
Theoretical Computer Science 410 (2009) 5128–5137

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

(r, p)-centroid problems on paths and trees
J. Spoerhase ∗, H.-C. Wirth
Universität Würzburg, Lehrstuhl für Informatik I, Am Hubland, 97074 Würzburg, Germany

a r t i c l e i n f o

Article history:
Received 17 March 2009
Received in revised form 6 August 2009
Accepted 21 August 2009
Communicated by G. Ausiello

Keywords:
Competitive location
Computational complexity
Efficient algorithms
Trees

a b s t r a c t

An instance of the (r, p)-centroid problem is given by an edge and node weighted graph.
Two competitors, the leader and the follower, are allowed to place p and r facilities,
respectively, into the graph. Users at the nodes connect to the closest facility. A solution
of the (r, p)-centroid problem is a leader placement such that the maximum total weight
of the users connecting to any follower placement is as small as possible.
We show that the absolute (r, p)-centroid problem is NP-hard even on a path which

answers a long-standing open question of the complexity of the problem on trees (Hakimi,
1990 [10]). Moreover, we provide polynomial time algorithms for the discrete (r, p)-
centroid on paths and the (1, p)-centroid on trees, and complementary hardness results
for more complex graph classes.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Location theory deals with problems of optimally placing facilities to serve the individual demands of a given set of
users. Many problems in that area consider the case where one monopolistic provider places all of the facilities. In contrast,
competitive location investigates scenarios where two (ormore) providers place their facilities and users can decide between
the providers. It is assumed that all facilities and all competitors provide the same type of good or service. Hence users decide
on a facility serving their demand solely based on the distances to the servers. We assume a binary demand rule, i.e., for each
user the total demand is served by exactly one facility.
In our scenario, the universe ismodeled by a graphwithweighted edges inducing distances.Weighted nodes of the graph

represent users and their demand which is to be served by the competitors.
The benefit of each competitor is measured by the size of its party, i.e., the total demand (or weight) of the users

connecting to the competitor. The providers act in a non-cooperative way and only aim at maximizing their own benefit.
In the competitive location scenario investigated here, two competitors, called leader and follower, sequentially place p and
r servers, respectively. Once the leader has chosen his facilities, say Xp, the follower is able to determine an optimal set of
locations maximizing his benefit; such a solution is called an (r, Xp)-medianoid. Hence the follower’s reaction is predictable,
which the leader can take into account when he makes the initial decision, namely determining an (r, p)-centroid.
Similar questions arise in voting location problems on graphs [5]. Here, a set of users is asked to decide between two

candidates by means of an election, while the user preference is determined by graph distances. Interesting solutions are
particularly stable candidates, i.e., where there is no strong party of users who agree in preferring the same opposition
over that candidate. In particular, a p-Simpson solution is a p-element candidate placement minimizing the influence of any
possible p-element opposition; this can be equivalently formulated as a (p, p)-centroid problem.
Our paper is organized as follows. In Section 2 we investigate the complexity of the absolute and discrete (r, p)-centroid

problem on paths and trees. These results answer the long-standing open questionwhether that problem is polynomial time
solvable on trees [10]. Section 3 is devoted to algorithms for the absolute and discrete (1, p)-centroid on trees.

∗ Corresponding author. Tel.: +49 931 888 49 43.
E-mail addresses: joachim.spoerhase@uni-wuerzburg.de (J. Spoerhase), wirth@informatik.uni-wuerzburg.de (H.-C. Wirth).

0304-3975/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2009.08.020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82777434?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:joachim.spoerhase@uni-wuerzburg.de
mailto:wirth@informatik.uni-wuerzburg.de
http://dx.doi.org/10.1016/j.tcs.2009.08.020

J. Spoerhase, H.-C. Wirth / Theoretical Computer Science 410 (2009) 5128–5137 5129

1.1. Problem definition

Consider an undirected graph G = (V , E)with positive edge lengths d : E → Q+. An edge of the graph can be considered
as an infinite set of points. A point x on edge e = (u, v) is specified by the distance from one of the endpoints of e, and the
remaining distance is derived from the invariant d(u, x)+d(x, v) = d(e). Notice that the set of points of a graph includes the
set of nodes. All points which are not nodes are called inner points. In what follows we will use G (and e) both for denoting
the graph (the edge) and for denoting all of its points, as the meaning will become clear from the context. In the sense of
these considerations the edge length function d is extended to a distance function d : G × G → Q+0 defined on all pairs of
points. Nonnegative node weights w : V → Q+0 specify the demand of users who are always placed at nodes of the graph.
Where appropriate we can assume w.l.o.g. that the edge lengths and node weights are integer numbers.
Let X, Y ⊂ G be finite sets of nodes or points, specifying a server placement of the leader or follower player, respectively.

