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1. INTRODUCTION 

Let X be a topological vector space, Y an ordered topological vector 
space, and 9(X, Y) the space of all linear and continuous mappings from 
X into Y. If T is an operator from X into 9(X, Y) (generally multivalued) 
with domain D(T), T is said to be monotone if 

for all xieD(T) and Aie T(x,), i= 1, 2. 
In the scalar case Y = R, this definition coincides with the well known 

definition of monotone operator (cf. [ 12,4]). An important subclass of 
monotone operators T: X+ 9(X, Y) consists of the subdifferentials of 
convex operators from X into Y, which have been studied by Valadier 
[ 171, Kusraev and Kutateladze [ 111, Papageorgiou [ 131, and others. 
Some properties of monotone operators have been investigated by Kirov 
[7, 81, in connection with the study of the differentiability of convex 
operators. 

In this paper we begin our investigation of the properties of monotone 
operators from X into 3(X, Y) by introducing, in Section 3, the notion of 
hereditary order convexity of subsets of 9(X, Y). This notion plays a key 
role in our discussion and expresses a kind of separability between sets and 
points, Its interest relies on the fact that the images of maximal monotone 
operators are hereditarily order-convex. 

The main result of Section 4 is the equivalence, under suitable 
hypotheses, of upper demicontinuity to upper hemicontinuity for monotone 
operators. 

In Section 5, we prove the local boundedness of monotone operators T: 
X-+ 2(X, Y) in case X is a Frechet space and Y a normed space with 
normal cone. For corresponding continuity and boundedness results in the 
scalar case we refer to [6, 4, 10, 5, 151. 
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As an application of the above results, we prove in Section 6 that the 
subdifferential dF of a convex operator F: X+ Y with closed epigraph is 
maximal monotone. For Y= R, this is a well known theorem of Minty 
c121. 

2. NOTATIONS AND DEFINITIONS 

Throughout this paper we shall denote by X a real locally convex 
Hausdorff space and by Y a real locally convex Hausdorff space which is 
also an ordered linear space with closed positive cone Y, (cf. [14]). Let 
9 = 2(X, Y) be the space of all linear and continuous mappings from X 
into Y. We denote by 5Z’JX, Y) the space 5?(X, Y) endowed with the 
topology of simple convergence (cf. [9]). 

Let T be a nonlinear multivalued operator from X into 55’. The effective 
domain of T is the set D(T) = { x E X: T(x) # a} and the graph of T is the 
subset of Xx 9 given by 

T is said to be monotone, if 

(~1-~2)b,--430 for all (x,, Ai)~G(T), i= 1, 2. 

A monotone operator T is called D-maximal (resp. maximal) if the follow- 
ing condition is satisfied: if x,, E D( T) (resp. x0 E X) and A, E di”(X, Y) are 
such that (A,-A)(x,-x) 20 for all (x, A)E G(T), then &E T(x,). An 
operator T: X--P 2 is said to be locally bounded at x0 ED(T) if there exists 
a neighborhood U of x0 such that the set 

T(U)=u {T(x):xd) 

is an equicontinuous subset of 9(X, Y). 
If Kc 2 and x E X, we denote by Kx the set (Ax: A E K}. We write 

<x*, x) in place of x*(x) for x E X and x* E X*. 

3. HEREDITARY ORDER-CONVEX SUBSETS OF 2(X, Y) 

Let S be a subset of Y. We denote by [S] the order-convex cover of S, 
that is. 

S is called order-convex iff S = [S]. 
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DEFINITION 1. Let K be a subset of 9(X, Y). The hereditarily order- 
convex cover of K is defined by 

Let Kc 9 and A an element of 9’ with the property: for each x E X 
there exists A’ E: K such that A’x 2 Ax. Then there exists A” E K such that 
A”( -x) > A( -x). Hence Ax E [Kx]. Consequently, [K]” can be defined 
equivalently by 

[ Klh = {A E Y: for all x E X there exists A’ E K: A’x 3 Ax}. 

DEFINITION 2. A subset K of 9(X, Y) is said to be hereditarily order- 
convex (briefly, HOC) if K= [K]“. 

Thus K is HOC if and only if for every A,$ K there exists XE X that 
“separates” A, and K in the sense Ax $ A,x, for all A E K. The interest of 
HOC subsets of 5! to the study of maximal monotone operators relies on 
the following proposition. 

PROPOSITION 1. Let T: X + 3(X, Y) be D-maximal monotone. Then for 
each x E D( T), T(x) is s-closed, convex, and HOC. 

