
H. H.-W. Funkea*, J. Dickhoffa, J. Keinza, A. Haj Ayedb, A. Parentec, P. Hendrickc

aAachen University of Applied Sciences, Hohenstaufenallee 6, D-52064 Aachen, Germany
bB&B-AGEMA GmbH, Jülicher Str. 338, D-52070 Aachen, Germany
cUniversité Libre de Bruxelles, Avenue F. D. Roosevelt 50, B-1050 Bruxelles, Belgium

Abstract

The Dry Low NO\textsubscript{x} (DLN) Micromix combustion principle with increased energy density is adapted for the industrial gas turbine APU GTCP 36-300 using hydrogen and hydrogen-rich syngas with a composition of 90 %-Vol. hydrogen (H\textsubscript{2}) and 10 %-Vol. carbon-monoxide (CO). Experimental and numerical studies of several combustor geometries for hydrogen and syngas show the successful advance of the DLN Micromix combustion from pure hydrogen to hydrogen-rich syngas. The impact of the different fuel properties on the combustion principle and aerodynamic flame stabilization design laws, flow field, flame structure and emission characteristics is investigated by numerical analysis using a hybrid Eddy Break Up combustion model and validated against experimental results.

© 2014 The Authors. Published by Elsevier Ltd.

Keywords: Micromix; Hydrogen; Syngas; NO\textsubscript{x}; Emission Reduction; Jet in Cross-Flow

1. Introduction

The research on renewable energy sources is focused on the reduction of greenhouse gas emissions – in particular CO\textsubscript{2} and NO\textsubscript{x}. Therefore, hydrogen-based gas turbine systems may play an important role, if the fuel is produced from renewable and sustainable energy sources like wind- and solar-power or derived from biomass. As a bridge, H\textsubscript{2}-rich syngas, produced by coal and biomass gasification, is used in IGCC power plants. Especially in combination with the carbon capture technology these plants afford an environmental-friendly, renewable, hydrogen-based energy supply. Nevertheless, the combustion of H\textsubscript{2}-rich gases is still a very challenging task. By the use of conventional Dry Low NO\textsubscript{x} (DLN) combustors with syngas the risk of flashbacks as well as the NO\textsubscript{x} values increase. Thus, the development of DLN H\textsubscript{2}
combustion technologies is indispensable. The Micromix principle developed at Aachen University of Applied Sciences overcomes the issues of conventional DLN combustion technologies. A miniaturized non-premixed combustion keeps the residence time of NO\textsubscript{x} forming reactants short and avoids the danger of flashbacks. For pure hydrogen the technology has shown great potential in terms of NO\textsubscript{x} reduction for industrial gas turbine applications [1], [2]. Now the current scope of research intends to increase the energy density of Micromix combustors fueled with H\textsubscript{2} and H\textsubscript{2}-rich syngas.

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR</td>
<td>blockage ratio</td>
</tr>
<tr>
<td>c</td>
<td>velocity</td>
</tr>
<tr>
<td>(d_{\text{fuel}})</td>
<td>diameter of fuel injector nozzle</td>
</tr>
<tr>
<td>d</td>
<td>inner dimension of air guiding panel (index: AGP) and burner segment (index: H\textsubscript{2}Seg)</td>
</tr>
<tr>
<td>D</td>
<td>outer dimension of air guiding panel (index: AGP) and burner segment (index: H\textsubscript{2}Seg)</td>
</tr>
<tr>
<td>ED</td>
<td>energy density</td>
</tr>
<tr>
<td>LHV</td>
<td>lower heating value</td>
</tr>
<tr>
<td>(\rho)</td>
<td>fluid density</td>
</tr>
<tr>
<td>(y)</td>
<td>injection depth of fuel</td>
</tr>
<tr>
<td>(y_{\text{crit}})</td>
<td>critical injection depth / position of shearlayer</td>
</tr>
<tr>
<td>Y</td>
<td>mass fraction</td>
</tr>
</tbody>
</table>

2. The Micromix DLN Combustion Principle for H\textsubscript{2} and 90/10 Syngas

The Micromix principle is developed with the major advantages of an inherent safety against flashback and low NO\textsubscript{x}-emissions (<10 ppm\textsubscript{v}). The gaseous fuel is injected through small injectors perpendicularly into an air-crossflow. This leads to a fast and intense mixing, which takes place simultaneously to the combustion process. As a result, a miniaturized micro flame develops and anchors at the burner segment edge downstream of the injector nozzle. Multiple micro flames instead of large scale flames lower the residence time of the NO\textsubscript{x} forming reactants and consequently the averaged molar fraction of NO\textsubscript{x} can be reduced significantly. For pure hydrogen under gas turbine operational conditions the low NO\textsubscript{x} capability of the Micromix principle has already been successfully tested in a gas turbine APU GTCP 36-300 [3]. The main influence on the low NO\textsubscript{x} characteristic can be ascribed to the key design parameters – blockage ratio \(BR\) of the air guiding panel AGP (Fig. 2) and injection depth \(y\) of the fuel into the oxidizer cross-flow (Fig. 1). The blockage ratio influences shape, position and size of the flame stabilizing vortices downstream of the air guiding panel and the burner segment. The jet-in-cross-flow mixing of fuel and air stabilizes the low NO\textsubscript{x} emission characteristics of the combustion principle as long as the injection depth \(y\) (Fig. 1.b) is not penetrating the shear layer of the AGP-Vortex (critical injection depth \(y_{\text{crit}}\)). A recirculation of the fuel/air mixture into the AGP vortex leads to raised NO\textsubscript{x} emissions [4]. Especially for the adaption of the Micromix combustion principle from H\textsubscript{2} to syngas, these
phenomena must be considered carefully with respect to the different fuel properties. The investigated syngas mixture consists of 90 %-Vol. H₂ (Y_H₂=0.39) and 10 %-Vol. CO (Y_CO=0.61). This leads to a lower heating value \(LHV \) of only 53.29 MJ/kg (\(LHV_{H₂}=119.95 \) MJ/kg). For identical thermal power per fuel injector, syngas consequently requires an increased fuel flow.

