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Abstract

In this paper, we prove that the Lp essential spectra of the Laplacian on functions are [0,+∞) on a non-
compact complete Riemannian manifold with non-negative Ricci curvature at infinity. The similar method
applies to gradient shrinking Ricci soliton, which is similar to non-compact manifold with non-negative
Ricci curvature in many ways.
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

The spectra of Laplacians on a complete non-compact manifold provide important geometric
and topological information of the manifold. In the past two decades, the essential spectra of
Laplacians on functions were computed for a large class of manifolds. When the manifold has a
soul and the exponential map is a diffeomorphism, Escobar [11], Escobar and Freire [12] proved
that the L2 spectrum of the Laplacian is [0,+∞), provided that the sectional curvature is non-
negative and the manifold satisfies some additional conditions. In [18], the second author proved
that those “additional conditions” are superfluous. When the manifold has a pole, J. Li [14]

✩ The first author is partially supported by the NSF award DMS-0904653. The second author is partially supported by
CNPq and Faperj of Brazil.

* Corresponding author.
E-mail addresses: zlu@uci.edu (Z. Lu), zhou@impa.br (D. Zhou).
0022-1236/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jfa.2010.10.010



3284 Z. Lu, D. Zhou / Journal of Functional Analysis 260 (2011) 3283–3298
proved that the L2 essential spectrum is [0,+∞), if the Ricci curvature of the manifold is non-
negative. Z. Chen and the first author [7] proved the same result when the radical sectional
curvature is non-negative. Among the other results in his paper [10], Donnelly proved that the
essential spectrum is [0,+∞) for manifold with non-negative Ricci curvature and Euclidean
volume growth.

In 1997, J.-P. Wang [17] proved that, if the Ricci curvature of a manifold M satisfies Ric(M) �
−δ/r2, where r is the distance to a fixed point, and δ is a positive number depending only on the
dimension, then the Lp essential spectrum of M is [0,+∞) for any p ∈ [1,+∞]. In particular,
for a complete non-compact manifold with non-negative Ricci curvature, all Lp essential spectra
are [0,+∞).

Complete gradient shrinking Ricci soliton, which was introduced as singularity model of type
I singularities of the Ricci flow, has many similar properties to complete non-compact manifold
with non-negative Ricci curvature. From this point of view, we expect the conclusion of Wang’s
result is true for a larger class of manifolds, including gradient shrinking Ricci solitons.

The first result of this paper is a generalization of Wang’s theorem [17].

Theorem 1. Let M be a complete non-compact Riemannian manifold. Assume that

lim
x→∞

RicM(x) = 0. (1)

Then the Lp essential spectrum of M is [0,+∞) for any p ∈ [1,+∞].

It should be pointed out that, contrary to the L2 spectrum, the Lp spectrum of Laplacian may
contain non-real numbers. Our proof made essential use of the following result due to Sturm [16]:

Theorem 2 (Sturm). Let M be a complete non-compact manifold whose Ricci curvature has a
lower bound. If the volume of M grows uniformly sub-exponentially, then the Lp spectra are the
same for all p ∈ [1,∞].

We say that the volume of M grows uniformly sub-exponentially, if for any ε > 0, there exists
a constant C = C(ε) such that, for all r > 0 and all p ∈ M ,

vol
(
Bp(r)

)
� C(ε)eεrvol

(
Bp(1)

)
, (2)

where we denote Bp(r) the ball of radius r centered at p.

Remark 1. Note that by the above definition, a manifold with finite volume may not automat-
ically be a manifold of volume growing uniformly sub-exponentially. For example, consider a
manifold whose only end is a cusp and the metric dr2 + e−rdθ2 on the end S1 × [1,+∞). The
volume of such a manifold is finite. However, since the volume of the unit ball centered at any
point p decays exponentially, it doesn’t satisfy (2).

Remark 2. The assumption that the Ricci curvature has a lower bound is not explicitly stated in
Sturm’s paper, but is needed in the proof of Theorem 2.