Proof: As in the special case Y= R one can prove that T(x) is s-closed 
and convex [4]. Now, let A E [ T(xo)lh, X~E D( T). 

Then for each XE X there exists A’ E T(x,) such that 

A’(x - x0) > A(x - x0). 

For any (x, B) E G(T) we have 

(II-A)(x-x,)=B(x-x(J)-A(x-x,)>B(x-x0)-A’(x-x,) 
=(B-A/)(x-x,)20. 

Since T is D-maximal, we conclude that A E T(x,). Thus T(x,) is HOC. 

One can easily verify that [Klh is the smallest HOC subset of 3’ con- 
taining K. 

In the special case Y= R, the HOC-cover of a set Kc 9(X, R) = X* is 
given by the following proposition which is an easy consequence of the 
Hahn-Banach Theorem. 

PROPOSITION 2. For each Kc X*, [Klh is the intersection of the family 
of all w*-open half-spaces containing K, whenever this family is not void. 
Otherwise, [K] h = X*. 
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Since each convex and iv*-closed (resp. w*-open) subset K of X* 
(K # X*) is the intersection of all w*-open half-spaces containing it, we 
deduce the following properties of HOC subsets of X*. 

COROLLARY 1. (i) Every convex and w*-closed (resp. w*-open) subset qf 
X* is HOC. 

(ii) Every HOC subset of X* is convex. 

We note that a convex subset of X* is not necessarily HOC, as the 
following example shows. 

EXAMPLE 1. Let X= cO, X* = 1, and let K be the convex subset of I, 
defined by K = {f = (A.) E 1, : CP;=, f, = 1). K is a hyperplane defined by the 
element (1, 1, . . . . 1, . ..) E I,. Thus K is not w*-closed and so K is w*-dense 
in 1,. Therefore K cannot be contained in any w*-open half-space, so 
[K]” = X*. In particular, K is not HOC. 

We note that when Y # IR, convexity is not related to hereditary order 
convexity. 

EXAMPLE 2. Let X= R and Y = R* with the usual order. Then the 
space S!(R, R*) is isomorphic to lF*, since to every A E 3’ corresponds an 
element a = (a, b) E R* such that Ax = xi, x E R. It can be easily seen that 
a subset K of 9 is HOC iff the corresponding subset 2 of IF!* is order- 
convex. Now, the set N corresponding to I?= { (1, -l), (- 1, l)} is HOC 
but not convex. On the other hand, the set Q corresponding to Q = {(a, a): 
0 6 a < 1) is convex and closed but not HOC. 

4. CONTINTUITY PROPERTIES OF MONOTONE OPERATORS 

Let F and G be topological spaces. An operator T from F into 2G is said 
to be upper semicontinuous if, for each x0 E F and each open set V in G with 
T(x,) c V, there exists a neighborhood U of x0 such that T(x) c V when- 
ever x E U. A, multivalued operator T: X + 9(X, Y) which is upper semi- 
continuous from D(T) into yS(X, Y) is said to be upper demicontinuous. If 
T is upper semicontinuous from each segment Q c D(T) into yS(X, Y) then 
T is said to be upper hemicontinuous. Let B be a subset of X. A point x0 E B 
is an algebraic interior point of B if for each x E X there exists 2, > 0 such 
that x0 + Ix E B for all 0 < 1< 2,. The set of all algebraic interior points of 
B is denoted by corB. If B = corB then B is called linearly open. In case 
Y= R, it is known that if the monotone operator T: X + 2x* is upper 
hemicontinuous, D(T) is linearly open and for all XED(T), T(x) is an 
equicontinuous, w*-closed and convex subset of X*, then T is D-maximal 
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monotone [lo]. This no longer valid in case Y # [w as the following 
example shows. 

EXAMPLE 3. Let X= R and Y= R*. We define the operator T: 
R + Y( R, lR*) by T(x) = 0 if x < 0, T(0) = K where k= {(a, a): 0 < CI d 1 } 
and T(x) = A, where 2 = (1, l), if x> 0 (see Example 2). This operator 
satisfies all the above requirements but it is not D-maximal since T(0) is 
not HOC. 

If T: X+ 9 is monotone, then the operator x + [ T(x)lh is also 
monotone. We define the operator T: X-+ 9 by 

%, = CT(x)lh> 

where T(x) is the closure of T(x) in -rip,(X, Y). It is clear that p is also 
monotone. 

