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Abstract

The close relationship between discrete Sturm—Liouville problems belonging to the so-called
limit-circle case, the indeterminate Hamburger moment problem and the search of self-adjoint ex-
tensions of the associated semi-infinite Jacobi matrix is well known. In this paper, all these impor-
tant topics are also related with associated sampling expansions involving analytic Lagrange-type
interpolation series.

0 2003 Elsevier Science (USA). All rights reserved.

Keywords:Indeterminate moment problems; Difference operators; Lagrange interpolation series

1. Introduction

In [12] and the references cited therein, a sampling theorem associated with a singular
Sturm—Liouville problem on the halflingd, co) is proved. Namely, consider the singular
Sturm—Liouville boundary value problem:

=" +q(x)y=»ry, x¢€[0,00), 1)
y(0) cosx + y’(0) sina =0,

whereg (x) is a continuous function of®), co). Let¢ (x, 1), 8(x, 1) be the solutions of the
differential equation of the boundary value problem (1) such that
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¢ (0) = sine, ¢’ (0) = — cosa,

0(0) = cosa, #’(0) = sina.
From the Weyl-Titchmarsh theory [11] it follows that there exists a complex valued
function m, (1), the so-calledMeyl-Titchmarsh functigrsuch that for every € C\ R
the differential equation in (1) has a solutiofo(x, 1) = 0(x,A) + Mmeo(AM)P(x, A)
belonging toL2(0, 0o). In the so-calledimit-point casem,(A) is unique, while in the
limit-circle casethere are uncountably many such functions (see [11] for the details). For
eachi € C\ R, the values of these functions atbelong to a geometrical circlé, (1)
(in the limit-point case, this circle collapses into a point). In the case when a pure point
spectrum associated with (1) exists, the associated sampling theorem reads:

Theorem. Let f be defined as

(.¢]
fF)= / F(s)®(s, ) ds,
0
whereF e L2(0, 00), @ (x, 1) = P(M) Voo (x, 1) and P (1) is the canonical product associ-
ated with the eigenvalugs, }>° , of the boundary value proble(d). Then, f is an entire
function that can be recovered through the Lagrange-type interpolation series
P(2)

A) = Ap)————.
£ ;)f( TP

The convergence of the series is absolute and uniform on compact subSets of

A more general result has been obtained by Everitt et al. [5] without assuming the exis-
tence of the canonical product of the eigenvalues. Explicit examples of this sampling result
can be found in [5,12].

In the same way we may consider the Sturm—Liouville difference equation

AnZntl +buzn +an_124-1=»xz,, neNog=NU {0}, (2)
wherea_1 =1, a, > 0 andb, € R for eachn > 0 along with the boundary condition
z—1=0. Notice that Eq. (2) can be written in the form

ViayAzpl + (by + an + an—1)z2n = Azn,

whereV andA denote, respectively, the usual backward and forward operators.

One can ask for the existence of eigenvalues and eigenfunctions associated with (2)
and the boundary condition_1 = 0. In general, to obtain an eigenvalue problem, an
additional boundary condition ato will be needed, as we will see later in Section 2.
We can proceed as in the continuous case by considering the following solutions of the
difference equation (2):

TG = (Po(h), PLV, P2(0),...) and © () = (Qo(h), Q1(1), Q2(h), ...),

corresponding to the initial data.1 = 0, zo = 1 andz_1 = —1, z0 = O, respectively, and
searching for the Weyl-Titchmarsh functiong, (1) in such a way that

Yoo (hy 1) = O ) + Mmoo (W () € £7(No).



A.G. Garcia, M.A. Hernandez-Medina / J. Math. Anal. Appl. 280 (2003) 221-231 223

Analogous to the continuous case, if there exists a unique funetig®), we are in the
limit-point case, while in the limit-circle case there are uncountably many such functions.
Whenever the discrete Sturm—-Liouville problem has a pure point speditgn{in the
limit-circle case this always holds), these points are precisely the poles of the resulting
meromorphic functiom, (1). The corresponding eigenfunctions are the sequeizes
I1(%;)}. See [2,6] for the detalils.

