr{G}$$

with

$$u_{f,g}(x) = g(F(\lbrace x \rbrace))$$

and

$$v_{\alpha} = (i, j), \qquad i(t) = \alpha^{-1}(\uparrow t), \qquad j(X) = \bigwedge_{x \in X} \alpha(x).$$

Proof. Let us first prove that u and v are well defined. We shall denote by \bigvee the supremum in the complete lattice \mathscr{F} . Assume first that (f, g) is in $\Gamma(L, F)$. We have to prove that $u_{f,g}(=\varphi)$ is in \mathscr{G} . For each subset X of S we have

$$\overline{X} = F\left(\bigcup_{x \in X} \{x\}\right) = F\left(\bigcup F(\{x\})\right) = \bigvee F(\{x\}).$$

We deduce $g(\overline{X}) = g(\forall F(\{x\})) = \bigwedge g(F(\{x\})) = \bigwedge \varphi(x)$. But then also $g(\overline{X}) = g(\overline{F(X)}) = \bigwedge_{x \in F(X)} \varphi(x)$. Hence $u_{f,g}$ is in \mathscr{G} . Assume now that α is in \mathscr{G} . We have to prove that i(t) is a member of \mathscr{F} and that (i, j) is Galois. For the first point, let z be a member of $\overline{i(t)}$: since

$$i(t) = \{ x \in E/\alpha(x) \ge t \} \qquad (\text{with } t \in L),$$

we get

$$\alpha(z) \ge \bigwedge_{x \in \overline{i(t)}} \alpha(x) = \bigwedge_{x \in i(t)} \alpha(x) \ge t$$

and z is a member of i(t). The second point is easily checked.

Since u and v are obviously increasing, we just have to prove now that u and v are reciprocal bijections. For each member x of S,

$$u_{v_{2}}(x) = u_{i,j}(x) = j(F(\lbrace x \rbrace))$$
$$= \bigwedge_{y \in F(\lbrace x \rbrace)} \alpha(y) = \bigwedge_{y \in \lbrace x \rbrace} \alpha(y) = \alpha(x)$$

In order to finish, let us prove that, for each member (f, g) of $\Gamma(L, \mathcal{F})$, $v_{u_{f,g}} = (f, g)$. Let us put for the moment $v_{u_{f,g}} = (i, j)$. We get (by using successively the definitions of v and u):

$$i(t) = (u_{f,g})^{-1} (\uparrow t) = \{x \in S/t \le u_{f,g}(x)\}$$

= $\{x \in S/t \le g(F(\{x\}))\}$
= $\{x \in S/F(\{x\}) \subset f(t)\}$
= $\{x \in S/x \in f(t)\} = f(t).$

Then f = i. Now, for $X \in \mathcal{F}$,

$$j(X) = \bigwedge_{x \in X} u_{f,g}(x) = \bigwedge_{x \in X} g(F(\{x\}))$$
$$= g\left(\bigvee_{x \in X} F(\{x\})\right) = g\left(F\left(\bigcup_{x \in X} F(\{x\})\right)\right)$$
$$= g\left(F\left(\bigcup_{x \in X} \{x\}\right)\right) = g(F(X)) = g(X).$$

Note that, whenever α is a member of \mathscr{G} , $\alpha^{-1}(\uparrow t)$ is a member of \mathscr{F} for every t in L. Thus, each level of α (i.e., each $\alpha^{-1}(\uparrow t)$) is closed. We now extend the notion of closed subset by the following definition.

DEFINITION 2. A fuzzy subset α of S is said \mathscr{F} -closed (or closed) if and only if

$$\forall X \subset S \qquad \bigwedge_{x \in X} \alpha(x) = \bigwedge_{x \in \overline{X}} \alpha(x).$$

So, the fuzzy subsets of S are the members of \mathscr{G} . In order to justify the terminology of Definition 2, we have to prove that \mathscr{G} is A-closed. Then, we shall make the link precise between the closed subsets and the fuzzy closed ones and we shall prove that the closure associated to \mathscr{G} is a prolongation of F.

THEOREM 3. (1) The set \mathscr{G} is an Λ -closed subset of L^S . Let us denote by $G: L^S \to \mathscr{G}$ the associated closure.

- (2) $\mathscr{G} \cap 2^{S} = \mathscr{F}$.
- (3) For every member α of 2^s , $F(\alpha) = G(\alpha)$.