LEMMA 1. Let F be a topological space, G be a linear topological space, 
and T: F+ 2G an upper semicontinuous operator such that for any x E F, 
T(x) is relatively compact. If K is a relatively compact subset of F, then 
T(K) is relatively compact in G. 

The proof of the lemma is an easy consequence of the fact that the 
operator T defined by T(x) = T(x) is upper semicontinuous, and of 
Theorem 3 in [l, p. 1101. 

THEOREM 1. Let T: X + 9*(X, Y) be monotone. Zf T is upper hemi- 
continuous, D(T) is linearly open and for each x E D(T), T(x) is relatively 
compact, then T is D-maximal monotone. 

Proof Let x0 E D(T) and A, E Y such that 

(A - ‘4,)(x - x0) 2 0 for all (x, A) E G(F). 

We shall show that A, E F(x,). Suppose that A,$ F(x,) = [T(x,)]~. Then 
there exists x E X such that 

(~‘-&)x~ y, for all A’ E T(x,), (1) 

Let {t,} be a sequence of positive numbers such that t, -+ 0 as n + 00. We 
set x, = x0 + t,x. Since D(T) is linearly open there exists n, E N such that 
x, E D( T) for all n 2 n,. For A, E T(x,) we have 

(4-&)(x,-x,)30 

which implies that 

(A,,-&)x20. (2) 
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By Lemma 1, u,, T(x,) is relatively compact, so there exists a subnet {A,) 
of {A,} such that A, -+ A in yJ(X, Y). The upper semicontinuity of T 
implies that A E T(xO). From (2) and the closedness of the positive cone Y, 
we get 

(A -A,)x>O, 

which contradicts (1). Thus T is D-maximal monotone. 

As we shall show now, the relative compactness of T(x) involved in the 
above theorem is ensured under suitable assumptions for X and Y. 

A subset K of P’(X, Y) is said to be weakly order bounded if for each 
XEX. Kx is an order bounded subset of Y. 

PROPOSITION 3. Let T: X --+ TS(X, Y) be a monotone operator and x0 an 
algebraic interior point of D( T). Then 

(i) T(x,) is weakly order bounded. 

(ii) If X is barrelled and Y, is normal, then T(x,) is equicontinuous. 

(iii) Zf, in addition, Y has compact order intervals, then T(x,) is 
relatively compact. 

Proof (i) For each x E X there exists j. > 0 such that x0 + Ax E D( T). 
Let BE T(x, + 1.x) be fixed. Then for each A E T(x,) we have 

(B - A )(x0 + 1*x - x,-J 2 0, 

which implies that 

Ax < Bx. 

Likewise, there exist ;I, > 0 and B, E T(x, + A,( -x)) such that 

Axa B,x for each A E T(x,). 

Hence T(x,) is weakly order bounded. 

(ii) It is sutlicient to show that T(x,) is bounded in Ts(X, Y) 
[9, p. 1371. Any neighborhood of 0 in ys(X, Y) contains a neighborhood 
of the form 

where x, E X and W is an order-convex neighborhood of 0 in Y. Since T(x,) 
is weakly order bounded there exist y;, y,!, i= 1, 2, . . . . m such that 
yj d Axi d yi for any A E T(x,). The set W is absorbing, so there exists ,I> 0 
such that Iyi, ;ly;~ W for all i. Hence for all A E T(x,) one has 
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Ayi < ,?AxiQ ily, and from the order convexity of W we deduce that 
E,Ax,E W. Thus ;1A E V and T(x,) is bounded in yS(X, Y). 

(iii) By the weak order boundedness of T(x,), for each x E X, the set 
{Ax: A E 7(x,)} is relatively compact. The assertion follows from [3, 
p. 231. 

THEOREM 2. Let T: X -+ 5QX, Y) be a D-maximal monotone operator. 
Suppose that for each x E D(T) there exists a neighborhood V of x such that 
T(V) is equicontinuous and relatively compact. Then T is upper demi- 
continuous. 

Proof. Suppose that T is not upper demicontinuous. Then there exists 
a point x0 ED(T) and an open set W in 5$(X, Y) with T(x,) c W, such 
that for each neighborhood U of x0 there exist XE U and A E T(x) with 
A $ W. By our assumptions, one can find a neighborhood V of x0 such that 
T(V) is an equicontinuous and relatively compact subset of LZ”(X, Y). 
Hence there exist a net {xZ} in V and A, E T(x,) such that x, -+x,, and 
A, $ W for all CL It then follows that there exists a subnet { AB} of {A,} 
with A, + A,$ T(x,). Now, for each XE D(T) and A E T(x) we have 

(A~-A)(xs-x)=ABxB-A~~-Ax~+A~~O. (3) 

It is clear that A,x --i A,x and AXE--+ Ax,. On the other hand, 
ABxs -+ A,,x,,. Indeed, we have ABxB - A,x0 = AB(xB - x0) + (AD - A,) x0 
and (AP - A,) x0 + 0, while by the equicontinuity of {A@}, A&xs -x0) + 0. 
It follows from (3) that 

(A,-A)(x,-x)20. 