Remark 3. Under the assumptions of Theorem 2, all Lp spectra are contained in [0,∞). Thus
for a fixed p, the Lp spectrum being equal to [0,∞) is equivalent to the Lp essential spectrum
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being equal to [0,∞). For the sake of simplicity, in this paper, we don’t distinguish the two
concepts: the spectrum and the essential spectrum.

In [16, Proposition 1], it is proved that if (1) is true, then the volume of the manifold grows
uniformly sub-exponentially. Thus in order to prove Theorem 1, we only need to compute the L1

spectrum of the manifold.
Using the recent volume estimates obtained by H. Cao and the second author [3], we proved

that the essential L1 spectrum of any complete gradient shrinking soliton contains the half line
[0,+∞) (see Theorem 6). Combining with Sturm’s Theorem we have

Theorem 3. Let M be a complete non-compact gradient shrinking Ricci soliton. If the conclusion
of Theorem 2 holds for M , then the Lp essential spectrum of M is [0,+∞) for any p ∈ [1,+∞].

Finally, under additional curvature conditions, we proved

Theorem 4. Let (M,gij , f ) be a complete shrinking Ricci soliton. If

lim
x→+∞

R

r2(x)
= 0,

then the L2 essential spectrum is [0,+∞), where R is the scalar curvature and r(x) is the
distance function.

We believe that the scalar curvature assumption in the above theorem is technical and could
be removed. From [3] the average of scalar curvature is bounded and we know no examples of
shrinking solitons with unbounded scalar curvature.

2. Preliminaries

Let p0 be a fixed point of M . Let ρ be the distance function to p0. Let δ(r) be a continuous
function on R

+ such that

(a) limr→∞ δ(r) = 0;
(b) δ(r) > 0;
(c) Ric(x) � −(n − 1)δ(r), if ρ(x) � r .

Note that δ(r) is a decreasing continuous function. The following lemma is standard:

Lemma 1. With the assumption (1), we have

lim
x→∞ �ρ � 0

in the sense of distribution.

Proof. Let g be a smooth function on R
+ such that

⎧⎨
⎩

g′′(r) − δ(r)g(r) = 0,

g(0) = 0,
′
g (0) = 1.
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Then by the Laplacian comparison theorem, we have

�ρ(x) � (n − 1)g′(ρ(x)
)
/g

(
ρ(x)

)

in the sense of distribution. The proof of the lemma will be completed if we can show that

lim
r→∞

g′(r)
g(r)

= 0.

By the definition of g(r), we have g(r) � 0 and g(r) is convex. Thus g(r) → +∞, as
r → +∞. By the L’Hospital Principal, we have

lim
r→+∞

(g′(r))2

(g(r))2
= lim

r→+∞
2g′(r)g′′(r)
2g(r)g′(r)

= lim
r→+∞ δ(r) = 0,

and this completes the proof of the lemma. �
Without loss of generality, for the rest of this paper, we assume that

g′(r)
g(r)

� δ(r)

for all r > 0.
The following result is well-known:

Proposition 1. There exists a C∞ function ρ̃ on M such that

(a) |ρ̃ − ρ| + |∇ρ̃ − ∇ρ| � δ(ρ(x)), and
(b) �ρ̃ � 2δ(ρ(x) − 1)

for any x ∈ M with ρ(x) > 2.

Proof. Let {Ui} be a locally finite cover of M and let {ψi} be the partition of unity subordinating
to the cover. Let xi = (x1

i , . . . , xn
i ) be the local coordinates of Ui . Define ρi = ρ|Ui

.
Let ξ(x) be a non-negative smooth function whose support is within the unit ball of R

n.
Assume that

∫
Rn

ξ(x) dx.

Without loss of generality, we assume that all Ui are open subsets of the unit ball of R
n with

coordinates xi. Then for any ε > 0 small enough,

ρi,ε = 1

εn

∫
n

ξ

(
xi − yi

ε

)
ρi(yi) dyi
R
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is a smooth function whose support is within Ui . Let

K(x) =
∑

i

(|�ψi | + 2|∇ψi |
) + 1.

