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KEYWORDS Abstract In this paper, a new formulation based on the derivative of maximum power with respect
Fuel cell parameter extrac- to current is proposed for fuel cell parameter extraction. Compared to conventional extraction
tion; methods, the proposed method has various features such as faster convergence, higher efficiency
Proton exchange membrane and accuracy. In this work, the problem of parameter extraction is formulated as an optimization
fuel cell (PEMFC); task and it is solved using simple GA. Explanations about the new formulation and its implemen-
Genetic Algorithm (GA) tation using GA are elaborated. To validate the candidature of the proposed formulation, perfor-

mance analysis is done with two sets of initial value ranges and the results are compared with the
existing curve fitting method in terms of accuracy, convergence characteristics and objective func-
tion value. The results show that the proposed formulation employing GA is capable of extracting
fuel cell parameters accurately with lesser computational steps and time.

© 2015 Faculty of Engineering, Ain Shams University. Production and hosting by Elsevier B.V. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction harness the existing renewable energy resources. Fuel cell sys-
tems are prominent energy sources gaining momentum in

Increased power demand, continuous depletion of fossil fuels ~ recent past due to its high efficiency, reliability, durability

and emission of greenhouse gases urge researchers and practi- and ease of .appllcatlon mn dlyerse ﬁe}ds.

tioners to focus on new technologies that can efficiently Fuel cell is an electrochemical device that converts hydrogen

fuel into electric power. Fuel cell system comprises of two
electrodes namely anode and cathode. Hydrogen is allowed
to pass through the positive electrode and oxygen through
the negative electrode, with an electrolyte between them facili-
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(K. Balasubramanian), priya.k2013(@vit.ac.in (K. Priya), sangukrish21@ tating the exchange of electric charges. The flow of electrons

gmail.com (K. Sangeetha), sudhakarbabu66@gmail.com, sudhakar. through th? external circuit pro.duces elec.trlc power [1].
babu2013@vitac.in (T. Sudhakar Babu). Due to its robustness and higher efficiency, fuel cells have

Peer review under responsibility of Ain Shams University. been extensively utilized in commercial, industrial and residen-
tial applications (such as primary and backup power genera-
tion) [2]. Fuel cells can be categorized based on the type of
electrolyte used and the start-up time required. For instance,
the start-up time for Proton Exchange Membrane (PEM) fuel
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cell is 1 s whereas for Solid Oxide (SO) fuel cell it is 10 min.
Under normal operating conditions, a simple fuel cell typically
produces output voltage in the range of 0.5-0.9 V. Since this
low voltage becomes insufficient for real-time applications, a
stack of fuel cells are arranged in series so that the required
voltage can be attained [3].The most commonly used fuel cell
is the PEM fuel cell. It is popular due to its distinctive features
such as no waste is generated, high efficiency, low operating
temperature and pressure [4].

It is appreciable to build an effective fuel cell model before
proceeding into the installation part of the system so that the
design and testing can be made much easier [5]. Modelling of
fuel cell characteristics has drawn considerable attention of
researchers over the last decade as it helps in the better under-
standing of the phenomena occurring within the cell. It is a
major concern for researchers and practitioners to model fuel
cell characteristics accurately since its behaviour largely
depends upon the predicted characteristics as well as its model
parameter values. The values of all the model parameters
required for fuel cell modelling are not provided in the manu-
facturer’s datasheet. Therefore, it facilitates the need to accu-
rately compute the values of the unknown parameters by
employing any suitable optimization technique.

From the past literature, it can be inferred that the previous
attempts followed curve fitting method for fuel cell modelling
[6-9,15,16]. In this procedure, model parameters are computed
by considering the sum of square of errors between computed
and measured values on predefined points on the fuel cell char-
acteristics. The main shortcomings of this method are as fol-
lows: it consumes more time, is strenuous, error is large and
is complex. Hence, in order to overcome these drawbacks a
new formulation is proposed to accurately determine the
model parameters. The proposed formulation is based on the
fact that derivative of power with respect to current at
Maximum Power Point (MPP) is zero. This formulation
henceforth is named as Maximum Power Point (MPP) method
and it applies simple Genetic Algorithm for solving the fuel cell
parameter identification problem.