Since T is D-maximal monotone, we conclude that A, E T(x,) which is a 
contradiction. Therefore, T is upper demicontinuous. 

The following theorem is a simple consequence of Theorems 1 and 2. 

THEOREM 3. Let T: X + 5$(X, Y) be a monotone operator with D(T) a 
linearly open subset of X. Suppose that 

(i) For each x E D(T) there exists a neighborhood V of x, such that 
T(V) is equicontinuous and relatively compact. 

(ii) For each x E D(T), T(x) is closed and HOC. 

Then T is upper demicontinuous iff it is upper hemicontinuous.. 

Remark. When Y = R, the equicontinuity of a subset of L&(X, R) = X* 
implies its w*-relative compactness. In addition, a w*-closed subset of X* 
is HOC iff it is convex. Thus Theorem 3 generalizes an analogous result 
proved in [lo]. 
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5. LOCAL BOUNDEDNESS OF MONOTONE OPERATORS 

Let T: X-+ 2(X, Y) be a monotone operator. It is known [S] that if X 
is a Frechet space and Y = R, then T is locally bounded at any interior 
point of D(T). The same conclusion has been obtained by Kirov [7] in 
case X is a Banach space, Y a normed lattice, and D(T) = X. In what 
follows we generalize these results when X is a Frechet space and Y a 
normed space with normal cone. 

The proof of the following lemma is similar to the proof of the lemma 
in [S]. 

LEMMA 2. Let X be a FrCchet space, Y a normed space, {x,} a sequence 
in X conoerging to 0, and {A,} a sequence in 9(X, Y) such that the set 
{A,,neN} is not equicontinuous. Zfa,=max{l, IIA,xJ) and B,=A,/a,, 
then there exists x0 E X and a subsequence { B,k} of {B,) such that 
IIBn~xoll -+ ~0. 

ProoJ We shall first show that the set (B,: n E N } is not equi- 
continuous. If a,, = 1 for all sufficiently large n, the assertion is obvious. 
Otherwise, for some suitable subsequence we shall have IIB12~RII = 1. Since 
x, + 0, (B,} is not equicontinuous. Therefore, {B,} is not bounded in 
ys(X, Y) [9, p. 1371. Thus there exists a neighborhood W= (AE L: 
llAxoll < 1 } for some fixed x,, E X, such that for all A > 0, {B,: n E N } will 
not be a subset of 2 W. So for any k E N there exists B,, such that B,, 4 k W. 
Hence IIBnkxOII 2 k, which implies JIBnLxOII 4 co. 

THEOREM 4. Let X be a Frechet space, Y a normed space with a normal 
cone, and T: X + 9(X, Y) be monotone. Then T is locally bounded at any 
algebraic interior point of D( T). 

Proof Suppose that x’ is an algebraic interior point of D(T) and T is 
not locally bounded at x’. Without loss of generality, we may assume that 
x’ = 0. Let d be a metric defining the topology of X. 

If U, = {x E X: d(0, x) < l/n}, then T( U,) is not equicontinuous. There- 
fore, T( U,) is not bounded in .P’(X, Y) with respect to the topology of 
bounded convergence [9, p. 1373. This topology is generated by a metric 
p [9, p. 1401’. Hence there exists A,E T(U,) such that ~(0, A,,) >n. If we 
choosex,EU,suchthatA,,~T(x,),thenx,-+Oandtheset {A,:n~N}is 
not equicontinuous. We now define a sequence {B,} as in Lemma 2. Then 
there exists x0 E X and a suitable subsequence of {B,} (which we denote 
again by W) such that II B,xoll + co. Since 0 is an algebraic interior 
point of D(T), there exists 2 > 0 such that fz, E D(T), where z0 = Ax,. Let 
A, E T(zo), Ah E T( -zo). One has 

(An - Aok - zo) 2 0 
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and 

(A, - AiJ(x, + z(J) k 0 

from which follows 

BnZO 6 3 (z. -x,) + B,x, := u, 
a, 

and 

Since Y, is normal, there exists cz E R, such that for each x, YE Y, 
0 <x d y implies llxll < crllvl/ [ 141. Thus, from 0 < BnzO + u, d u, + uWr we 
get 

IPnzo + unll G d%l+ 4 * IWAll G (a + 1 )IIu,ll + Il4IL 

As one can easily verify, { ll~,,ll} and { I(uJ ) are bounded, which contra- 
dicts IIBnz,,/l + co. 