Then K(x) is a smooth positive function on M . On each Ui , we choose εi small enough such
that

supp{ρi,εi
} ⊂ Ui,

|ρi,εi
− ρi | � δ

(
ρ(x)

)
/K(x),

|∇ρi,εi
− ∇ρi | � δ

(
ρ(x)

)
/K(x),

�ρi,εi
� δ

(
ρ(x) − 1

)
, for ρ(x) > 1.

(3)

Here Lemma 1 is used in the last inequality above. We define

ρ̃ =
∑

i

ψiρi,εi
.

The proof follows from the standard method: let’s only prove (b) of the proposition. Since

�ρ̃ =
∑

i

�ψiρi,εi
+ 2∇ψi∇ρi,εi

+ ψi�ρi,εi
,

we have

�ρ̃ =
∑

i

�ψi(ρi,εi
− ρi) + 2∇ψi(∇ρi,εi

− ∇ρi) + ψi�ρi,εi
.

By (3), we have

�ρ̃ � δ
(
ρ(x)

) + δ
(
ρ(x) − 1

)
,

and the proposition is proved. �
Let p0 ∈ M , and let

V (r) = vol
(
Bp0(r)

)

for any r > 0.
The main result of this section is (cf. [5,8]).

Lemma 2. Assume that (1) is valid. Then for any ε > 0, there is an R1 > 0 such that for r > R1,
we have
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(a) if vol(M) = +∞, then

∫
Bp0 (r)\Bp0 (R1)

|�ρ̃| � 2εV (r) + 2vol
(
∂Bp0(R1)

);

(b) if vol(M) < +∞, then

∫
M\Bp0 (r)

|�ρ̃| � 2ε
(
vol(M) − V (r)

) + 2vol
(
∂Bp0(r)

)
.

Proof. By Proposition 1, for any ε > 0 small enough, we can find R1 large enough such that

�ρ̃ < ε

for x ∈ M\Bp0(R1). Thus |�ρ̃| � 2ε − �ρ̃, and we have

∫
Bp0 (R2)\Bp0 (r)

|�ρ̃| � 2ε
(
V (R2) − V (r)

) −
∫

∂Bp0 (R2)

∂ρ̃

∂n
+

∫
∂Bp0 (r)

∂ρ̃

∂n

for any R2 > r > R1 by the Stokes’ Theorem, where ∂
∂n

is the derivative of the outward normal
direction of the boundary ∂Bp0(r). By (3), we get

∫
Bp0 (R2)\Bp0 (r)

|�ρ̃| � 2ε
(
V (R2) − V (r)

) − 1

2
vol

(
∂Bp0(R2)

) + 2vol
(
∂Bp0(r)

)
. (4)

If vol(M) = +∞, then we take R2 = r , r = R1 in the above inequality and we get (a).
If vol(M) < +∞, taking R2 → +∞ in (4), we get (b). �

3. Proof of Theorem 1

In this section we prove the following result which implies Theorem 1.

Theorem 5. Let M be a complete non-compact manifold satisfying

(1) the volume of M grows uniformly sub-exponentially;
(2) the Ricci curvature of M has a lower bound;
(3) M satisfies the assertions in Lemma 2.

Then the L1 essential spectrum of the Laplacian is [0,∞).

Proof. We essentially follow Wang’s proof [17]. First, using the characterization of the essential
spectrum (cf. Donnelly [9, Proposition 2.2]), we only need to prove the following: for any λ ∈ R

positive and any positive real numbers ε, μ, there exists a smooth function ξ 	= 0 such that



Z. Lu, D. Zhou / Journal of Functional Analysis 260 (2011) 3283–3298 3289
(1) supp(ξ) ⊂ M\Bp0(μ) and is compact;
(2) ‖�ξ + λξ‖L1 < ε‖ξ‖L1 .

Let R,x, y be big positive real numbers. Assume that y > x + 2R and x > 2R > 2μ + 4.
Define a cut-off function ψ : R → R such that

(1) suppψ ⊂ [x/R − 1, y/R + 1];
(2) ψ ≡ 1 on [x/R,y/R], 0 � ψ � 1;
(3) |ψ ′| + |ψ ′′| < 10.