In the proposed formulation, only 3 points on the I-V char-
acteristics namely Vi, Vmpp and I are utilized to estimate the
model parameters unlike the curve fitting method which con-
siders many points on the I-V characteristics to estimate the
model parameters. This formulation is accurate, fast converg-
ing and simple since it requires the computation of only 3
points.

For validation and detailed analysis of the novel formula-
tion, extensive evaluation and comparison are done between
the conventional curve fitting method and the proposed
MPP method. In order to estimate the goodness of proposed
MPP method and for fair comparison, constraints such as fit-
ness function value (best, worst, mean and standard devia-
tion), convergence characteristics, matching of the computed
and expected I-V characteristics and statistical tools like stan-
dard deviation, absolute error and histograms are taken into
account.

The remaining part of this paper is subdivided into 5 sec-
tions. Section 2 expounds the PEM fuel cell model. Section 3
explains the formulation of the objective function. Section 4
details the optimization technique wused (i.e.) Genetic
Algorithm (GA). Section 5 deals with results and discussions.

2. PEM fuel cell model

Fuel cell is an electrochemical device that converts the stored
energy of fuel directly into electricity with the help of an oxi-
dant [10]. It consists of a cathode and an anode with a
proton-conducting membrane which serves as the electrolyte.
The electrochemical equations occurring in electrodes of a
PEM fuel cell can be described as follows [11].

Anode side:

H, — 2H" + 2e” (1)
Cathode side:

1
2H+ + 502 + 2 — HzO (2)
Overall electrochemical reaction:
1
H2+§O2 — H,0 (3)

The electrochemical model of fuel cell is proposed by
Amphlett et al. [12]. The output voltage equation governing
a single fuel cell is

VFC = ENcrnst - Vact - Vohmic - Vcon (4)

Enerst can be calculated using the following formula
Enemst = 1.229 — 0.85 x 107(7T — 298.15)

+4.3085 x 107 x T[In(Py, + 0.5In(Po,)) (5)

where Py, and P, are partial pressures (atm) of hydrogen and
oxygen, respectively. 7 is the fuel cell absolute temperature
(K).

The activation over potential can be expressed in a para-
metric form as follows,

Vdcl =& + 82T+ &3 TIH(COZ) + & Tll'l(l) (6)

where the terms ¢; are semi-empirical coefficients, 7 is the cell
current (A), Co, is the concentration of oxygen in the catalytic
interface of the cathode (mol cm ™).

— Po,

The ohmic voltage drop is given by the expression [13]
Vonmic = i(Ry + R.) (7)

And,

181.6[1+0.03(2) +0.062(5)° (4)*°]
[ —0.634 — 3(%)] exp [4.18(5529)]

Pm =

where R,, and R, are the equivalent inner membrane resistance
and outer contact resistance respectively. / is the thickness of
the PEM (cm), which serves as the electrolyte of the cell, 4
is the active cell area (cm?), p,, is the membrane specific resis-
tivity and Z is an adjustable parameter.

The concentration voltage drop is given by,

1
Vcon = —bln (1 — Imax) (8)
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where b is the parametric coefficient (V) that depends on the where
type of cell and its state of operation. / is the actual cell current ((A—0.634) +,(0.64— 0.038) + /> AT*(0.2174— 0.1375 — 0.465J,) — 0.9.]2)
(A), @y is the maximum possible value of 1. - (4—0.634—3J,)

For the PEM fuel cell, the relationship between
Pu,, Po,, Pu,0, and Co, can be expressed as [14]: I

29 2 ) Jl, _ Jmpp (18)
log(Pi,0) =2.95 x 1072(T—273.15) — 9.1810(T - 273.15)? AT

+1.44x1077(T=273.15° - 2.18 (9 AT=35 (19)
0.79
})N2 :mpoz (10)
0.291(i/A 4. Optimization technique

POZZPL.fRH(‘Pﬂzo*PNZCXp (Tgxé)> (11)

Py, =0.5RH, Py 0

(o (M504 Bt ]

where Py, is the saturation pressure of water vapour (atm)
Py, is the partial pressure of N, at the cathode gas flow chan-
nel (atm). P,, P, are the anode and cathode inlet pressures
(atm), RH, and RH, are the relative humidity’s of the vapour
in anode and cathode respectively.