In Theorems 1,2, 3 no reference has been made as to the topology of Y, 
which usually is taken to be the weak topology (see [ 17, 181). From the 
next corollary it follows that in this case and under suitable assumptions 
the assertion of Theorem 4 can be strengthened and the hypothesis (i) of 
Theorem 3 is redundant. 

COROLLARY 2. Let X be a Frechet space, Y a normed space with a 
normal cone, and T: X + 9(X, Y) a monotone operator. Let further o be a 
topology on Y weaker than the norm topology with the property that every 
a-bounded subset of Y is a-relatively compact, and Y, be the space Y 
endowed with the topology a. Then for each algebraic interior point x of 
D(T) there exists a neighborhood U of x such that T(U) is an equicontinuous 
and relatively compact subset of yS(X, Y,). 

Proof By Theorem 4, there exists a neighborhood U of x such that 
T(U) is equicontinuous in 9(X, Y). Hence, T(U) is equicontinuous in 
2(X, Y,). By a theorem of Grothendieck [9, p. 1401 T(U) is relatively 
compact in Ts(X, Y,). 

6. THE MAXIMALITY OF THE SUBDIFFERENTIAL OPERATOR 

Let F: X + Y be a convex operator, that is, an operator such that 

F(A.x + (1 -A) y) < AF(x) + (1 - A) F(y) 
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for all x, .r E X and 0 d i d 1. The epigraph of F is defined by epi F = 
{(x, y): I’ > F(x), x E X}. Th e subdifferential of F at x0 is the set 

OF= {AEP(X, Y): A(.x-x,)<F(x)-F(x,) for all XEX} 

The subdifferential operator aF is obviously monotone. When Y is order 
complete, then A E aF(x) if and only if Ay d F’(x, pi) for all 4’ E X, where 
F’(x, y) is defined by F’(x, y) = inf{ (F(x + Ay) - F(x))/;~: 3, > 0 1 (cf. [ 171). 
It is easy to see that the subdifferential aF(x) is HOC for every XEX. 
Indeed, let A E [aF(x)lh. Then for each YEX there exists A’E cTF(x) such 
that A(y - x) d A’(y -x). It then follows that 

A(y-x)<A’(y-x)<F(y)-F(x), 

which means that AeaF(x). Thus aF(x) is HOC. 
As an application of our preceding results, we shall now prove a 

generalization of Minty’s theorem on the maximality of the subdifferential 
operator [ 121. 

THEOREM 5. Let X be a Frechet space and suppose that Y satisfies one 
of the following conditions: 

(i) Y is a dual Banach lattice. 

(ii) Y is a Banach lattice with weakly compact intervals. 

If F: X + Y is a convex operator with closed epigraph, then aF is maximal 
monotone. 

Proof (i) Let Y = Z*, where Z is a Banach lattice, and let Y, be the 
space Y endowed with the a( Y, Z) topology. Since F has closed epigraph 
it is continuous [2], so aF(x) # fa for all x E X [ 171. By Corollary 2, for 
each x E X there exists a neighborhood U of x such that aF( U) is relatively 
compact in ys(X, Y,). We show now that the graph G(aF) is closed in 
Xx J$(X, Y,). This by [ 1, p. 1121 implies that r3F is upper semicontinuous 
and aF(x) is compact, hence by Theorem 1 c?F is maximal monotone. 

Let {(xi, Aj)} be a net in G(dF) such that (xi, Ai) -+ (x,,, A,,), so xi-+x,, 
and Aix + A,x in Y, for all x E X. Since Ai E aF(xi) one has 

Aix d F(x + xi) - F(xi) forall XEX. 

Now the cone Y, is a-closed, so taking limits in the above inequality we 
deduce 

A,x < F(x + xg) - F(x,) forall xEX. 

Hence (x,, A,) E G(aF). So G(aF) is closed and aF is maximal. 
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(ii) Let J be the canonical injection from Y into Y**. As before the 
mapping F is continuous, so the mapping Jo F is convex and continuous. 
It follows from part (i) of the theorem that the operator a(Jo F) is maximal 
monotone. 

