Note

The eigenvalues of q-Kneser graphs

Benjian Lv, Kaishun Wang*
Sch. Math. Sci. \& Lab. Math. Com. Sys., Beijing Normal University, Beijing, 100875, China

ARTICLE INFO

Article history:

Received 11 November 2010
Received in revised form 29 November
2011
Accepted 30 November 2011
Available online 24 December 2011

Keywords:

q-Kneser graph
Eigenvalue

Abstract

In this note, by proving some combinatorial identities, we obtain a simple form for the eigenvalues of q-Kneser graphs.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that the eigenvalue technique plays an important role in studying structures of a graph. In particular, the second-largest eigenvalue of a graph gives information about expansion and randomness properties (see [2]), and the least eigenvalue gives independence number and chromatic number bounds (see $[2,4]$).

The Kneser graph, denoted by $K(v, k)$, is the graph whose vertices are k-subsets of a fixed v-set, with two vertices adjacent if they are disjoint. The eigenvalues of Kneser graphs are computed in [4, Theorem 9.4.3], and have appeared in various applications, for example in relation to the Erdös-Ko-Rado theorem [4], the hyperenergetic property of graphs [1], chromatic polynomials [6], algebraically independent quantities of simplices [5] and so on.

In this note, we are concerned with eigenvalues of the q-analogues of Kneser graphs. Let \mathbb{F}_{q}^{v} be a v-dimensional vector space over a finite field \mathbb{F}_{q}. The q-Kneser $\operatorname{graph} q K(v, k)$ has as its vertex set the collection of k-dimensional subspaces of \mathbb{F}_{q}^{v}, and two vertices are adjacent if they intersect trivially. If $k \leq v<2 k$, then $q K(v, k)$ is the null graph, so we only consider the case $v \geq 2 k$.

Let q be a prime power. For any integer n and positive integer i, the Gaussian coefficient is defined by

$$
\left[\begin{array}{c}
n \\
i
\end{array}\right]_{q}=\prod_{j=0}^{i-1} \frac{q^{n-j}-1}{q^{i-j}-1}
$$

By convention, $\left[\begin{array}{l}n \\ 0\end{array}\right]_{q}=1$. From now on, we will omit the subscript q. Note that

$$
\left[\begin{array}{c}
n \tag{1}\\
i
\end{array}\right]=\left[\begin{array}{c}
n-1 \\
i-1
\end{array}\right]+q^{i}\left[\begin{array}{c}
n-1 \\
i
\end{array}\right]
$$

Delsarte [3] calculated the eigenvalues of Grassmann schemes. In particular, the eigenvalues of $q K(v, k)$ were given.

[^0]Theorem 1 ([3, Theorem 10]). All the eigenvalues of $q K(v, k)$ are

$$
\lambda_{j}=(-1)^{j} q^{(k-j) j+\left(\frac{j}{2}\right)} \sum_{s=0}^{k-j}(-1)^{s} q^{\left(\frac{s}{2}\right)}\left[\begin{array}{c}
k-j \tag{2}\\
s
\end{array}\right]\left[\begin{array}{c}
v-2 j-s \\
v-k-j
\end{array}\right],
$$

where $j=0,1, \ldots, k$.
In this note, we obtain a simple form for the eigenvalues of $q K(v, k)$ as follows.
Theorem 2. The distinct eigenvalues of $q K(v, k)$ are

$$
\lambda_{j}=(-1)^{j} q^{\binom{k}{2}+\binom{k-j+1}{2}}\left[\begin{array}{c}
v-k-j \\
v-2 k
\end{array}\right], \quad j=0,1, \ldots, k
$$

Moreover, the multiplicity of λ_{j} is 1 if $j=0$, and $\left[\begin{array}{l}v \\ j\end{array}\right]-\left[\begin{array}{c}v \\ j-1\end{array}\right]$ if $j \geq 1$.

2. Proof of Theorem 2

We start with some useful combinatorial identities.
Lemma 3. For any integer n and nonnegative integer i, we have

$$
\left[\begin{array}{c}
n \\
i
\end{array}\right]=(-1)^{i} q^{n i-\binom{i}{2}}\left[\begin{array}{c}
-n+i-1 \\
i
\end{array}\right]
$$