For any given ε, μ and λ, let

φ = ψ

(
ρ̃

R

)
ei

√
λρ̃ .

A straightforward computation shows that

�φ + λφ =
(

1

R2
ψ ′′|∇ρ̃|2 + i

√
λ

2

R
ψ ′|∇ρ̃|2 +

(
i
√

λψ + ψ ′

R

)
�ρ̃

)
ei

√
λρ̃

+ λφ
(−|∇ρ̃|2 + 1

)
.

By Proposition 1,

|�φ + λφ| � C

R
+ C|�ρ̃| + Cδ

(
ρ(x)

)
,

where C is a constant depending only on λ. Thus we have

‖�φ + λφ‖L1 �
(

C

R
+ Cδ(x − R)

)(
V (y + R) − V (x − R)

)

+ C

∫
Bp0 (y+R)−Bp0 (x−R)

|�ρ̃|. (5)

Case 1: vol(M) = +∞. By Lemma 2, if we choose ε/C small enough and R,x big enough and
then assume y is large if necessary, we get

‖�φ + λφ‖L1 � 4εV (y + R). (6)

Note that ‖φ‖L1 � V (y) − V (x). If we choose y big enough, then we have

‖φ‖L1 � 1

2
V (y). (7)

We claim that there exists a sequence yk → ∞ such that V (yk + R) � 2V (yk). If not, then for a
fixed number y, we have

V (y + kR) > 2kV (y)
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for any k ∈ Z positive. On the other hand, by the uniform sub-exponentially growth of the vol-
ume, we have

2kV (y) � V (y + kR) � C(ε)V (1)eε(y+kR)

for any k large and for any ε > 0. This is a contradiction if εR < log 2. Thus there is a y such
that V (y + R) � 2V (y), and thus by (6), (7), we have

‖�φ + λφ‖L1 � 16ε‖φ‖L1 .

The case when M is of infinite volume is proved.

Case 2: vol(M) < +∞. By Lemma 2,

‖�ψ + λψ‖L1 � C

(
1

R
+ 2ε + δ(x − R)

)(
vol(M) − V (x − R)

)

+ 2Cvol
(
∂Bp0(x − R)

)
.

Let f (r) = vol(M) − V (r). Like above, we choose ε small and R,x big. Then

‖�φ + λφ‖L1 � 4εf (x − R) − 2Cf ′(x − R)

for any x, y large enough. On the other hand, we always have

‖φ‖L1 � f (x) − f (y).

Since the volume is finite, we choose y large enough such that

‖φ‖L1 � 1

2
f (x).

Similar to the case of vol(M) = +∞, the theorem is proved if the following statement is true:
there is a sequence xk → +∞ such that

2εf (xk − R) − Cf ′(xk − R) � 4εf (xk)

for all k.
If there doesn’t exist such a sequence, then for x large enough, we have

2εf (x − R) − Cf ′(x − R) � 4εf (x).

Replacing ε by ε/C, we have

2εf (x − R) − f ′(x − R) � 4εf (x),

which is equivalent to

−(
e−2εxf (x − R)

)′ � 4εe−2εxf (x).
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Integrating the expression from x to x + R, using the monotonicity of f (x), we get

−e−2ε(x+R)f (x) + e−2εxf (x − R) � 2e−2εx
(
1 − e−2εR

)
f (x + R),

which implies

f (x − R) � 2
(
1 − e−2εR

)
f (x + R).

Let R be big so that

2
(
1 − e−2εR

)
>

5

4
.

Then we have

f (x − R) � 5

4
f (x + R)

for x large enough. Iterating the inequality, we get

f (x − R) �
(

5

4

)k

f
(
x + (2k − 1)R

)
(8)

for all positive integer k.
On the other hand, we pick points pk so that dist (pk,p0) = x + (2k − 1)R + 1. Then by

the uniform sub-exponential growth of the volume, for any ε > 0, since Bpk
(1) ⊂ M\Bp0(x +

(2k − 1)R), we have

f
(
x + (2k − 1)R

)
� vol

(
Bpk

(1)
)

� 1

C(ε)
e−ε(x+(2k−1)R+2)vol

(
Bpk

(
x + (2k − 1)R + 2

))
.