Proof. (1) We have to prove that, for each $m \subset \mathcal{G}$, the fuzzy subset $\gamma = \bigwedge m$ is a member of \mathcal{G} . For a given subset X of S,

$$\bigwedge_{x \in X} \gamma(x) = \bigwedge_{x \in X} \left(\bigwedge_{\mu \in \mathfrak{m}} \mu(x) \right)$$
$$= \bigwedge_{\mu \in \mathfrak{m}} \left(\bigwedge_{x \in X} \mu(x) \right) = \bigwedge_{\mu \in \mathfrak{m}} \left(\bigwedge_{x \in \overline{X}} \mu(x) \right)$$
$$= \bigwedge_{x \in \overline{X}} \left(\bigwedge_{\mu \in \mathfrak{m}} \mu(x) \right) = \bigwedge_{x \in \overline{X}} \gamma(x).$$

(2) We identify a member α of 2^{S} to the crisp $A = \alpha^{-1}(1)$. Such a crisp subset α belongs to \mathscr{G} if and only if, for each $X \subset S$,

$$\bigwedge_{x \in X} \alpha(x) = 1 \Rightarrow \bigwedge_{x \in \overline{X}} \alpha(x) = 1.$$

In other words, α is in \mathscr{G} if and only if $X \subset A \Rightarrow \overline{X} \subset A$. And this is equivalent to $A \in \mathscr{F}$.

(3) We still identify α to A. Let us identify $\overline{A} = B$ to the associated characteristic function β ($\geq \alpha$). By (2), we know that β is in \mathscr{G} . By the definition of G,

$$G(\alpha) = \bigwedge \{ \gamma \in \mathscr{G} / \alpha \leqslant \gamma \}.$$

Hence

$$\alpha \leqslant G(\alpha) \qquad (=\varphi) \leqslant \beta.$$

For each $a \in A$, $1 = \alpha(a) \leq \varphi(a)$, then $\varphi(a) = 1$. For each $x \in S \setminus \overline{A}$, $\varphi(x) \leq \beta(x) = 0$, then $\varphi(x) = 0$. Finally $1 = \bigwedge_{a \in A} \varphi(a) = \bigwedge_{a \in \overline{A}} \varphi(a)$, and $\varphi(x) = 1$ for each $x \in \overline{A}$. Then $\varphi = \beta$.

EXAMPLE 1. Initial subsets of an ordered set. A subset X of the ordered set S is said to be initial if and only if

$$x \leq y \in X \Rightarrow x \in X.$$

The set \mathscr{F} of the initial subsets of S is obviously \cap -closed. Which are the fuzzy closed subsets of S? Assume α is such a subset. Then

$$\bigwedge_{y \in \{x\}} \alpha(y) = \bigwedge_{y \in \overline{\{x\}}} \alpha(y) = \bigwedge_{y \in x} \alpha(y).$$

Then $y \leq x$ implies $\alpha(x) \leq \alpha(y)$ and α is decreasing.

A. ACHACHE

Conversely, assume that α is a decreasing mapping from S toward L. Whenever $y \leq z \in X$, we can deduce $\bigwedge_{x \in X} \alpha(x) \leq \alpha(z) \leq \alpha(y)$ and then $\bigwedge_{x \in X} \alpha(x) \leq \bigwedge_{y \in \overline{X}} \alpha(y)$. Finally α is in \mathscr{G} .

So the fuzzy closed subsets are exactly the decreasing mappings.

EXAMPLE 2. Subgroupoids of a groupoid. A groupoid is a set uniquely equipped with a binary operation. A subgroupoid of a given groupoid is, by definition, a subset which is closed by that operation.

THEOREM 4. Let (S, \mathcal{F}) be the closure space constituted by the complete lattice of the subgroupoids of a groupoid S. A fuzzy subset $\varphi(\varepsilon L^S)$ is closed if and only if, whenever x and y are in S:

$$(\varphi(x)) \land (\varphi(y)) \leq \varphi(xy).$$

Proof. Assume that φ is closed. Let P be the subset (of S) the only elements of which are x and y. By Definition 2, we can write

$$(\varphi(x)) \wedge (\varphi(y)) = \bigwedge_{z \in \overline{P}} \varphi(z).$$

Since xy is in \overline{P} , we get $(\varphi(x)) \land (\varphi(y)) \leq \varphi(xy)$.