3. Problem formulation

From the equations mentioned above, it is evident that many
parameters are involved for describing the fuel cell operation
and most of them are unknown. Since they are not given in
the manufacturer’s datasheet, the calculation of these parame-
ters should be carried out by applying some optimization pro-
cedure. The specific set of parameters required for fuel cell
modelling are ¢p, ¢, ¢3,84,b, R, and A. For effective problem
solving capability, it is important to define a clear objective
function. At the same time, proper definition of objective func-
tion is crucial for extracting accurate parameter values as it
ensures that the obtained model results perfectly synchronizes
with the actual fuel cell characteristics. Hence, in this work
objective function is formulated by applying the fact that the
derivative of power with respect to current is equal to zero
at Maximum Power Point (MPP). i.e. ¢ =0. The fuel cell
DC power output is given by:

P=VI (13)
Taking differentiation of above equation we get,

dP dv

=V (14)

Applying MPP condition to the above equation, RHS of
equation is set to zero

av v

a + 7= 0 (15)
Thus, the objective function for fuel cell parameter extrac-

tion can be expressed as

“l/ Vinpp

Impp

-

(16)

(Vmpp-Tmpp)

dv

4 can be obtained
dl (VinppTmpp)

In the above equation the value of |

from the basic voltage equation.

T b Ix181.6
=|leaa— )+ |7 ) F | RH |~ | | XT
(Vinpp Jnpp) Twpp /) \dimax = Tnpp Aexp (%{303))

(17)

dv
dI

4.1. Genetic Algorithm

Genetic Algorithm is an evolutionary computational technique
which follows Darwin’s principle of “‘survival of the fittest”.
The application of this concept for optimization was put for-
ward by Holland in 1975 which was later modified by different
authors. The essence of GA constitutes the encoding of opti-
mization function arrays comprising of bits to emulate chro-
mosomes and different operations are performed on
chromosomes by various genetic operators [6,17].

The important processes employed in Genetic Algorithm
are reproduction, selection, crossover and mutation. A set of
probable solutions entitled as population is made to undergo
GA operations and their values are frequently modified in
order to converge to the best solution. In every step, the parents
are chosen from the current population to produce offspring
which is nothing but a new set of chromosomes. The flow chart
emulating the process involved in GA is shown in Fig. 1.

4.2. Application of GA towards parameter estimation

The fuel cell parameter identification problem aims at finding
an optimal set of parameters that exactly reproduces the actual
fuel cell characteristics. The optimization technique applied for
the above problem must have the capacity to explore the

Random generation of
Initial population

S—

Evaluation of
Fitness Function

Mate selection

Crossover and Mutation

Termination
Satisfied

Figure 1  Flow chart of GA.
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solution space and arrive at optimal solution set in shorter
time. The various steps involved when GA is applied to the
present problem are described as follows:

Step 1: Parameter setting

Fix the GA parameters namely population size, cross over
rate, mutation rate and termination criteria.

Step 2: Create an initial population

In this step, chromosomes i.e., individuals of the population
are created. In this work, binary coded GA is used with
chromosome length of 70. Generate an initial population
with each chromosome (i.e., parameter values) representing
a potential solution to the problem.