But Bpk
(x + (2k − 1)R + 2) ⊃ Bp0(1) so that there is a constant C, depending on ε and x only

such that

f
(
x + (2k − 1)R

)
� CV (1)e−2εkR.

Choosing ε small enough such that 2εR < log 5
4 , we get a contradiction to (8) when k → ∞. �

4. Gradient shrinking Ricci soliton

A complete Riemannian metric gij on a smooth manifold M is called a gradient shrinking
Ricci soliton, if there exists a smooth function f on Mn such that the Ricci tensor Rij of the
metric gij is given by

Rij + ∇i∇j f = ρgij
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for some positive constant ρ > 0. The function f is called a potential function. Note that by
scaling gij we can rewrite the soliton equation as

Rij + ∇i∇j f = 1

2
gij (9)

without loss of generality.
The following basic result on Ricci soliton is due to Hamilton (cf. [13, Theorem 20.1]).

Lemma 3. Let (M,gij , f ) be a complete gradient shrinking Ricci soliton satisfying (9). Let R

be the scalar curvature of gij . Then we have

∇iR = 2Rij∇j f,

and

R + |∇f |2 − f = C0

for some constant C0.

By adding the constant C0 to f , we can assume

R + |∇f |2 − f = 0. (2.1)

We fix this normalization of f throughout this paper.

Definition 1. We define the following notations:

(i) since R � 0 by Lemma 4 below, f (x) � 0. Let

ρ(x) = 2
√

f (x);
(ii) for any r > 0, let

D(r) = {
x ∈ M: ρ(x) < r

}
and V (r) =

∫
D(r)

dV ;

(iii) for any r > 0, let

χ(r) =
∫

D(r)

R dV.

The function ρ(x) is similar to the distance function in many ways. For example, by [3,
Theorem 20.1], we have

r(x) − c � ρ(x) � r(x) + c,

where c is a constant and r(x) is the distance function to a fixed reference point.
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We summarize some useful results of gradient shrinking Ricci soliton in the following lemma
without proof:

Lemma 4. Let (M,gij , f ) be a complete non-compact gradient shrinking Ricci soliton of di-
mension n. Then

(1) The scalar curvature R � 0 (B.-L. Chen [6], see also Proposition 5.5 in [2]).
(2) The volume is of Euclidean growth. That is, there is a constant C such that V (r) � Crn

(Theorem 2 of [3]).
(3) We have

nV (r) − 2χ(r) = rV ′(r) − 4

r
χ ′(r) � 0.

In particular, the average scalar curvature over D(r) is bounded by n
2 , i.e. χ(r) � n

2 V (r)

(Lemma 3.1 in [3]).

(4) We have

∇ρ = ∇f√
f

and |∇ρ|2 = |∇f |2
f

= 1 − R

f
� 1.

Using the above lemma, we prove the following result which is similar to Lemma 2.

Lemma 5. Let (M,gij , f ) be a complete non-compact gradient shrinking Ricci soliton of di-
mension n. Then for any two positive numbers x, r with x > r , we have

∫
D(x)\D(r)

|�ρ| � 2n

r

[
V (x) − V (r)

] + V ′(r),

∫
D(x)\D(r)

|�ρ|2 �
(

n2

r2
+ 2n max

ρ∈[r,x]
R

ρ2

)
V (x).

Proof. Since R + �f = n
2 and R � 0, we have

�ρ = �f√
f

− 1

2

|∇f |2
(
√

f )3
� �f√

f
� n

ρ
. (10)

By the Co–Area formula (cf. [15]), we have,

V (r) =
r∫

ds

∫
1

|∇ρ| dA.
0 ∂D(s)
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Therefore,

V ′(r) =
∫

∂D(r)

1

|∇ρ| dA = r

2

∫
∂D(r)

1

|∇f | dA.