Conversely, assume that φ satisfies (for all x, y) the inequality of the theorem. Let X be an arbitrary (crisp) subset of S. If z is in \overline{X} , it must be (at least in one manner) composed of a finite (nonnull) number of elements of X: let $A(\subset X)$ be the considered finite set. By using finitely many of the inequality of the text of the theorem we get

$$\varphi(z) \ge \bigwedge_{a \in A} \varphi(a) \ge \bigwedge_{x \in X} \varphi(x).$$

We deduce $\bigwedge_{z \in \bar{X}} \varphi(z) \ge \bigwedge_{x \in X} \varphi(x)$. Hence φ is closed.

These fuzzy closed subsets can be named the fuzzy subgroupoids of S. By the same procedure, we can define, for instance, the fuzzy subgroups of a group, and we find again the definitions of [4].

EXAMPLE 3. $\mathscr{F} = 2^{S}$. It is clear that $\mathscr{G} = L^{S}$: F and G are the "identity" closures. Then, we have the reciprocal isomorphisms p and q and the reciprocal isomorphisms u and v:

$$\Delta(L, 2^{S}) \underset{q}{\overset{P}{\rightleftharpoons}} \Gamma(L, 2^{S}) \underset{v}{\overset{u}{\rightleftharpoons}} L^{S},$$

where u and v are given in Theorem 1 and where p and q are deduced (for instance) of [1]:

$$p(f) = (f, g) \quad \text{with} \quad g(X) = \bigvee_{X \subset f(t)} t$$
$$q(f, g) = f.$$

Let us compute the reciprocal isomorphisms up and qv:

$$u_{p_f}(x) = gF(\lbrace x \rbrace) = \bigvee_{F(\lbrace x \rbrace) = f(t)} t = \bigvee_{x \in f(t)} t$$
$$q_{v_x}(t) = i(t) = \alpha^{-1}(\uparrow t).$$

So, we find again the representation theorem of Negoita and Ralescu [2].

EXAMPLE 4. $\mathscr{F} = 2^{S}$ and $L = 2^{T}$ (*T* is a set). By defining again *u* and *v* as in Theorem 1 and by defining the reciprocal isomorphisms *a* and *b* by $a(\gamma) = \{(x, y) \in S \times T/y \in \gamma(x)\}$ we get the compositions:

$$\Gamma(2^T, 2^S) \underset{v}{\overset{u}{\leftrightarrow}} (2^T)^S \underset{b}{\overset{a}{\leftrightarrow}} 2^{S \times T}.$$

Then, whenever ρ is a member of $2^{S \times T}$, $v_{b_{\rho}} = (i, j)$ is the Galois connection $2^T \neq_j^i 2^S$ defined as in Theorem 1. More precisely, we get

$$i(Y) = b_{\rho}^{-1}(\uparrow Y) = \{x \in S/Y \subset b_{\rho}(x)\}$$

= $\{x \in S/\forall y \in Y, y \in b_{\rho}(x)\}$
= $\{x \in S/\forall y \in Y, (x, y) \in \rho\};$
$$j(X) = \bigcap_{x \in X} b_{\rho}(x) = \{y \in T/\forall x \in X, y \in b_{\rho}(x)\}$$

= $\{y \in T/\forall x \in X, (x, y) \in \rho\}.$

Then $v_{b_{\rho}}$ is the classical Galois connection of the binary relation ρ . We find again the fact that each binary relation can be identified with a Galois connection (see [3]).

OPEN PROBLEMS

(1) For a given \mathscr{F} , what are the $m (\subset L^{\mathcal{E}})$ verifying the conditions (1), (2), and (3) of Theorem 3 (where \mathscr{G} would be replaced by m)?

(2) Let us define:

$$\mathbb{F} = \{\mathscr{F} \subset 2^{S} / \mathscr{F} \cap \text{-closed} \}$$
$$\mathbb{C} = \{\mathscr{C} \subset L^{S} / \mathscr{C} \land \text{-closed} \}.$$

Study the mapping

 $\mathbb{F} \to \mathbb{C}$ defined by $\mathscr{F} \mapsto \mathscr{G}$.

CONCLUSION

It seems that the proposed procedure is the best one to fuzzify a mathematical structure. It can easily be used to "soften" such things as convexity structures or topological spaces.

References

- 1. A. ACHACHE, Galois connexions of a fuzzy subset, Fuzzy Sets and Systems 8 (1982), 215-218.
- 2. C. V. NEGOITA AND D. A. RALESCU, "Applications of Fuzzy Sets to Systems Analysis," Birkhaüser, Basel/Stutgart, 1975.
- 3. Z. SHMUELY, The structure of Galois connexions, Pacific J. Math. 54 (1974), 209-225.
- 4. A. ROSENFELD, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512-517.

544