The distance of a user u to a finite point set M is given by d(u,M) := minm∈M d(u,m). A user u prefers the follower if
d(u, Y) < d(u, X). By w(Y ≺ X) :=

∑
{w(u) | u ∈ V where d(u, Y) < d(u, X) } the total weight of the follower party is

denoted. For convenience we writew(y ≺ X) instead ofw({y} ≺ X) for single element sets.
Let r, p ∈ N and Xp ⊂ G be a set of |Xp| = p points. Let

w∗r (Xp) := maxYr⊂G
|Yr |=r

w(Yr ≺ Xp)

be the maximum influence any r-element follower placement can gain over the fixed leader placement Xp. An absolute
(r, Xp)-medianoid of the graph is any set Yr ⊂ G of |Yr | = r points wherew(Yr ≺ Xp) = w∗r (Xp) is attained. Let

w∗r,p := minXp⊂G
|Xp |=p

w∗r (Xp).

An absolute (r, p)-centroid of the graph is any set Xp ⊂ G of |Xp| = p points where w∗r (Xp) = w
∗
r,p is attained. The notions

discrete (r, Xp)-medianoid and discrete (r, p)-centroid are defined similarly, with the server sets restricted to nodes, i.e.,
Xp, Yr ⊆ V , rather than points.

Previous results and contribution of this paper

The (r, p)-centroid and (r, Xp)-medianoid problems have been introduced in [9]. Both of them are intractable on general
graphs. The (r, p)-centroid problem is even Σp2 -complete on general graphs [15] while the (1, p)-centroid and (r, Xp)-
medianoid are NP-hard [9]. The (r, Xp)-medianoid is solvable in time O(rn2) on a tree and in time O(n) on a path [14].
The (1, 1)-centroid on a tree is equivalent to the 1-median [10] which can be determined in linear time [8]; on a general
graph the (1, 1)-centroid can be found in polynomial time [11,4]. All of the above reported results apply to both absolute
and discrete cases.
While the (r, Xp)-medianoid problem is efficiently solvable on trees, formany years the complexity status of the absolute

(r, p)-centroid problem on trees was an open question [10,6,2]; see also [17] for a more recent overview. In this paper we
prove that this problem is NP-hard even on paths. In contrast to that we show that the discrete (r, p)-centroid on a path can
be solved in polynomial time, but becomesNP-hard on a spider. Finally, we give a polynomial time algorithm for discrete and
absolute (1, p)-centroids on a tree and contrast this by showing NP-hardness for the same problem on pathwidth bounded
graphs. To the best of our knowledge these are the first nontrivial results on certain graph classes where the (r, p)-centroid
problem is polynomial time solvable.
In the model we are investigating, each customer attaches to exactly one server, and the weight of the user is constant

and in particular does not depend on the distance to the selected server. This is known as an inelastic binary demand rule;
see e.g. [17] for a review of other user demand rules.

Preliminaries

In our hardness proofs we make use of a reduction from the well-known Partition problem (problem SP12 in [7]):

Theorem 1.1 (Hardness of Partition). The decision problem ‘‘Given a multiset S = {s1, . . . , sn} of integers with total sum
S∗ :=

∑
S, is there a sub-multiset S ′ ⊂ S such that

∑
S ′ = 1

2S
∗?’’ is NP-complete. �

2. The (r, p)-centroid

In this section we investigate the complexity of the (r, p)-centroid problemwhere r, p are arbitrary integers specified as
part of the input instance. The positive result is that the discrete (r, p)-centroid on a path can be computed efficiently. On
the negative side, the same problem becomes NP-hard on slightly more complicated graphs, namely spiders. Moreover, the
absolute (r, p)-centroid is already NP-hard on a path.

5130 J. Spoerhase, H.-C. Wirth / Theoretical Computer Science 410 (2009) 5128–5137

Fig. 1. Illustration of the path construction.

2.1. Absolute (r, p)-centroid on a path

In this section we show that the absolute (r, p)-centroid problem is already NP-hard when the underlying graph
forms a path. To this end, let the path graph G = (V , E) be given by its node set V = {v1, . . . , vn} and edge set
E = {(v1, v2), . . . , (vn−1, vn)}. Consider a leader placement Xp = {x1, . . . , xp} ⊂ G of |Xp| = p points sorted such that
d(v1, x1) < . . . < d(v1, xp). This defines a segmentation of the path into at most p + 1 disjoint intervals T0 := [v1, x1],
Ti := [xi, xi+1] for i = 1, . . . , p− 1, and Tp := [xp, vn]. By placing one server into an interval [xi, xi+1], the follower can gain
all nodes of any open interval]a, b[⊂ [xi, xi+1] of size d(a, b) = d(xi, xi+1)/2. The best of these placements of the follower
can be found with a simple linear time sweep algorithm.

Theorem 2.1 (Absolute (r, p)-Centroid on Path). The absolute (r, p)-centroid problem is NP-hard on a path.

Proof. Let an instance of problem Partition be given as in Theorem1.1. Construct a path P = (a, u1, v1, z1, . . . , un, vn, zn, b)
with 3n + 2 nodes (confer Fig. 1). To define the weights let smax := maxi si and D := 2nsmax + 1 and Ω := 2nD + 1. Let
w(a) := w(b) := Ω , and for all i = 1, . . . , n set w(ui) := D, w(vi) := si and w(zi) := s̄i := D − si. The nodes ui, zi are
referred to as heavy, while the vi nodes are called light nodes.
Wedefine the edge lengths as follows: d(a, u1) := 1

2D, d(ui, vi) := D, d(vi, zi) :=
1
2 si, d(zi, ui+1) := D, and d(zn, b) :=

1
2D.