Step 3: Evaluation of objective function

Fitness i.e., goodness of a solution, of each individual gen-
erated in previous step is evaluated. In the present work, the
fitness value assigned to each chromosome is same as the
objective function value; since it is a minimization function.
After objective function evaluation i.e., Eq. (16), each chro-
mosome is assigned a sector proportional to its fitness value
in a virtual roulette wheel. Roulette wheel selection proce-
dure is adopted to select the parents for the next generation.
Step 4: Cross over and mutation operation

The parents selected performing the above steps are allowed
to undergo cross over, i.e., bits of chromosomes are
exchanged, multipoint cross over is followed in this work
for better efficiency. The offspring’s generated via cross
over are mutated. Bits of chromosomes are toggled based
on the value of mutation probability.

Step 5: Creation of new population

In this step, old population is replaced with the newly gen-
erated population.

Step 6: Termination criteria

Check whether a termination criterion is met. If it is satis-
fied, stop and print the result; else go to step 3.

4.3. GA parameter selection

For obtaining the exact model parameters applying GA,
proper selection of predefined GA parameters is crucial. If
the selection of the values is not accurate, the result obtained
will be erroneous which results in the mismatch between the
computed fuel cell characteristics and the actual characteris-
tics. Further, in order to rule out the possibility of getting inac-
curate results completely the values of population size,
crossover probability, mutation rate and maximum genera-
tions are judiciously adjusted in such a way that better results
are obtained. Each of the values is modified via continuous
tuning within a certain range and the best value is evolved.
Thus, the best set of GA parameters arrived which are men-
tioned herein. The value of population size is 100, mutation
rate is 0.3 and cross over rate is 0.8 and the number of itera-
tions to be performed is 250. Selection of parents is performed

Table 1 Different parameter ranges for performance evaluation.

with the aid of Roulette wheel selection method and multi
point crossover is employed.

4.4. Importance of range selection

The proper selection of GA parameters alone does not guaran-
tee faithful results as its convergence and the obtainment of
faithful results also depends on the chosen initial population.
Further, the range of fuel cell model parameters namely
&1, &, €3, &, b, R. and / also plays a significant role in the proper
modelling of fuel cell system. Unfortunately, there is a lack of
proper knowledge about the model parameter values as well
as their range. This flaw can be concealed up to a certain extent
by allowing large number of iterations with entirely different
random initial values so that the desired results are obtained.
However, increased number of iterations can yield poor results.
Hence, to refine the search process in a proper manner as well as
to guarantee sufficient class of accuracy between the computed
and actual characteristics, the model parameters are subjected
to a definite range and the results obtained are analysed.
Further, the range should be constrained by considering the
physical meaning of the parameter as well so that it becomes
realizable. There are two possibilities in the range selection pro-
cess 1. Wide range and 2. Narrow range. If the chosen range is
wide, the search space is large and the applied optimization
technique takes longer time to converge to the best possible
solution. Moreover, there is a great possibility that the method
may converge to any of the local best solution which resembles
the best one and further deteriorates the efficiency of search
process. To avoid the drawbacks of wide range selection, a nar-
row range can be chosen. The issue of settling to local best value
and higher convergence time can be expelled with this perfor-
mance, but care should be taken such that the best value should
also be contained in the prescribed range. Thus, it is evident
that proper selection of parameter ranges assures the expected
class of accuracy.

The ranges for model parameters employed in this work are
presented in Table 1 where Range 1 is a narrow range whereas
range 2 is a wider range. These ranges are helpful in identifying
the best objective function for the proposed problem.

5. Results and discussion

To accentuate the supremacy of the new formulation, its per-
formance is compared with that of the conventional curve fit-
ting method. To make a fair comparison, same GA method is
applied for both the approaches and the performance is evalu-
ated. Further, the performance of the proposed MPP approach
and conventional curve fitting approach is evaluated in terms
of fitness function value (best, worst, mean and standard devi-
ation), convergence characteristics, matching between com-
puted and expected I-V characteristics, standard deviation,
absolute error graph and histograms. The results obtained

&1 & £ &4 b R, A
Range 1, Min —0.95 2e—-3 6e—5 1.1e—4 0.02 le—4 16
Range 1, Max —0.944 4e—-3 8.5e—5 1.88e—4 0.06 8e—4 24
Range 2, Min -0.9 1.5e—3 5.5e-5 1.05e—4 0.01 0.5e—4 10
Range 2, Max —0.87 4.5¢e-3 9e—5 1.93e—4 0.07 8.5e—4 24
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Table 2 Best, worst, mean and the standard deviation values of both the approaches for 150 runs.