On the other hand, one may consider the semi-infinite Jacobi mataigsociated with
the difference equation (2):

bo ap O 0
ag by a1 O

A= 0 a1 by a2
0 0 ax b3

This matrix defines a densely defined operatafanit is well-known that there is a close
relationship between problem (2) being in the limit-point or in the limit-circle case and
the search of self-adjoint extensions.4f Furthermore, both problems are equivalent to
deciding the determinacy of thdamburger moment probleassociated wittd. This latter
problem reads as follows. Given the real numbges (5o, A" 80)42, n > 0, wheredg stands

for the sequencél, 0,0, .. .), we are interested in the search of positive Borel meagures
supported orf—oo, oo) satisfying

o0

sn:/x"du(x), n>0.

—00

If such a measure exists and is unique, the moment problel@tésminatelf a measure

W exists, but it is not unique, the moment problem is caltetbterminate One can find

the relations between all these topics in the superb article by Simon [10] or in the classical
reference [1].

In this paper we deal with the equivalent of Zayed’s sampling result associated with
the singular discrete Sturm—Liouville problem (2) in the limit-circle case. For the limit-
point case we refer the reader to [6]. In our study we will use the different points of view
involved in this problem, namely operator theory (search of self-adjoint extensiod} of
and the classical Hamburger indeterminate moment problem theory (Cauchy or Stieltjes
transform of the von Neumann solutions and their Nevanlinna parameterization).

The paperis organized as follows. In the next section we deal with the self-adjoint exten-
sions of the operator defined by means of the Jacobi mdtrikhis approach will be used
in Section 3 in order to obtain a sampling expansion given by a Lagrange-type interpola-
tion series. In Section 4, we relate the sampling result obtained with the Weyl-Titchmarsh
functions associated with (2). Indeed, these functions are precisely the Cauchy (Stieltjes)
transforms of the von Neumann measures which are solutions of the moment problem. The
Nevanlinna parameterization of the former transforms allows us to obtain the sequence of
sampling points (the eigenvalues of the associated self-adjoint extension). Finally, in Sec-
tion 5, we put to use the sampling result in the case ofjtheHermite polynomials.
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2. Theoperator theory approach

Given two sequence@, },° , and{a,}:° , of, respectively, real and positive numbers,
consider the semi-infinite Jacobi matrix
bo ap O 0
apg by a1 O

A=|0 a1 b2 a . (3)
0 0 ax b3

whose domairD(A) is the set of sequences of finite support. This operator is closable since
it is symmetric and densely defined. We denote againihits closure. The domain of the
adjoint of A is given by D(A*) = {z € £2(Np) | Az € £2(No)} [10, p. 105]. If A is not a
self-adjoint operator (i.e., the associated Hamburger moment problem is indeterminate) its
self-adjoint extensions4 c S; ¢ A*, can be parameterized by R = R U {oo} and their
domains are [10, p. 125]

D(A) +spartI1(0) + ©(0)} ifr e R,
D(A) + sparf/1(0)} if +=o00.
Equivalently (see [10, p. 126]),
iMoo W(z,tIT(0) + @(0)(n) =0 ifr eR,
lim,, 00 W(z, IT(0))(n) =0 if 1 = o0,
whereW (z, z')(n) = an(zn412), — znz;l+l) denotes the Wronskian of the sequenges
{z,} andz’ = {z,}.
The eigenvalue problertk/ — S;)x = 0 is equivalent to the discrete Sturm—Liouville
problem

D(S) = {

ze D(S) <& {

anZn+1 + buzn +an—12n—1=Azy, n€Np,
z-1=0, lim,- W(z,tI1(0) + @(0))(n) =0,

whenever € R, or

anZn+1 +buzn +an—12n-1=Azy, n€Np,

z-1=0, lim,_c W(z, I1(0))(n) =0,

in the case = co. As a consequencg,will be an eigenvalue of; if and only if
lim, o WUIT(X), tTT(0) + ©(0))(n) =0, ifteR,

lim,— e WUT(X), [T(0))(n) =0, if # =o0.