The total length of the path is 2nD+ 1
2S
∗.

Set the number of leader positions to p := n+ 1 and the number of follower positions to r := n. We will show in what
follows that there is an (r, p)-centroid of gain w∗r,p ≤ n · D+

1
2S
∗ if and only if the instance of Partition admits a subset S ′

of sum 1
2S
∗.

‘‘If’’: Assume that the instance of Partition is solvable with solution S ′, i.e.,
∑
S ′ = 1

2S
∗. Place two servers of the leader

at the border nodes a, b. The remaining n − 1 leader servers divide the path into n intervals Ti of length ti (i = 1, . . . , n).
The interval division is called valid if for each i = 1, . . . , n the interval Ti contains the three nodes ui, vi, zi as inner nodes.
Choose the server positions such that ti := 2D + si if si ∈ S ′ (‘‘long interval’’) and ti := 2D otherwise (‘‘short interval’’).
Observe that this yields a valid interval division. The gain of the follower in interval Ti when placing one server is D if it is
a short interval and D+ si if it is a long interval (throughout this discussion we assume that the follower chooses positions
maximizing his gain). There is no advantage in placing two servers into the same interval, as the gain would be 2D in that
case. Hence we can assume w.l.o.g. that the follower places exactly one server per interval and thus achieves the total gain
nD+ 1

2S
∗.

‘‘Only if’’: Consider the case of a leader placement with follower gainw∗r ≤ n · D+
1
2S
∗. We claim: The leader chooses a

valid interval division.
It is clear that the leader places two servers at the two nodes a, b of weightΩ . Let (ti)i (i = 1, . . . , n) be the sequence of

interval lengths of the leader’s placement.
Assume for contradiction that the right endpoint of some interval Ti is at the node zi or to the left of it. The remaining

n− i intervals to the right of interval Ti cover a path length of at least d(zi, b) > 2(n− i)D+ 1
2D, so by averaging there must

be one interval of length larger than(
2+

1
2(n− i)

)
D >

(
2+

1
2n

)
D > 2D+ smax.

By construction of the path, any interval of length larger than 2D+ smax contains at least two heavy nodes which are inner
nodes andwithinmaximum distance of D+ 12 smax. Hence, in that particular interval, the follower can gain both heavy nodes
by placing a single server. Let H := miniw(zi) = D − smax be the minimum weight of heavy nodes. Placing the remaining
n− 1 servers at free heavy nodes, this yields a total gain of at least

2H + (n− 1)H = nD+ D− (n+ 1)smax > nD+
1
2
S∗

for the follower, contradicting the premise. By an analogous argument we can show that the left endpoint of interval Ti does
not lie at ui or to the right of it. This shows the claim.

J. Spoerhase, H.-C. Wirth / Theoretical Computer Science 410 (2009) 5128–5137 5131

Fig. 2. The (2, 2)-centroid does not satisfy the optimal substructure property.

From this property we deduce that each interval left by the leader has inner nodes of total weight 2D. Since the follower
can always gain weight D by placing at ui, we can assume w.l.o.g. that the follower places exactly one server into each
interval. Moreover, the length of each interval Ti is bounded from above by 2D+ si: otherwise, the follower could cover all
inner nodes of Ti with a single server, which would lead to a total gain of at least 2D+ (n− 1)H > (n+ 1)H , contradicting
the premise.
We distinguish two kinds of interval, namely those of length ti ≤ 2D, which we call short intervals, and those of length

2D < ti ≤ 2D + si, called long intervals. We define the multiset S ′ ⊆ S to be the multiset of those si where Ti is a long
interval. As argued above, the follower places exactly one server into each interval Ti. This defines for each interval a number
wi denoting the follower’s gain in that interval. Obviouslywi = D for short intervals andwi = D+ si for long intervals. This
yields ti − D ≤ wi. Hence

S∗

2
=

n∑
i=1

(ti − 2D) ≤
n∑
i=1

(wi − D) ≤
S∗

2
,

where the first equality follows from the path length 2nD+ 1
2S
∗ and the last inequality from the premise w∗r ≤ nD+

1
2S
∗.

Thus we can conclude that
∑
S ′ =

∑n
i=1(wi − D) =

1
2S
∗, which completes the proof. �

2.2. Discrete (r, p)-centroid on a path

Many optimization problems exhibit an optimal substructure property [3] (or principle of optimality [1]): essentially
this means that a problem instance can be separated into independent subproblems such that optimal solutions of these
subproblems can be combined to solve the original problem optimally. This property is exploited bywidespread algorithmic
techniques like divide and conquer, greedy, or dynamic programming.
In the case of the discrete (r, p)-centroid problem on a path this suggests the following hypothetical approach. Consider

a path P with an (r, p)-centroid Xp and a node x ∈ Xp. Let P1, P2 be the subpaths resulting from splitting P at x. One could
suspect that for suitable p1, p2, r1, r2 there are (ri, pi)-centroids on Pi such that their union forms an (r, p)-centroid on P ,
with the reasoning that no user in one subpath ever patronizes any server on the other subpath.
The example depicted in Fig. 2 shows that the (r, p)-centroid problemdoes not exhibit the optimal substructure property