Proof. If $i=0$, the identity is obvious. If $i>0$, then

$$
\begin{aligned}
{\left[\begin{array}{c}
n \\
i
\end{array}\right] } & =(-1)^{i} \prod_{j=0}^{i-1} \frac{1-q^{n-j}}{q^{i-j}-1} \\
& =(-1)^{i} q^{\frac{(2 n-i+1) i}{2}} \prod_{j=0}^{i-1} \frac{q^{-n+j}-1}{q^{i-j}-1} \\
& =(-1)^{i} q^{n i-\binom{i}{2}} \prod_{j=0}^{i-1} \frac{q^{-n+i-1-j}-1}{q^{i-j}-1} \\
& =(-1)^{i} q^{n i-\binom{i}{2}}\left[\begin{array}{c}
-n+i-1 \\
i
\end{array}\right]
\end{aligned}
$$

as desired.
The following identity is a generalization of [7, Theorem 2.14].
Lemma 4. For any integer n and nonnegative integer a, we have

$$
\sum_{s=0}^{a}(-1)^{s} q^{\binom{s}{2}}\left[\begin{array}{l}
n \\
s
\end{array}\right]=q^{n a}\left[\begin{array}{c}
a-n \\
a
\end{array}\right]
$$

Proof. We prove the result by induction on a. If $a=0$, then the result is trivial. Suppose $a \geq 1$. By induction and Lemma 3,

$$
\begin{aligned}
\sum_{s=0}^{a}(-1)^{s} q^{\binom{s}{2}}\left[\begin{array}{l}
n \\
s
\end{array}\right] & =\sum_{s=0}^{a-1}(-1)^{s} q^{\binom{s}{2}}\left[\begin{array}{l}
n \\
s
\end{array}\right]+(-1)^{a} q^{\binom{a}{2}}\left[\begin{array}{l}
n \\
a
\end{array}\right] \\
& =q^{n(a-1)}\left[\begin{array}{c}
a-1-n \\
a-1
\end{array}\right]+q^{n a}\left[\begin{array}{c}
a-1-n \\
a
\end{array}\right] \\
& =q^{n a}\left[\begin{array}{c}
a-n \\
a
\end{array}\right]
\end{aligned}
$$

Hence, the desired result follows.

Lemma 5. Let m, a, t be nonnegative integers with $t \leq a \leq m$. Then

$$
\sum_{s=0}^{a}(-1)^{s} q^{\left(\frac{s}{2}\right)}\left[\begin{array}{c}
m \tag{3}\\
s
\end{array}\right]\left[\begin{array}{c}
a-s \\
t
\end{array}\right]=q^{m(a-t)}\left[\begin{array}{c}
a-m \\
a-t
\end{array}\right] .
$$

Proof. We prove the result by induction on a and t. If $t=0$, (3) is immediate by Lemma 4. If $a=t,(3)$ is straightforward. Now suppose $1 \leq t<a$. $\operatorname{By}(1)$ and induction,

$$
\begin{aligned}
\sum_{s=0}^{a}(-1)^{s} q^{\left(\frac{s}{2}\right)}\left[\begin{array}{c}
m \\
s
\end{array}\right]\left[\begin{array}{c}
a-s \\
t
\end{array}\right] & =\sum_{s=0}^{a-1}(-1)^{s} q^{\left(\frac{s}{2}\right)}\left[\begin{array}{c}
m \\
s
\end{array}\right]\left[\begin{array}{c}
a-s \\
t
\end{array}\right] \\
& =\sum_{s=0}^{a-1}(-1)^{s} q^{\left(\frac{s}{2}\right)}\left[\begin{array}{c}
m \\
s
\end{array}\right]\left[\begin{array}{c}
a-1-s \\
t-1
\end{array}\right]+q^{t} \sum_{s=0}^{a-1}(-1)^{s} q^{\left(\frac{s}{2}\right)}\left[\begin{array}{c}
m \\
s
\end{array}\right]\left[\begin{array}{c}
a-1-s \\
t
\end{array}\right] \\
& =q^{m(a-t)}\left[\begin{array}{c}
a-1-m \\
a-t
\end{array}\right]+q^{t} q^{m(a-1-t)}\left[\begin{array}{c}
a-1-m \\
a-1-t
\end{array}\right] \\
& =q^{m(a-t)}\left[\begin{array}{c}
a-m \\
a-t
\end{array}\right],
\end{aligned}
$$

as desired.
Theorem 6. Let m, a, t be nonnegative integers with $a \geq m$ and $a \geq t$. Then

$$
\sum_{s=0}^{m}(-1)^{s} q^{\left(\frac{s}{2}\right)}\left[\begin{array}{c}
m \tag{4}\\
s
\end{array}\right]\left[\begin{array}{c}
a-s \\
t
\end{array}\right]=q^{m(a-t)}\left[\begin{array}{c}
a-m \\
a-t
\end{array}\right] .
$$