It is known that each self-adjoint extensidéh of A has a pure point spectrufi; =
1i (81724 [10, p. 127]. The corresponding eigenfunctiqng = I7(1;)}7°, are given by

Hl:(PO()"l)aPl()\'l)a'aPI‘l()"l)7")7 IENOa

and they form an orthogonal basis §A(Np) [2,6]. Consequently, the resolvent operator
R, = (M — S,)71, wherex € p(S;), is a compact operator [4, p. 423]. Moreover, since
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> i 1Ail7P < oo foranyp > 1[10, p. 128], we obtain thak,, is a Hilbert—Schmidt operator
[3, p. 262]. Therefore, there exists a kerigl € £2(Ng x Np) such that

(.¢]
[Rix]0m) = K;.(m,m)x(n), m €N,
n=0
for eachx € £2(No) [3, p. 277]. Expanding the kerndl, in Fourier series of eigenfunc-
tions in#2(Ng x Np), we obtain

o0 oo

B 1 II;m) I (n) 1 Pu(hi) Pahi)
K*(m’")‘;x—xl EINET Zx AN @

i=

3. TheLagrange-typeinterpolation formula

We define the sampling kernel
Y (h,m)=PQ)K,(m,0), meNp, »eC, (5)

whereP (1) is the canonical product of the sequence of eigenvdlu¢® . This canonical
product always exists because, in particulal;~q A |=2 < oo [10]. Specifically, the
canonical product is given by

oL = A/An) €XPOL/An) 0 D024 |2n] 71 = 00,
[Tz —2/2n) if Y n2olhal ™t < o0,
wheneveng # 0, and

ATz = 2/hn) €Xp /) i 3020 1An] ~h = 00,
AT (L= A/hn) it >0 oAt < o0,
in the case.g = 0.
In Section 4 we will list the most important properties of the kernel (5). In the definition

of the sampling kernel we can choose anyc Ng instead of 0. The convenience of this
particular choice is tha®y();) = 1 for each € Ng. The following sampling theorem holds.

P(L) =

P(L) =

Theorem 1. Let f be the function defined as

fO)=)"ca¥(h.n),

n=0
wherefc,}>° ;€ ¢2(Np). Theny is an entire function which can be recovered through the
Lagrange-type interpolation series
P\

=2 P (Ai) ©)

FO =Y f0a)
i=0

The convergence db) is absolute and uniform on compact subset§ of
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Proof. SincePy(r;) =1 for eachi € Np, from (4) we have

1 Pu(M)

Km0 =) 5= e @
i=0

Expandingthe sequences= {c,};,_, and{¥ (», m)}>°_, in Fourier series of the eigen-
functions{I1;}, we obtain

o0
I1;(m)
Cm = Z(C, Hi)eZ(NO)W,
i=0
o
P) II;(m)
YA, m)= .
; x= i 11112

Using Parseval’s identity, we obtain

e¢]

FO)=(cm, ¥ (1, ’”)>e2<NO> = Z

i=0

P (c, ni)ZZ(NO)
A=A T2

Now, it can be easily proved that

1,
Ju) = AIi%rr;k fo) = mk)m_

Ak
Therefore,
_N o PO)
fo)= gf(m o6

Let 2 c C be acompact subset@f There exist® > 0suchthat2 c {z e C||z] < R}
and there existsg € Ng such thatx;| > 2R for everyi > no+ 1. Then, forN > Np

o0 2 o0
POV 2 1
T A LGN D rweey ey A2
i=N+1 ! ! i=N+1 !

The last series converges since it has the same character as the series

— _|lPwP? 2
Z A _)V|2||H'||2 = ”q/()" )H :
i=0 ! !

As a consequence, there exists a constgnt- 0, independent of € £2, such that

00 2
R LG

— 12 2 S
A =P

Using the Cauchy—Schwarz inequality, we obtain

al P ? ad f) PO
)L - )"i R frd
S ;f( )(A —Ai) P (M) i:;-i-l P'Og) O — Ab)
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2 oo 9]
fOi) _PG) ‘ . (e, ;)| PG
P'(%) (A—Ai)) \( 2 i )\ 2 o i

i=N+1 i=N+1

o0
<( >
i=N+1

— |{c. IT;)|?
gC”( 2 e )

i=N+1

which goes to zero a§ — oo regardless of. € £2, since{c,}> € £2(Np). The proof of

the absolute convergence goes much in the same manner. The uniform convergence of (6)
on compact subsets @f implies thatf is an entire function. O

As a straightforward consequence of this theorem, we derive the following interpolation
result:

Corollary 1. Under the conditions of Theoref let {a;}7°, be a sequence of complex
numbers such that
(e.¢] . 2
3 Lz < o0. (8)
¥ (A, )l

i=0

Then there exists a unique sequefGg° ; € £?(Np) such that the corresponding function
given byf (1) =Y 72 ncaW (A, n) satisfiesf (A;) = a; for eachi € No.