even when r = p = 2 and the underlying graph is a path. The path consists of 2k + 3 nodes; the weights are given in the
figure. Edges have unit length unless stated otherwise. ConstantΩ is chosen large enough so that the leader always places
one server at node c . An optimal substructure property would suggest that the weight w of the leftmost node a has no
influence on the position of the second leader server in the subpath to the right of c.
However, this is not true. Letwr(i) (r = 1, 2) be themaximumweight that the follower can claimwhen the leader places

servers at c, vi and the follower places r servers optimally on the node set V − {a}. It is easy to see that by picking i and
settingw := w2(i)− w1(i)we can enforce any of the nodes vi to be the position of the second leader server.
As a consequence, a straightforward application of divide and conquer techniques cannot be successful in attacking the

centroid problem on a path.

The algorithm
Let G be the input path with ordered vertex set V = {v1, . . . , vn}. In order to compute a discrete (r, p)-centroid, we

reduce this problem to the k-sum shortest path problem which was solved in [16] within a framework for general k-sum
optimization problems where the underlying minisum problem is efficiently computable.

Definition 2.2 (k-Sum Shortest Path). A k-sum shortest s-t-path is a path from s to t where the sum of the k largest arcs is
as small as possible.

We define a new digraph G′ as depicted in Fig. 3. Start with a node set V ′ := { vij | i = 1, . . . , n and j = 1, . . . , p }. For
any i, j ∈ {1, . . . , n}, i < j, and any k ∈ {1, . . . , p − 1}, add a path of two consecutive arcs (introducing a new vertex in
the middle) from vi,k to vj,k+1. This shall model the case that the leader places the kth server at vi and the next server at vj.
Moreover, add new super nodes s, t to the graph and connect them by arcs from s to all vi1 and from all vip to t .
The lengths of the arcs are determined by the gain of the follower on partial intervals. Let w1(i, j) denote the maximum

weight which a single follower server can claim on the partial interval between two leader servers placed at vi and vj.
Similarly, letw2(i, j) =

∑j−1
ν=i+1w(vν) be the maximumweight which can be claimed with two follower servers. (It is of no

5132 J. Spoerhase, H.-C. Wirth / Theoretical Computer Science 410 (2009) 5128–5137

Fig. 3. Auxiliary graph to solve the discrete (r, p)-centroid on a path.

use placingmore than two servers into a single interval.) For any path of two arcs connecting vik to vj,k+1, set the length of the
first arc tow1(i, j) and the length of the second arc tow2(i, j)−w1(i, j). Finally, set the length of arcs (s, vi1) to

∑i−1
ν=1w(vν)

and that of arcs (vip, t) to
∑n

ν=i+1w(vν). This completes the construction of the acyclic graph G
′.

Lemma 2.3. The r-sum length of an s-t-path through nodes vi1,1, . . . , vip,p equals the weight of an (r, Xp)-medianoid where
Xp = {vi1 , . . . , vip}.

Proof. By construction, any s-t-path in G′ meets exactly p nodes of the initial node set V ′. This establishes a one to one
relationship between placements of the p servers of the leader and s-t-paths in the auxiliary graph.
Observe that, for any i < j, w1(i, j) ≤ w2(i, j) ≤ 2w1(i, j). Therefore, the follower can achieve the maximum gain by a

simple greedy strategy: Given the p + 1 intervals left by the leader, determine for each interval the gain w1 of placing one
server and the incremental gain w2 − w1 ≤ w1 of placing two servers. The weight of the (r, Xp)-medianoid is the sum of
the r largest numbers out of this multiset, which is also the r-sum length of the s-t-path in G′. �

The (r, p)-centroid minimizes the weight of (r, Xp)-medianoid over all server placements Xp, which corresponds to an
r-summinimization of paths in the graph G′. An r-sum shortest s-t-path in graph G′ is equivalent to a solution of the (r, p)-
centroid problem on path G.

Theorem 2.4 (Discrete (r, p)-Centroid on Path). A discrete (r, p)-centroid of a path can be found in O(pn4).

Proof. In [16] it has been shown that the k-sum optimization problem can be solved in O(M · t), where M is the number
of different weights of items in the ground set and t is the time needed for solving one instance of the underlying minisum
problem. In our setting, the set of ground elements is the set of arcs of size O(pn2) but with only O(n2) different weights.
The minisum problem (shortest s-t-path in an acyclic graph of O(pn2) arcs) can be solved in time O(pn2). �

2.3. Discrete (r, p)-centroid on a tree

In this section we are going to show that determining a discrete (r, p)-centroid is NP-hard on a spider, i.e., a tree where
exactly one node has degree larger than 2.

Theorem 2.5 (Hardness of (r, p)-Centroid on a Spider). The problem of determining a discrete (r, p)-centroid on a spider is NP-
hard.