Thus we have

∫
D(x)\D(r)

|�ρ| � 2
∫

D(x)\D(r)

n

ρ
−

∫
D(x)\D(r)

�ρ

= 2
∫

D(x)\D(r)

n

ρ
−

∫
∂D(x)

∂ρ

∂ν
+

∫
∂D(r)

∂ρ

∂ν

� 2
∫

D(x)\D(r)

n

ρ
+

∫
∂D(r)

1

|∇ρ|

� 2n

r

[
V (x) − V (r)

] + V ′(r), (11)

where ν = ∇ρ
|∇ρ| is the outward normal vector to ∂D. This completes the proof of the first part of

the lemma.
Now we prove the second part of the lemma. From (10), we have

�ρ = 2�f

ρ
− |∇ρ|2

ρ

= 2

ρ

(
n

2
− R

)
− 1

ρ

(
1 − R

f

)

= n − 1

ρ
− 2R

ρ
+ 4R

ρ2

� −2R

ρ
. (12)

Then

∫
D(x)\D(r)

|�ρ|2 �
∫

D(x)\D(r)

n2

ρ2
+

∫
D(x)\D(r)

4R2

ρ2

� n2

r2

[
V (x) − V (r)

] +
(

max
ρ∈[r,x]

4R

ρ2

)
χ(x)

�
(

n2

r2
+ 2n max

ρ∈[r,x]
R

ρ2

)
V (x), (13)

where in the last inequality above we used (3) of Lemma 4. �
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Now we are ready to prove

Theorem 6. Let (M,gij , f ) be a complete gradient shrinking Ricci soliton. Then the L1 essential
spectrum contains [0,+∞).

Proof. Similar to that of Theorem 1, we only need to prove the following: for any λ ∈ R positive
and any positive real numbers ε,μ, there exists a smooth function ξ 	= 0 such that

(1) supp(ξ) ⊂ M\Bp0(μ) and is compact;
(2) ‖�ξ + λξ‖L1 < ε‖ξ‖L1 .

Let a � 2 be a positive number. Define a cut-off function ψ : R → R such that

(1) suppψ ⊂ [0, a + 2];
(2) ψ ≡ 1 on [1, a + 1], 0 � ψ � 1;
(3) |ψ ′| + |ψ ′′| < 10.

For any given b � 2 + μ, l � 2 and λ > 0, let

φ = ψ

(
ρ − b

l

)
ei

√
λρ. (14)

A straightforward computation shows that

�φ + λφ =
(

ψ ′′

l2
|∇ρ|2 + i

√
λ

2ψ ′

l
|∇ρ|2

)
ei

√
λρ +

(
i
√

λψ + ψ ′

l

)
�ρei

√
λρ

+ λφ
(−|∇ρ|2 + 1

)
.

By Lemma 4, we have

|�φ + λφ| � C

l
+ C|�ρ| + λ

R

f
, (15)

where C is a constant depending only on λ. By Lemma 5, we have

‖�φ + λφ‖L1 � C

l

[
V

(
b + (a + 2)l

) − V (b)
] + C

∫
D(b+(a+2)l)\D(b)

|�ρ|

+ λ

∫
D(b+(a+2)l)\D(b)

4R

ρ2

�
(

C

l
+ 2nC

b

)[
V

(
b + (a + 2)l

) − V (b)
] + CV ′(b)

+ 4λ

b2

∫
R

D(b+(a+2)l)\D(b)
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�
(

C

l
+ 2nC

b

)[
V

(
b + (a + 2)l

) − V (b)
] + CV ′(b)

+ 4λ

b2
χ

(
b + (a + 2)l

)
. (16)

From Lemma 4, we can choose l and b large enough so that

‖�φ + λφ‖L1 � εV
(
b + (a + 2)l

) + CV ′(b).