Proof. Taking into account (8), by the Riesz—Fischer theorem there exists a unique se-
quence(d, }>° , in £2(Np) such that

o
ai = ({dn}, (¥ Ouis W) )2y = D dn¥ Ohi ).
n=0
Therefore, taking,, = d,, n € No, the corresponding functiofi satisfies

9]

FOD =Y ea® Giym) = ({da} { ¥ i) Do) =i

n=0
foreachi e Ng. O

4. The Weyl-Titchmar sh functions

Let {s,},-, be our indeterminate Hamburger moment sequence. We dendtethyg
set of positive Borel measures satisfying it, i.e.,

o0
V= {u}O: Sp = / x"du(x), n}O}.
—o0

As we said in Section 1, the moment problem is related with the self-adjoint exten-
sions of the semi-infinite Jacobi matri4. In this context, the existence of the sequence
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(M= 2i(S)}52, of eigenvalues associated with the self-adjoint extensjaof A can be
explained as follows. The sé&t can be parameterized with the one-point compactification
P U {oo} of the Pick (or Herglotz) function s [1,10]. When the parameter is restricted
to constant functions taking valuesliy we obtain the set of von Neumann measuyyes
which satisfy

7 d(x) _ AR +1C()

= , LeC\R,
A—x  BQ)+tDO)

—00

whereA, B, C, D are the entire functions forming the so-called Nevanlinna matrix asso-
ciated with the moment problem. See [10] for explicit formulas of the Nevanlinna matrix.
Itis known that, for each € R, u, is the discrete measufg =3, ., a8, where

7 | »€CIBQ) +1DQ) =0} if e R,
"“l{reC|DH) =0} if r =00,

and
AA) +1C(L)
B D
Notice thatu, is the spectral measure 8f. The zeros of the entire functiadB i) + D (X)
(or of D()) which are real and simple, are precisely the sequéhgé®, and moreover,
(M) = 1/|117; 2 [10, p. 127]. The von Neumann measures are precisely those measures
w € V for which the polynomial$ P, }°° , are dense iL2(w).

As mentioned in Section 1, the indeterminacy of the Hamburger moment problem can
be thought as the discrete analogue of the Weyl’s limit-point/limit-circle theory for the self-
adjoint extensions of the discrete Sturm-Liouville problem given by (2). Indeed, the Ham-
burger moment problem is indeterminate if and only if the difference problem (2) belongs
to the limit-circle case. Therefore, we can apply the known theory of the indeterminate
Hamburger moment problem to the limit-circle case for the difference Sturm—Liouville
problem (2). In particular, this provides us with criteria to decide when a difference Sturm-—
Liouville problem (2) belongs to the limit-circle case.

In fact, if Coo(A) is the limit circle associated tv € C \ R, its points admit a param-
eterization througfR as follows:m’ (1) € Cx (1) if and only if there exists € R such
that

for A € Z;.

o

AW +C) [ dpu(x)
" B\ +tD(O) / A —x

—00
where A, B, C and D are the components of the Nevanlinna matrix ands the von
Neumann spectral measure associated Wjth10, p. 128]. Furthermore, to close the
relationships involved in our study, we point out that, for eaelR, the Weyl-Titchmarsh
functionm’_(1) admits the representation

mbe (1) = (80, (M — $)™*80) -
Now we can derive that the sampling kernel used in Theorem 1 involves the function
Yo (s n) = Qn(R) +mig () Py (1).

mb (1)

3
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Indeed, in [6] it is proved that

D UL Oum) Pa(M) =

n=0

, AeC\R.
RSy \

As a consequence, taking into account (7), we deduce/tQdt., n) = K, (n, 0). Thus we
have obtained a discrete analogue of the Zayed's sampling expansion for the limit-circle
case.