Proof. Let an instance of problem Partition be given as in Theorem 1.1. Construct a spider as depicted in Fig. 4. The node
set consists of a central node c and for each integer si of a leg with nodes c–ti–ui–ūi–vi. The weight of the nodes is set to
w(c) := Ω3, w(ti) := Ωsi, w(ui) := Ω3, w(ūi) := si, and w(vi) := Ω3 + Ω2. Finally, we add a special leg c–o–h–c ′ of
weightw(h) := Ω4,w(o) := 0, andw(c ′) := Ω3 + 1

2ΩS
∗. Here we chooseΩ := 1+ nS∗. All edges have unit length.

J. Spoerhase, H.-C. Wirth / Theoretical Computer Science 410 (2009) 5128–5137 5133

Fig. 4. The discrete (r, p)-centroid is NP-hard on a spider.

We set r := p := n+ 1 and claim: There is a (n+ 1, n+ 1)-centroid of weight

W := (n+ 1)Ω3 + nΩ2 +
1
2
S∗(Ω + 1)

if and only if the instance of Partition is solvable.
‘‘If’’: Let S ′ ⊆ S with

∑
S ′ = 1

2S
∗. Place a leader server at h; furthermore, for each i place another leader server at ūi if

si ∈ S ′ and at ui otherwise. We look at the gain of the follower. Observe that it is not possible that the follower claims c and
one of the ui with a single server only. Since w(c) +

∑
jw(tj) < w(vi) it is optimal to claim all peripheral nodes vi. This is

accomplished by placing a server at vi if si ∈ S ′ and at ūi otherwise. This way the follower claims all nodes vi, i = 1, . . . , n,
and those nodes ūi where si /∈ S ′, with a weight of

n(Ω3 +Ω2)+ S∗ −
∑
S ′ = n(Ω3 +Ω2)+

1
2
S∗.

The remaining server can be placed either at c ′ or at the central node c where it claims c and those nodes ti where si ∈ S ′.
This contributes a weight of

Ω3 +Ω
∑
S ′ = Ω3 +

1
2
ΩS∗,

which is the same for both cases. Adding both terms shows that the total weight of the (r, p)-centroid is exactly equal toW .
‘‘Only if’’: In an optimal solution it is obvious that the leader places one server at the node h ofweightΩ4. Further, observe

that there are enough nodes of weightΩ3 or greater (namely the 2n+2 nodes ui, vi, c, c ′) such that the follower can always
place only at those nodes and thus gain at leastΩ3 per server.
We claim that the leader chooses on each leg either the node ui or ūi. If the leader places a server at central node c or

at one of the ti, then there are n − 1 additional servers left to place. This would leave at least one leg j free to the follower
so that he could place at node uj and gain both uj and vj of weight more than 2Ω3 with a single server, resulting in a total
of more than (n + 2)Ω3. As a consequence, the leader must choose, on each leg, either ui, or ūi, or vi. If the leader were to
place at the peripheral node vi, then the follower could place at ti, which would claim both ui and the central node c with
this server, which yields a similar contradiction. This shows the claim.
Let S ′ := { si | leader places server at ūi } ⊆ S be the set of items where the leader places a server at the outer node

in the corresponding leg. Suppose
∑
S ′ > 1

2S
∗. Then the follower places on leg i next to the leader, claiming the nodes vi,

i = 1, . . . , n, and the nodes ūi where si /∈ S ′. The remaining server is placed at the central node c and claims the nodes ti
where si ∈ S ′. This yields a follower gain of

n(Ω3 +Ω2)+
(
S∗ −

∑
S ′
)
+Ω3 +Ω

∑
S ′ > n(Ω3 +Ω2)+Ω3 + (Ω + 1)

1
2
S∗ = W ,

where we make use of
∑
S ′ ≥ 1

2S
∗
+ 1 andΩ > S∗. Suppose

∑
S ′ < 1

2S
∗. Like above, the follower places n servers on the

periphery; the remaining server is placed at c ′. This yields a gain of

n(Ω3 +Ω2)+
(
S∗ −

∑
S ′
)
+Ω3 +

1
2
ΩS∗ > W .

This completes the proof. �

3. The (1, p)-Centroid

We have pointed out in Section 2.2 that the (r, p)-centroid problem does not exhibit the optimal substructure property
for r ≥ 2. In this section we investigate the case r = 1 where this property holds.

5134 J. Spoerhase, H.-C. Wirth / Theoretical Computer Science 410 (2009) 5128–5137

3.1. Discrete (1, p)-centroid on a tree

First we consider the discrete (1, p)-centroid problem. Choose an arbitrary node s ∈ V , and connect s to a new node s0
of weight 0 by an edge of length∞. Then choose s0 as the root of the tree. For any node v ∈ V we denote by Tv the subtree
hanging down from v. We can assume w.l.o.g. that the leader does not place at s0 of zero weight.
Let X ⊆ V − s0 be a node subset andW ∈ N. Set X is calledW-bounding if

1. w∗1(X) ≤ W and
2. for all x ∈ X with father x′ we havew∗1(X − x+ x

′) > W .

Lemma 3.1. Ifw∗1,p ≤ W then |X | ≤ p for all W-bounding sets X ⊆ V .