Proof. We prove the result by induction on a and t. If $t=0$, (4) is immediate from Lemma 4. If $a=m$, (4) holds by Lemma 5 . If $a=t$, (4) is straightforward. Suppose $a \geq m+1$ and $1 \leq t<a$. By (1) and induction,

$$
\begin{aligned}
\sum_{s=0}^{m}(-1)^{s} q^{\left(\frac{s}{2}\right)}\left[\begin{array}{c}
m \\
s
\end{array}\right]\left[\begin{array}{c}
a-s \\
t
\end{array}\right] & =\sum_{s=0}^{m}(-1)^{s} q^{\left(\frac{s}{2}\right)}\left[\begin{array}{c}
m \\
s
\end{array}\right]\left[\begin{array}{c}
a-1-s \\
t-1
\end{array}\right]+q^{t} \sum_{s=0}^{m}(-1)^{s} q^{\left(\frac{s}{2}\right)}\left[\begin{array}{c}
m \\
s
\end{array}\right]\left[\begin{array}{c}
a-1-s \\
t
\end{array}\right] \\
& =q^{m(a-t)}\left[\begin{array}{c}
a-1-m \\
a-t
\end{array}\right]+q^{t} q^{m(a-1-t)}\left[\begin{array}{c}
a-1-m \\
a-t-1
\end{array}\right] \\
& =q^{m(a-t)}\left[\begin{array}{c}
a-m \\
a-t
\end{array}\right] .
\end{aligned}
$$

Therefore, (4) holds.
Substituting $t=a-m$ in (4), we obtain
Corollary 7. For nonnegative integers $a \geq m$, we have

$$
\sum_{s=0}^{m}(-1)^{s} q^{\binom{s}{2}}\left[\begin{array}{c}
m \\
s
\end{array}\right]\left[\begin{array}{c}
a-s \\
a-m
\end{array}\right]=q^{m^{2}}\left[\begin{array}{c}
a-m \\
m
\end{array}\right] .
$$

Proof of Theorem 2. By (2) and Corollary 7, we have

$$
\begin{aligned}
\lambda_{j} & =(-1)^{j} q^{(k-j) j+\left(\frac{j}{2}\right)} \sum_{s=0}^{k-j}(-1)^{s} q^{\left(\frac{s}{2}\right)}\left[\begin{array}{c}
k-j \\
s
\end{array}\right]\left[\begin{array}{c}
v-2 j-s \\
v-2 j-(k-j)
\end{array}\right] \\
& =(-1)^{j} q^{(k-j) j+\left(\frac{j}{2}\right) q^{(k-j)^{2}}\left[\begin{array}{c}
v-2 j-(k-j) \\
k-j
\end{array}\right]} \begin{array}{l}
\\
\end{array}=(-1)^{j} q^{\binom{k}{2}+\binom{k-j+1}{2}\left[\begin{array}{c}
v-k-j \\
v-2 k
\end{array}\right] .} \text {. }
\end{aligned}
$$

By arguments similar to those in [3,8], the multiplicity of each λ_{j} may be computed.

Acknowledgment

This research was partially supported by NCET-08-0052, NSF of China (10871027) and the Fundamental Research Funds for the Central Universities of China.

References

[1] S. Akbari, F. Moazami, S. Zare, Kneser graphs and their complements are hyperenergetic, MATCH Commun. Math. Comput. Chem. 61 (2009) $361-\mathrm{C} 368$.
[2] A. Brouwer, W. Haemers, Spectra of Graphs, Springer, 2011.
[3] P. Delsarte, Association schemes and t-designs in regular semilattices, J. Combin. Theory Ser. A 20 (1976) 230-243.
[4] C.D. Godsil, G. Royle, Algebraic Graph Theory, Springer-Verlag, New York, Berlin, Heidelberg, 2001.
[5] B. Mohar, I. Rivin, Simplices and spectra of graphs, Discrete Comput. Geom. 43 (2010) 516-C521.
[6] P. Reinfeld, Chromatic polynomials and the spectrum of the Kneser graph, Preprint.
[7] Z. Wan, Binomial coefficient and Gaussian binomial coefficient, Math. Bull. 11 (1994) 7-13 (in Chinese).
[8] R.M. Wilson, The exact bound in the Erdős-Ko-Rado theorem, Combinatorica 4 (1984) 247-257.

[^0]: * Corresponding author.

 E-mail address: wangks@bnu.edu.cn (K. Wang).
 0012-365X/\$ - see front matter © 2011 Elsevier B.V. All rights reserved.
 doi:10.1016/j.disc.2011.11.042