We shall now need the following lemma: 

LEMMA 3. For any x E X one has ~(Jo F)(x) = [JO 8F(x)lh. 

Proof It is obvious that JoaF(x)c 8(./o F)(x). Since a(Jo F)(x) is 
HOC, we deduce that [Jo8F(x)lh c a(Jo F)(x). Now let BE iY(Jo F)(x) 
and y E X. Then By < (JO F)‘(x, y). But 

(JO F)‘(x, y) = inf{J(F(x + iy) - F(x))/1: ,I > 0} 

=J(inf{(F(x+ 2~)- F(x))/l: E,>O}} =J(F’(x, y)), 

since by the assumption on Y, the injection J preserves the inlimum of any 
decreasing net [16, Theorem 5.101. On the other hand, by [17, 
Theorem 61, there exists A E aF(x) such that Ay= F/(x, y). Hence, 
By<JoA(y) and BE [Jo~F(x)]~, which proves the lemma. 

Proof of Theorem 5 completed. Let x0 E X and A, E 9(X, Y) such that 

(A - A,)(x - xg) 2 0 for all XEX and AE~F(x). 

Then for any BE a(Jo F)(x), there exists by the lemma A E OF such that 
B(x - x0) > Jo A(x - x0). Hence 

(B - Jo A,)(x -x0) 2 (Jo A - Jo A,)(x - x0) > 0. 

Since a(Jo F) is maximal, we deduce that Jo AO~ 13(Jo F)(x,), so 
A, E aF(x,) and aF is maximal. 

Remark. As examples of spaces Y satisfying the assumptions of the 
above theorem, we mention cO, lp, and Lp (1 d p < GO). 

REFERENCES 

1. C. BERGE, “Espaces Topologiques, Fonctions Multivoques,” Dunod, Paris, 1959. 
2. J. M. BORWEIN, A Lagrange multiplier theorem and a sandwich theorem for convex 

relations, Math. Stand. 48 (1981) 189-204. 
3. N. BOLJRBAKI, “Espaces Vectoriels Topologiques,” Chaps. 3-5, Hermann, Paris, 1964. 
4. F. E. BROWDER, Multivalued monotone nonlinear mappings and duality mappings in 

Banach spaces, Trans. Amer. Math. Sot. 118 (1965), 338-351. 
5. P. M. FITZPATRICK, P. HESS, AND T. KATO, Local boundedness of monotone-type 

operators, Proc. Japan Acad. 48 (1972), 275-277. 

4091140/1-7 



94 HADJISAVVAS ET AL. 

6. T. KATO, Demicontinuity, hemicontinuity and monotonicity, Bull. Amer. Marh. SOCK. 73 
(1967), 886-889. 

7. N. K. KIR~V, Generalized monotone mappings and differentiability of vector-valued 
convex mappings, Serdica 9 (1983), 263-274. 

8. N. K. KIROV. Generic Frtchet differentiability of convex operators, Proc. Amer. Mu/h. 
Sm.94 (1985), 97-102. 

9. G. KBTHE, “Topological Vector Spaces II,” Springer-Verlag, Berlin, 1979. 
10. D. KRAVVARITIS, Continuity properties of monotone nonlinear operators in locally convex 

spaces, Proc. Amer. Math. Sot. 72 (1978). 4648. 

11. A. G. KUSRAEV AND S. S. KUTATELADZE, Local convex analysis, J. Souief Math. 26 
(1984), 2048-2087. 

12. G. J. MINTY, On the monotonicity of the gradient of a convex function, Pacific J. Math. 
14 (1964), 243-247. 

13. N. S. PAPAGEOKGIOU, Nonsmooth analysis on partially ordered vector spaces, Pacific J. 
Marh. 107 (1983). 403458. 

14. A. L. PERESSINI, “Ordered Topological Vector Spaces,” Harper & Row, New York/ 
London, 1967. 

15. R. T. ROCKAFELLAR, Local boundedness of nonlinear monotone operators, Michigan 
Math. J. 16 (1969), 397407. 

16. H. H. SCHAEFER, “Banach Lattices and Positive Operators,” Springer-Verlag, New York/ 
Heidelberg/Berlin, 1974. 

17. M. VALADIER, Sous-diffirentiabilit& de fonctions convexes a valeurs dans une espace 
vectoriel ordonnt, Math. &and. 30 (1972), 65-74. 

18. J. ZOWE, Subdifferentiability of convex functions with values in an ordered vector space, 
Math. Stand. 34 (1974), 69-83. 