Proof. Assume thatw∗1,p ≤ W and let X
∗ with |X∗| ≤ p be an optimal leader placement. Consider an arbitraryW -bounding

set X . Map each node from X∗ to its closest ancestor in X (this allows us in particular to map a node to itself). We claim that
this mapping is surjective, which completes the proof.
Assume for contradiction that there is a node v ∈ X which is not in the image of the mapping, and let u be the father

of v. By property 2 there is a y ∈ Tu such that w(y ≺ X − v + u) > W . Consider the maximal subtrees T ′ and T ∗ which
contain the node y but no node from X − v + u and X∗, respectively, as inner nodes. First, by its choice, y lies in the subtree
Tu. Moreover, the closest ancestor of y in X is v (otherwise w(y ≺ X) = w(y ≺ X − v + u) > W). This implies that no
inner node of T ′ can be part of X∗, for otherwise, v would be the image of this node, contradicting the premise. Hence T ′ is
a subtree of T ∗. Moreover,w(y ≺ X∗) ≥ w(y ≺ X − v + u) > W , which is a contradiction. �

We propose the following algorithm: Initialize the node set X which shall be W -bounding at the end to X ← ∅. Start
at the newly introduced root node s0 and perform a depth first search traversal of the tree. Whenever the traversal returns
from a node v back to its father u, perform the test whether there is an y ∈ Tv such that w(y ≺ X + u) > W . If this is the
case, then add the node X ← X + v.

Lemma 3.2. Given W ∈ N, the algorithm constructs a W-bounding set.

Proof. To show property 1, assume for contradiction that w(y ≺ X) > W for some y at the end of the algorithm. Consider
the maximal subtree of T which contains y and does not contain nodes from X as inner nodes. Let u ∈ X ∪ {s0} be the root
of this subtree, and v /∈ X be its son in the subtree. At the time where the above test was executed for the edge (u, v) the
result was w(y ≺ X ′ + u) ≤ W . Since X ′ + u ⊆ X + s0 we have also w(y ≺ X) = w(y ≺ X + s0) ≤ w(y ≺ X ′ + u) ≤ W ,
which contradicts the premise.
Property 2 is immediate from the construction of the test, since it can be observed that, after the test for a node v has

been performed, no more nodes from the subtree Tv are later added to X . �

Theorem 3.3 (Discrete (1, p)-Centroid on a Tree). A discrete (1, p)-centroid on a tree can be found in time O(n2 (log n)2
logw(T)).

Proof. We perform a binary search to find the smallest weightW ∈ [0, w(T)] such that there is aW -bounding set X with
at most p elements. By Lemmas 3.1 and 3.2, the set found by this approach has follower gain w∗1,r and is therefore a (1, p)-
centroid.
A straightforward implementation would compute a (1, X)-medianoid in the current subtree below each single edge.

Using the algorithm from [19], this yields the proposed running time. �

3.2. Absolute (1, p)-centroid on a tree

In order to solve the problem in the absolute case, we attempt to discretize the instance, i.e., we show that one can assume
that the leader chooses his position always on a finite grid projected onto the edge set. This allows us to reduce the absolute
case to the discrete case discussed above.

Theorem 3.4 (Discretization). Let I be an instance of the absolute (r, p)-centroid problem on an arbitrary graph with edge
lengths in N. Then there is an (r, p)-centroid X of I such that d(x, v) ∈ 12N for each x ∈ X and each vertex v.

Proof. We assume w.l.o.g. that all edges have unit length, which can be achieved by creating zero weighted nodes at an
integer grid.
Now let Xp be an (r, p)-centroid. A point z is called (v, Xp)-isodistant [17] if there is a node v such that d(v, z) = d(v, Xp).

(v, Xp)-isodistant points are of particular importance: they are the only candidates for boundary points of the connected set
of all points where the follower claims the node v. Hence the gain of the follower is constant within each interval limited by
isodistant points.
We transform Xp into a new set X ′p by moving each point to the nearest node, unless the point is the midpoint of an edge.

Notice that each point moves by less than 12 by this transformation. Moreover, all isodistant points also move by less than
1
2 .

We show that w∗r (X
′
p) ≤ w∗r (Xp). Assume the contrary. Then there must be an interval between two isodistant points

induced by X ′p where the follower gains a set of nodes which was not present in the original instance. This means that

J. Spoerhase, H.-C. Wirth / Theoretical Computer Science 410 (2009) 5128–5137 5135

Fig. 5. The discrete (1, p)-centroid is NP-hard on a pathwidth bounded graph.

there must be a pair (i1, i2) of two isodistant points on an edge which has interchanged its relative position during
the transformation. More exactly, let i1, i2 be the distances of the points to one fixed endpoint of the edge before the
transformation, and i′1, i

′

2 the positions after the transformation; then we must have i1 ≥ i2 and i
′

1 < i
′

2. Obviously i
′

1, i
′

2
are either endpoints or midpoints, i.e., i′1, i

′

2 ∈ {0,
1
2 , 1} (where for the sake of an easier presentation we identify points with

their respective distances).
If one of those points, say i′1, is a midpoint then the point has not moved at all, i.e., i1 = i

′

1. This implies that point i2 has
moved by at least 12 , which is impossible. On the other hand, if both i

′

1, i
′

2 are endpoints, the total sum of the movement is at
least 1, which is again a contradiction. This shows the claim. �

We point out that from this result one can only derive that the positions of the leader are discretized to positions in 12N,
while the positions of the follower are still unrestricted.
A direct application of the above result to the algorithm stated in the previous section would yield a new instance where

the node number and thus the running time of the algorithm would no longer necessarily be polynomially bounded. Hence
we propose a modification of the previous algorithm.
We start the algorithm on the unaltered input tree.Whenever in the original algorithm there is a test on an edge (u, v) to

be performed, we now essentially have to determine a point on that edge which isW -bounding. By the above discretization
result it turns out that it is sufficient to restrict the tests to (exponentially many) discrete points on that edge. Since all those
sub-edges are threaded on the original edge, the interesting point which is W -bounding can be found by a binary search
without actually creating all those points as real nodes. This shows the following result:

Corollary 3.5 (Absolute (1, p)-Centroid on a Tree). An absolute (1, p)-centroid on a tree can be found in time O(n2 (log n)2 log
w(T) logD) where D := maxe d(e).

Proof. The running time follows from similar arguments as above. Notice that the absolute (1, X)-medianoid can be
computed in O(n (log n)2) [12]. �

3.3. Discrete (1, p)-centroid on a pathwidth bounded graph

In this section we oppose the positive results for the (1, p)-centroid on trees with a hardness result for a slightly more
complex graph class, namely the class of pathwidth bounded graphs. A path-decomposition of a graph (V , E) is a path with
node set V ′ and a mapping p : V → 2V

′

such that p(v) is a path for all nodes v ∈ V and p(v1) ∩ p(v2) 6= ∅ for all edges
(v1, v2) ∈ E. Thewidth of the decomposition is maxv′∈V ′

∣∣{ v ∈ V | p(v) 3 v′ }∣∣−1. The pathwidth of a graph is theminimum
width of a path decomposition.

Theorem 3.6 (Hardness on Pathwidth Bounded Graphs). Determining a discrete or an absolute (1, p)-centroid on a pathwidth
bounded graph is NP-hard.

Proof. Let an instance of problem Partition be given as in Theorem 1.1. Construct a graph as follows (see Fig. 5): Start with
two paths a1–a2–. . .–an–A and b1–b2–. . .–bn–B. For each i = 1, . . . , n, add a connecting path ai–ui–vi–ūi–bi and complement
it by ui–v′i–ūi and ui–v

′′

i –ūi to form a diamond. All edges have unit length except for the edges on the initial a-path and
b-path which have length< 1

n . The node weights are set tow(ui) := w(ūi) := si andw(vi) := w(v
′

i) := w(v
′′

i) = Ω for an
Ω > S∗. The weights of the ai, bi nodes are set to 1, and finallyw(A) := w(B) := Ω + 1.
We claim: For p := n there is a discrete (1, p)-centroid of weightW := 1

2S
∗
+ n + Ω + 1 if and only if the Partition

instance is solvable. (The proof for the absolute case is identical.)
‘‘If’’: Let S ′ ⊂ S be a subset with

∑
S ′ = 1

2S
∗. For each i = 1, . . . , n place the leader at ui if si ∈ S ′ and at ūi otherwise.

The follower places a server at B and claims all b-nodes, plus those nodes ūi where si ∈ S ′ which results in a total gain ofW .

5136 J. Spoerhase, H.-C. Wirth / Theoretical Computer Science 410 (2009) 5128–5137

(r, p)-centroid (the leader problem) (r, Xp)-medianoid

absolute discrete (the follower problem)

arb. r
arb. p

NP-hard on path
[Theorem 2.1]

O(pn4) on path
[Theorem 2.4]

O(n) on path [14]

NP-hard on spider
[Theorem 2.5]

O(rn2) on tree
[14]

Σ
p
2 -complete on graph

[15]
NP-hard on graph

[14]

r = 1
arb. p

O(n2(log n)2 logW logD)
on tree [Corollary 3.5]

O(n2 (log n)2 logW) on
tree [Theorem 3.3]

O(n (log n)2/ log log n)
on tree [19]

NP-hard on pathwidth
bounded graph

[Theorem 3.6]

O(n2 log n + nm) on
graph [by enumeration]

r = 1
p = 1

O(n4m2 logmn logW)
on graph [11]

O(n3) on graph
[4]

Fig. 6. Complexity of the (r, p)-centroid problem.W :=
∑
w(v) and D := max d(e). The hardness results from the discrete case also apply to the absolute

case.

‘‘Only if’’: Consider diamond i. If the leader places no server, the follower could claim more than 3Ω . Hence there must
be one server per diamond. If the leader places a server at a v-node, the follower could still claim more than 2Ω . As a
consequence, the leader places either at ui or at ūi. Let S ′ := { si | the leader places server at ui }.
The follower can not claim two or more v-nodes with a single server. Hence it is optimal to place on A or Bwhich claims

a fixed weight ofΩ + 1+ n, plus the weight
∑
S ′ (if the follower places a server at B) or S∗ −

∑
S ′ (if the follower places a

server at A). If
∑
S ′ 6= 1

2S
∗ this is larger thanW .