Finally, we conclude the section listing the most important properties of the sampling
kernelw (i, n) (5):

(@) For eacht € C, the sequenc@¥ (1, n)}2 isin ¢%(Np), and satisfies the difference
equation (2).
(b) For each fixed € Ng, ¥ (A, n) is an entire function.
(€) W (hi.n) =kiIl;(n) = ki P, (A;), wherek; = P'(x;)/|[1T; || € R \ {0}
(d) The sequencg¥ (1;,n)};2, satisfies the boundary conditions-at andco.
Note that the summation kernél(x, n) fulfills all the requirements in the discrete version
of the Kramer sampling theorem [7].
In the next section, we put to use the obtained sampling expansion in the case of
g~ 1-Hermite polynomials, a sequence of orthogonal polynomials associated with an
indeterminate Hamburger moment problem [8].

5. Sampling formulas associated with the ¢ ~1-Hermite polynomials

The g—1-Hermite polynomialsz, (x|q)};2 where O< g < 1 satisfy the three-term
recurrence relation

hns1(xlq) =2xh,(xlg) —q " (L —q")h-1(xlq), n>0, 9

andho(x|g) =1, h1(x|q) = 2x.
These polynomials have the explicit representation [8]

el = 32 o (a2 Ty,
=5 (@5 DG @n—k

where(q; ¢) ; denotes thg-shifted factorial
J
(¢:)j=]]a-4".
k=1
The recurrence (9) can be written in the self-adjoint form where multiplying by =
q""*V12/(g; q)n [9]. This gives
n(n+1)/2 n(n+1)/2 n(n—1)/2

L i) =20 —h,(xlg) - ——h, 1 xlg). (10)
(g5 9)n (G5 @n (G5 9In-1
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Having in mind that|z, || = v/ (g; ¢)./q"@tD/2 [8], we can write (10) as
anhny1(x1q) — xhy (x|q) + an-1hn—1(x|q) =0, (11)

wherea, = (1/2)/(1 — g"*t1)/q"+L, andh, = h, /| h,| is the corresponding sequence of
orthonormal polynomials.

The moment problem associated with, (x|¢)} , is indeterminate [8]. Thus, thie,’s
are orthonormal with respect to infinitely many measures [10], or equivalently, the infinite
Sturm-Liouville problem associated with (11) belongs to the limit-circle case.

Let {fzﬁ}fﬁzo be the sequence of second kind polynomials associated with (11), i.e., the
{0, } sequence associated with (11). We derive the sampling formulas associated with the
special Weyl functiong:2 (1) andm2 (1).

Themgo(k) case In [8] it is proven thabngo(k) can be written in terms of a hyper-
geometric function as

—4.q(q% @)oo
(qe%,qe % 4%

where sint§ = 1. The poles ofmgo(k) areti, withn=0,1,..., wherer, = (1/2) x
(g7"~Y2 — ¢"t1/2) In this case, the infinite product of the eigenvalues is given by
PO =121 — 22/22), and we can state the following sampling result:

m3 (1) = 201(ge® ., ge™%; 4% 4% 4%),

Let ®(n, ») = P YL (n, 1) with Y2 (n, 1) = ki (A) + mO (Wh, (1) and {c,)2, €
02(Np). If

fO)=) @, n),

n=0
then the functionf is entire and it can be recovered from its values on the eigenvalues
{£An};2 through the formula

PV P()
f) = Zf(— m"'zﬂ ")(x M) P’ (M)

The samplmg series converges absolutely and uniformly on compact €éts of

ThemZ (1) case In this case we have an explicit formula o€ (1) [8]

45 9o
P\ = ‘f 25’
Moo () X(qzezs,qze*%;qz)m 2¢l( 7 q 1 )

The poles are 0 anttr, withn =0, 1, ..., wherexr, = (1/2)(g~ "D —¢+D). Now the
infinite productisP (1) = A[[02(1 — A?/22) and the associated sampling result is:

Let @ (n, 1) = POIYE (n, 2) with ¥ (n, &) = IE (L) + mE (DA, (1) and {¢,}°° €
02(Np). If

fO)=)"ca®(n, 1),

n=0
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then the functionf is entire and can be recovered from its values on the eigenvalues
{An};2o U {0} through the formula

PG
0= k;wf ) B = )

wherepur = rg—1 fork=1,2,..., uo=0and uy = —A_y—1 fork =-1,-2,.... The
sampling series converges absolutely and uniformly on compact séts of
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