Approach Best Worst Mean Standard deviation
Range 1-GA Proposed method 0.003366 0.003749 0.003532 0.0000793
Range 1-GA Point by point method 0.5147 1.44003 0.7511 0.209617
Range 2-GA Proposed method 0.001259 0.00199 0.001544 0.00013793
Range 2-GA Point by point method 0.35283 2.46632 1.122 0.384907
Objective function value Vs No. of iterations 60
0.004
50
0.0035
Range 1 ? 40
0.003 ——Range 2 3
. ange qg: 30
£ 0.0025 & 20
>
g 0002 10
=
&= 0.0015 0.0013 0.0014 0.0015 0.0016 0.0017 0.0018 0.0019 0.002
0.001 Objective Function Value
0.0005 Figure 5 Histogram of the objective function value for Range 2
o b for proposed MPP method.
0 50 100 150 200 250 300

No.of Iterations

Figure 2 Variation of objective function for the proposed
method for range 1 and range 2.

Objective Function Vs No. of iterations

—_
(=}

—Range 1
—Range 2

Fitness Value
S = N W R N0 0 O

0 50 100 150 200 250
No. of iterations

Figure 3 Variation of objective function by the conventional
curve fitting method for range 1 and range 2.

70
60
40
30
10
0 ==

0.0034 0.0035 0.0036 0.0032
Objective function value

Frequency
W
[=}

Figure 4 Histogram of the objective function value for Range 1
for proposed MPP method.

30
25

[5~3
(=]

Frequency
=

w

0

S RN W S SN R A Y N
A I A T A S S G LR N W
T T T (MNP T YO

5D
N \’.\f’ NN

Objective function value

Figure 6 Histogram of the objective function value for Range 1
for conventional curve fitting method.

Frequency
SN BN O N

5D 0 D DD DD DD DD DAL DN D LD
PREECELLORDEPRE PP WSS
NERNSENGEN Q_bgbme“‘.bnemxo\\%\w\\’.\w\

Objective function value

Figure 7 Histogram of the objective function value for Range 2
for conventional curve fitting method.

are explicitly discussed. Programs were developed in
MATLAB for GA with both methods. Simulations are per-
formed using Pentium 4 INTEL 4GB RAM 2.4 GHz
processor.

GA is made to run 150 times for both the approaches and
comparison is made in terms of best, worst, mean and stan-
dard deviation of objective function value obtained for all
the iterations is described in Table 2.

From Table 2, it is clearly evident that the proposed MPP
method provides better results for all range of initial values.
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Figure 8 Comparison of the proposed MPP, point by point
method and expected curves under 2.5/3 bar and 1.5/1.5 bar
pressure.
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Figure 9 Comparison of the proposed MPP, point by point
method and expected curves under 3/5 bar and 1/1 bar pressure.

Further, there is a remarkable improvement in the fitness func-
tion value obtained through the novel proposition compared
to conventional curve fitting procedure which again proves

[0 )X : R

0.7 oo

0.6 .coomemmemr [

0.5 ooeommmmmemmoe

0.4 oo

Absolute Error

Pressure in bar 2

the effectiveness of the proposed formulation. The results con-
firm that the proposed approach is robust and it can be
employed for any chosen parameter range which exactly meets
the required standards.