The proof is completed by the observation that the constructed graph has pathwidth 7. �

4. Conclusions

Fig. 6 provides an overview on the complexity status of the (r, p)-centroid problem, i.e., the problem of optimally placing
the leader. For completeness we have added the known results for the corresponding follower problem variants. Notice that
in the follower problem we do not distinguish between the absolute model and the discrete model since the complexity is
the same in both cases.
In [17], the authors approach the absolute (r, Xp)-medianoid problems by polynomial discretization, i.e., in the infinite

set of points they identify polynomially many points and this way reduce the absolute problem to a finite discrete problem.
Since we have shown that on a path the absolute (r, p)-centroid is NP-hard while the discrete is not, we conjecture that
such a polynomial discretization is unlikely to work for the absolute (r, p)-centroid problem in general. (Notice that the
discretization employed in Section 3.2 is not polynomial.)
There are a few further problems left open at this point. First, the purpose of the current paper is to distinguish NP-hard

from polynomial time solvable problem instances, and it would be not surprising if the algorithms we propose here can be
improved in running time. Second, in [15] it has been shown that the (r, p)-centroid can not be approximatedwithin a factor
of n1−ε on general graphs; in [18] there has been provided an FPTAS for the absolute (r, p)-centroid on paths. In connection
with the hardness results in this paper, approximability on trees and other graph classes is worth investigating.

Acknowledgements

We thank the anonymous referee for detailed and helpful comments, and Arie Tamir for pointing us to [12]which implies
a faster running time in Corollary 3.5.

References

[1] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, M. Protasi, Complexity and Approximation, Springer, Berlin, Heidelberg, New
York, 1999.

[2] S. Benati, NP-hardness of some competitive location models with probabilistic choice rules, Studies in Locational Analysis 14 (2000) 211–231.
[3] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms, MIT Press, 1990.
[4] C.M. Campos Rodríguez, J.A. Moreno Pérez, Relaxation of the Condorcet and Simpson conditions in voting location, European Journal of Operational
Research 145 (2003) 673–683.

[5] C.M. Campos Rodríguez, J.A. Moreno Pérez, Multiple voting location problems, European Journal of Operational Research 191 (2) (2008) 437–453.
[6] H.A. Eiselt, G. Laporte, Sequential location problems, European Journal of Operational Research 96 (1996) 217–231.
[7] M.R. Garey, D.S. Johnson, Computers and Intractability (A Guide to the Theory of NP-Completeness), W.H. Freeman and Company, New York, 1979.
[8] A.J. Goldman, Optimal center location in simple networks, Transportation Science 5 (1971) 212–221.

J. Spoerhase, H.-C. Wirth / Theoretical Computer Science 410 (2009) 5128–5137 5137

[9] S.L. Hakimi, On locating new facilities in a competitive environment, European Journal of Operational Research 12 (1983) 29–35.
[10] S.L. Hakimi, Locations with spatial interactions: Competitive locations and games, in [13], 1990, pp. 439–478.
[11] P. Hansen, M. Labbé, Algorithms for voting and competitive location on a network, Transportation Science 22 (4) (1988) 278–288.
[12] Tae Ung Kim, Timothy J. Lowe, Arie Tamir, James E. Ward, On the location of a tree-shaped facility, Networks 28 (3) (1996) 167–175.
[13] P.B. Mirchandani, R.L. Francis, Discrete Location Theory, in: Series in Discrete Mathematics and Optimization, Wiley-Interscience, 1990.
[14] N. Megiddo, E. Zemel, S. Hakimi, The maximum coverage location problem, SIAM Journal on Algebraic and Discrete Methods 4 (2) (1983) 253–261.
[15] H. Noltemeier, J. Spoerhase, H.-C. Wirth, Multiple voting location and single voting location on trees, European Journal of Operational Research 181

(2007) 654–667.
[16] A.P. Punnen, Y.P. Aneja, On k-sum optimization, Operations Research Letters 18 (1996) 233–236.
[17] D.R. Santos-Peñate, R. Suárez-Vega, P. Dorta-González, The leader-follower location model, Networks and Spatial Economics 7 (2007) 45–61.
[18] J. Spoerhase, H.-C.Wirth, Approximating (r, p)-centroid on a path, in: Proceedings of the 7th Cologne-TwenteWorkshop onGraphs and Combinatorial

Optimization, CTW’08, 2008. Available at: http://ctw08.dti.unimi.it/CTW08-Proceedings.pdf.
[19] J. Spoerhase, H.-C. Wirth, An O(n(log n)2/ log log n) algorithm for the single maximum coverage location or the (1, Xp)-medianoid problem on trees,

Information Processing Letters 109 (8) (2009) 391–394.

http://ctw08.dti.unimi.it/CTW08-Proceedings.pdf

	 (r, p) -centroid problems on paths and trees
	Introduction
	Problem definition

	The (r,p)-centroid
	Absolute (r,p)-centroid on a path
	Discrete (r,p)-centroid on a path
	Discrete (r,p)-centroid on a tree

	The (1,p)-Centroid
	Discrete (1,p)-centroid on a tree
	Absolute (1,p)-centroid on a tree
	Discrete (1,p)-centroid on a pathwidth bounded graph

	Conclusions
	Acknowledgements
	References