3. Numerical and Experimental Investigation of Micromix 90/10-Syngas Combustors

The impact of the chosen design parameters for the different fuel compositions is investigated using three burner configurations designed with variations of the \(BR \) and the energy density (\(ED \)). Fig. 2 shows the strategy for the evaluation of the Micromix combustion principle with hydrogen and syngas at increased energy density. Burner 1 is the basic configuration with a normalized injection depth \(y_1 = 1 \) and a normalized blockage ratio of 100% at an energy density of \(ED_1 = 7.74 \text{ MW/(m}^2\text{ bar)} \). Burner 2 is used as link between hydrogen and syngas. With an increased H₂ mass flow an injection depth \(y_2 \) similar to the one required for syngas combustion is chosen. The necessary adjustment of the shear layer position is done by increasing \(d_{AGP} \), while \(D_{AGP} \) is kept constant. The resulting blockage ratio is \(BR_2 = BR_3 < BR_1 \) and the energy density \(ED_2 = 8.63 \text{ MW/(m}^2\text{ bar)} > ED_3 = ED_1 = 7.74 \text{ MW/(m}^2\text{ bar)} \). Burner 3 features a comparable injection depth as Burner 2, but it is fueled with the 90/10 mixture of syngas (90/10 SG), which causes an energy density similar to the one of Burner 1.

The experimental and numerical results of the three burner configurations at atmospheric conditions are given in Fig. 3. The corrected NOₓ emissions (@ 15% \(O_2 \)) obtained in the experiment are given against the equivalence ratio and compared to the numerical values computed at the design point (\(\Phi = 0.4 \)). Fig. 3.a reveals that the NOₓ emissions for all three burner configurations are in a comparable range below 4 ppmv NOₓ. This validates the applied design laws for hydrogen, syngas and increased energy densities. In Fig. 3.a the picture of the established syngas flames at the design point \(\Phi = 0.4 \) shows that syngas burns in small micro flames like H₂ (Fig. 1c), maintaining the low NOₓ Micromix character.

The numerical simulation is done by STAR-CCM+™ 7.06. To keep the computational effort in an adequate range an Eddy Dissipation – Finite Rate combustion model (kinetic parameters by Fernández-Galisteo et al. [5] and Dryer & Glassman [6]) and the \(k-\varepsilon \)-turbulence model is used on a grid with approx. 0.7 Mio. polyhedral cells. Exemplarily for the results, the temperature distribution for the three burner configurations is shown in Fig. 3b. For all configurations the main reaction zone is attached to the segment vortex, which consequently heats up. Due to the increase in energy density of Burner 2 (C2) compared to Burner 1 (C1), the maximum flame temperature \(\Theta \) is raised and shifted downstream and the high temperature zone \(\Theta \) elongates, despite the air velocity is constant for all configurations. In addition the segment vortex is longer and hotter for C2 increasing slightly the calculated NOₓ emissions shown in Fig. 3a. Due to the change in \(BR \) for C2 the main flow contributes much more to the vertical separation of the flames (B) and the related change of the cold flow jet length (\(\Theta, A \)) compared to C1. The main air flow cools the vortex behind the burner segment when the combustor design allows a lateral flow around the flame [2]. The numerical simulation for syngas also shows a stable and comparable flame structure and averaged outlet temperature as C1. But maximum flame and segment vortex temperature are significantly lower compared to C1 and C2. This is also reflected in the low NOₓ emissions in Fig. 3a.
4. Conclusion

The experimental and numerical results show that the DLN Micromix principle is capable of using pure H₂ and H₂-rich syngas maintaining the approved low NOₓ characteristics. The observed Micromix flame structure offers the potential for higher energy density increases and future investigations of fuel flexibility with different syngas compositions. In the full length paper an in-depth analysis of the key design parameters and combustion characteristics using pure H₂ and 90/10 SG is given.

References

Biography

Prof. Dr.-Ing. H. H.-W. Funke is head of the Institute for “Gas Turbines and Aircraft Engines” at Aachen University of Applied Sciences. His actual research includes low NOₓ Micromix combustion for gaseous fuels in gas turbines, related as turbine control as well as alternative fuels for piston engine propulsion systems.