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1. Introduction

It is well known that the eigenvalue technique plays an important role in studying structures of a graph. In particular,
the second-largest eigenvalue of a graph gives information about expansion and randomness properties (see [2]), and the
least eigenvalue gives independence number and chromatic number bounds (see [2,4]).

The Kneser graph, denoted by K (v, k), is the graph whose vertices are k-subsets of a fixed v-set, with two vertices adjacent
if they are disjoint. The eigenvalues of Kneser graphs are computed in [4, Theorem 9.4.3], and have appeared in various
applications, for example in relation to the Erd6s-Ko-Rado theorem [4], the hyperenergetic property of graphs [ 1], chromatic
polynomials [6], algebraically independent quantities of simplices [5] and so on.

In this note, we are concerned with eigenvalues of the g-analogues of Kneser graphs. Let IF; be a v-dimensional vector
space over a finite field IF;. The g-Kneser graph gK (v, k) has as its vertex set the collection of k-dimensional subspaces of Fy,
and two vertices are adjacent if they intersect trivially. If k < v < 2k, then gK (v, k) is the null graph, so we only consider
the case v > 2k.

Let g be a prime power. For any integer n and positive integer i, the Gaussian coefficient is defined by
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By convention, [S] = 1. From now on, we will omit the subscript q. Note that
q

(-(=07)

Delsarte [3] calculated the eigenvalues of Grassmann schemes. In particular, the eigenvalues of gK (v, k) were given.
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Theorem 1 (3, Theorem 10]). All the eigenvalues of qK (v, k) are
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wherej =0,1,...,k

In this note, we obtain a simple form for the eigenvalues of gK (v, k) as follows.

Theorem 2. The distinct eigenvalues of qK (v, k) are

A= (_1)fq(§)+(l(_}i+l) |:Uv__k2_kj] , j=0,1,... k.

Moreover, the multiplicity of A;is 1if j = 0, and [7] - [j_v]] ifj>1.

2. Proof of Theorem 2
We start with some useful combinatorial identities.

Lemma 3. For any integer n and nonnegative integer i, we have

1= o[

Proof. If i = 0, the identity is obvious. If i > 0, then
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The following identity is a generalization of [7, Theorem 2.14].

Lemma 4. For any integer n and nonnegative integer a, we have
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Proof. We prove the result by induction on a. If a = 0, then the result is trivial. Suppose a > 1. By induction and Lemma 3,
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Hence, the desired result follows. O
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Lemma 5. Let m, a, t be nonnegative integers witht < a < m. Then
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Proof. We prove the result by induction on a and t. If t = 0, (3) is immediate by Lemma 4. If a = t, (3) is straightforward.
Now suppose 1 < t < a.By (1) and induction,
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as desired. O

Theorem 6. Let m, a, t be nonnegative integers with a > mand a > t. Then
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Proof. We prove the result by inductionona and t.If t = 0, (4) isimmediate from Lemma 4. If a = m, (4) holds by Lemma 5.
If a = t, (4) is straightforward. Supposea > m+ 1and 1 <t < a.By (1) and induction,
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Therefore, (4) holds. O

Substituting t = a — m in (4), we obtain

Corollary 7. For nonnegative integers a > m, we have
m
sy [mlja—s|_ m|a—m
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Proof of Theorem 2. By (2) and Corollary 7, we have
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By arguments similar to those in [3,8], the multiplicity of each A; may be computed. O
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