Figs. 2 and 3 show the variation of fitness function value
against the number of iterations for best run of the proposed
MPP and conventional curve fitting approach respectively.
From the graphs, it is observed that there is a drastic reduction
in the objective function value when the new approach is
employed. Further, independent of the model parameter
range, the novel formulation converges to a very low fitness
value after settling which is in the order of 107, However,
the objective function value is very close to unity when conven-
tional approach is applied. Moreover, the ultimate aim of the
optimization technique is to achieve a very small objective
function value which basically interprets that the error between
extracted and actual characteristics is very low. This is
achieved in the proposed MPP method. Further the time taken
for GA optimization technique with the proposed MPP
method and point by point method is found to be 3.54 s and
8.62 s respectively. The difference in time taken is due to the
large computations involved in the point by point method.

Figs. 4 and 5 show the histograms for the frequency of fit-
ness function value for two ranges with the proposed MPP
method and Figs. 6 and 7 show for conventional curve fitting
approach. From the histograms, it is evident that the fre-
quency of getting best objective function values with less mag-
nitude is higher for the proposed method compared to that of
the conventional curve fitting method. However, due to larger
exploration area in range 2, as well as higher computational
data, the curve fitting method produces poor results in both
the cases. Further, the curve fitting procedure may end in local
optima in range 2 due to vast search space.

The extracted model parameters for both the approaches
are subsequently substituted in the MATLAB/SIMULINK
fuel cell model to plot the I-V characteristics of the fuel cell
stack. For comparison, experimental data are taken from man-
ufacturer’s datasheet and compared with computed values for
the same fuel cell stack. The comparison between actual and

Absolute error curve

= 1/1 bar 343.15 K
1.5/1.5 bar 343.15 K|+~
=—=e-= 3/5 bar 353.15 K
| —— 25/3bar343.15K |

20 25

15

10
Current in Amperes

Figure 10  Absolute error curve-proposed MPP method.
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Absolute error curve

0.8

0.6

Absolute Error

04

Pressure in bar

Figure 11

extracted I-V characteristics for different conditions of pres-
sure and temperature is done in detail.

A closer observation of the graphs Figs. 8 and 9 indicates
that the computed and expected fuel cell characteristics are
exactly matching when the proposed approach is employed
even under different test conditions however there is a notice-
able drift in the characteristics when point by point approach
is executed. Hence, the proposed formulation always promises
to provide appropriate matching between the computed and
the actual characteristics irrespective of the test conditions.

For further justification of the proposed method, the absolute
error is calculated by comparing the difference between computed
and actual I-V curve values. The calculation of the absolute error
from I-V curves is based on the following equation:

Absolute error = |chpcrimcnlal - Vcompulcd|

The absolute error curves plotted for four different operating
conditions (for 1/1bar 343.15K, 1.5/1.5bar 343.15K,
2.5/3bar 343.15, and 3/5bar 353.15K) for both the
approaches are presented in Figs. 10 and 11 respectively.

It is noteworthy to mention that the absolute error value is
considerably reduced when the new method is implemented
and it is undoubtedly noticeable in Figs. 10 and 11. The max-
imum error is less than 0.2 for the new proposition whereas it
rises up to a value close to unity in the conventional curve fit-
ting approach. Moreover, the deviation in error value is very
less even under different test conditions. This again gives
strong evidence that the proposed MPP approach is robust
and reliable under all test conditions and it always promises
to provide error value within a limited low range.

6. Conclusions

In this paper, a novel problem formulation based on derivative
of power with respect to current at maximum power point is
proposed. A simple Genetic Algorithm is used to solve
the above formulation. The seven model parameters
£1,8,83,8,b, R, and 4 are extracted via GA procedure. For
demonstration, results obtained with GA are benchmarked

| ——1/1barbar343.15K| 7
——— 1.5/1.5 bar 343.15 K
——— 3/5 bar 353.15 K

“wo.| ———2.5/3 bar 343.15 K

15
10

Current in Amperes

Absolute error curve-conventional curve fitting method.

with the widely used curve fitting approach. The results
demonstrate that the new MPP formulation applying GA per-
forms better than curve fitting method in terms of accuracy,
convergence characteristics, convergence speed and objective
function value.
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