By a result of Cao–Zhu (cf. [1, Theorem 3.1]), the volume of M is infinite. Therefore we can fix
b and let l be large enough so that

‖�φ + λφ‖L1 � 2εV
(
b + (a + 2)l

)
. (17)

On the other hand, note that ‖φ‖L1 � V (b+(a+1)l)−V (b+ l). If we choose a large enough,
then we have

‖φ‖L1 � 1

2
V

(
b + (a + 1)l

)
. (18)

We claim that there exists a sequence ak → ∞ such that V (b+ (ak+1 +2)l) � 2V (b+ (ak +1)l).
Otherwise for some fixed number a, we have

V
(
b + (a + k)l

)
> 2k−1V

(
b + (a + 1)l

)

for any k � 2, which contradicts to the fact that the volume is of Euclidean growth (Lemma 4).
Let a be a constant large enough such that V (b + (a + 2)l) � 2V (b + (a + 1)l). By (17), (18),
we have

‖�φ + λφ‖L1 � 8ε‖φ‖L1,

and the proof is complete. �
Proof of Theorem 4. The proof is similar to that of Theorem 6: it suffices to prove the following:
for any λ ∈ R positive and any positive real numbers ε,μ, there exists a smooth function ξ 	= 0
such that

(1) supp(ξ) ⊂ M\Bp0(μ) and is compact;
(2) ‖�ξ + λξ‖L2 < ε‖ξ‖L2 .

Let a � 2 be a positive number. For any given b � 2 + μ, l � 2 and λ > 0, let φ be defined as
in (14). By (15), we have

|�φ + λφ|2 � C

l2
+ C|�ρ|2 + C

R2

f 2
,

where C is a constant depending only on λ. Thus we have
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‖�φ + λφ‖2
L2 � C

l2

[
V

(
b + (a + 2)l

) − V (b)
]

+ C

∫
D(b+(a+2)l)\D(b)

|�ρ|2 + C

∫
D(b+(a+2)l)\D(b)

16R2

ρ4

� C

(
1

l2
+ n2

b2
+ 2n max

ρ∈[b,b+(a+2)l]
R

ρ2

)
V

(
b + (a + 2)l

)

+ 4C

b2

∫
D(b+(a+2)l)\D(b)

R

� C

(
1

l2
+ n2

b2
+ 2n max

ρ∈[b,b+(a+2)l]
R

ρ2

)
V

(
b + (a + 2)l

)

+ 4C

b2
χ

(
b + (a + 2)l

)
, (19)

where we used Lemma 5 and the fact R � f = 1
4ρ2. From Lemma 4, we can choose l and b

large enough so that

‖�φ + λφ‖2
L2 � εV

(
b + (a + 2)l

)
.

Note that ‖φ‖2
L2 � V (b + (a + 1)l) − V (b + l). If we choose a big enough, then we have

‖φ‖2
L2 � 1

2
V

(
b + (a + 1)l

)
. (20)

Since the volume of M is of Euclidean growth, there is a positive number a > 0 such that

V
(
b + (a + 1)l

)
� 1

2
V

(
b + (a + 2)l

)
,

and therefore we have

‖�φ + λφ‖2
L2 � 4ε‖φ‖2

L2 .

The theorem is proved. �
5. Further discussions

As can be seen clearly in the above context, the key of the proof is the L1 boundedness of �ρ.
The Laplacian comparison theorem implies the volume comparison theorem. The converse is, in
general, not true. On the other hand, the formula1

1 In the sense of distribution.
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∫
B(R)\B(r)

�ρ = vol
(
∂B(R)

) − vol
(
∂B(r)

)

clearly shows that volume growth restriction gives the bound of the integral of �ρ. Based on this
observation, we make the following conjecture

Conjecture 1. Let M be a complete non-compact Riemannian manifold whose Ricci curvature
has a lower bound. Assume that the volume of M grows uniformly sub-exponentially. Then the
Lp essential spectrum of M is [0,+∞) for any p ∈ [1,+∞].

Such a conjecture, if true, would give a complete answer to the computation of the essential
spectrum of non-compact manifold with uniform sub-exponential volume growth.

The parallel Sturm’s theorem on p-forms was proved by Charalambous [4]. Using that, a sim-
ilar result of Theorem 1 also holds for p-forms under certain conditions.
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