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Abstract

The Hamming graph H(d, q) satisfies the following conditions:

(i) For any pair (u, v) of vertices there exists a strongly closed subgraph containing them whose diameter
is the distance between u and v. In particular, any strongly closed subgraph is distance-regular.

(ii) For any pair (x, y) of vertices at distance d − 1 the subgraph induced by the neighbors of y at distance
d from x is a clique of size a1 + 1.

In this paper we prove that a distance-regular graph which satisfies these conditions is a Hamming graph.
c© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The reader is referred to the next section or [4] for the definitions.
The known distance-regular graphs have many subgraphs of high regularity. For example, the

Odd graphs, the doubled Odd graphs, the doubled Grassmann graphs, the Hamming graphs and
the dual polar graphs satisfy the following condition:

(∗) For any pair (u, v) of vertices there exists a strongly closed subgraph containing them whose
diameter is the distance between u and v.

Our problem is to classify distance-regular graphs which satisfy this condition. Lots of partial
answers have been obtained in [9,11,13,14]. In [9] we proved that a distance-regular graph
which satisfies the condition (∗) and contains a strongly closed subgraph which is a non-
regular distance-biregular graph is either the Odd graph, the doubled Odd graph or the doubled
Grassmann graph.
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The Hamming graph H(d, q) satisfies the following conditions:

(i) For any pair (u, v) of vertices there exists a strongly closed subgraph containing them whose
diameter is the distance between u and v. In particular, any strongly closed subgraph is
distance-regular.

(ii) For any pair (x, y) of vertices at distance d − 1 the subgraph induced by the neighbors of y
at distance d from x is a clique of size a1 + 1.

The main purpose of this paper is to show that a distance-regular graph which satisfies these
conditions is a Hamming graph.

Let Γ be a distance-regular graph of diameter d ≥ 2. Suppose that for any pair of vertices at
distance d −1 there exists a strongly closed subgraph of diameter d −1 containing them. Then it
can be shown that there exists a positive integer n such that for any given pair (x, y) of vertices
at distance d − 1 the subgraph induced by the neighbors of y at distance d from x is a disjoint
union of n cliques of size a1 + 1. In particular, bd−1 = n(a1 + 1) (see Lemma 17). Suppose the
condition (i) holds. Then the condition (ii) holds if and only if bd−1 = a1 +1. This is an extremal
case of this direction.

The following are our main results.

Theorem 1. Let Γ be a distance-regular graph of diameter d ≥ 3 and valency k ≥ 3. Suppose
that bd−1 = a1 + 1 holds and for any pair of vertices at distance d − 1 there exists a strongly
closed subgraph of diameter d − 1 containing them. Then Γ is either the collinearity graph of a
generalized 2d-gon of order (a1 + 1, 1) with d ∈ {3, 4, 6}, the Pappus graph, the Coxeter graph,
the doubled Odd graph 2Ok or the Hamming graph H(d, a1 + 2).

Theorem 2. Let Γ be a distance-regular graph of diameter d ≥ 3 and valency k ≥ 4. Then the
following three conditions are equivalent.

(i) bd−1 = a1 + 1 holds and for any pair of vertices at distance d − 1 there exists a strongly
closed subgraph of diameter d − 1 containing them which is distance-regular.

(ii) For any integer m with 1 ≤ m ≤ d − 1 and for any pair of vertices at distance m there
exists a strongly closed subgraph of diameter m containing them which is distance-regular.
Moreover for any pair (x, y) of vertices at distance d − 1 the subgraph induced by the
neighbors of y at distance d from x is a clique of size a1 + 1.

(iii) Γ is the Hamming graph H(d, a1 + 2).

Theorem 3. Let Γ be a distance-regular graph of diameter d ≥ 3 and valency k ≥ 3. Suppose
that bd−2 = 2bd−1 and for any pair of vertices at distance d − 1 there exists a strongly closed
subgraph of diameter d − 1 containing them. Then Γ is either the Pappus graph, the Coxeter
graph or the Hamming graph H(d, a1 + 2).

This paper is organized as follows. In Section 2 we recall some definitions and basic
terminology for distance-regular graphs and strongly closed subgraphs. We collect several known
results for strongly closed subgraphs and give some consequences. In Section 3 we study a
design obtained from the strongly closed subgraphs of a distance-regular graph Γ . It gives us
some conditions for the intersection numbers of Γ . By using them, we prove our main results in
Section 4.

2. Preliminaries

First we recall our notation and terminology. Let Γ = (V Γ , EΓ ) be a connected graph with
usual distance ∂Γ and diameter d = d(Γ ). For a vertex u in Γ we denote by Γ j (u) the set of
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vertices which are at distance j from u, where Γ−1(u) = Γd+1(Γ ) = ∅. For two vertices x and
y in Γ with ∂Γ (x, y) = j , let

C(x, y) := Γ j−1(x) ∩ Γ1(y), A(x, y) := Γ j (x) ∩ Γ1(y),

B(x, y) := Γ j+1(x) ∩ Γ1(y).

Definition 4. Let i be an integer with 0 ≤ i ≤ d.

(i) We say ci (Γ )-exists if ci (Γ ) = |C(x, y)| is a constant whenever ∂Γ (x, y) = i.
(ii) We say ai (Γ )-exists if ai (Γ ) = |A(x, y)| is a constant whenever ∂Γ (x, y) = i.

(iii) We say bi (Γ )-exists if bi (Γ ) = |B(x, y)| is a constant whenever ∂Γ (x, y) = i.

A connected graph Γ of diameter d is said to be distance-regular if ci (Γ )-exists and bi (Γ )-exists
for all i = 0, . . . , d. Then Γ is a regular graph of valency k = k(Γ ) = b0(Γ ) and ai (Γ )-exists
with ai (Γ ) = k(Γ ) − ci (Γ ) − bi (Γ ) for all i = 0, . . . , d. Remark c0(Γ ) = a0(Γ ) = bd(Γ ) = 0
and c1(Γ ) = 1. The constants ci (Γ ), ai (Γ ) and bi (Γ ) (i = 0, . . . , d) are called the intersection
numbers of Γ .

A connected bipartite graph Γ with bipartition Γ+
∪ Γ− is called distance-biregular if for

any x ∈ Γ+ and for any y ∈ Γi (x)

c+

i (Γ ) = |C(x, y)|, b+

i (Γ ) = |B(x, y)|

depend only on i, and for any x ′
∈ Γ− and y′

∈ Γi (x ′)

c−

i (Γ ) = |C(x ′, y′)|, b−

i (Γ ) = |B(x ′, y′)|

depend only on i.
For more background information about distance-regular graphs and distance-biregular

graphs we refer the reader to [1,4].
Next we recall the definition and some facts for the Hamming graph (see [1, Section III,2], [4,

Section 9.2]).
Let q and d be integers at last 2 and let X be a set with q elements. The Hamming

graph H(d, q) is the graph with the vertex set Xd the cartesian product of d copies of X and
two vertices are adjacent whenever they differ in precisely one coordinate. Then two vertices are
at distance i if and only if they differ in precisely i coordinates. Let Γ be the Hamming graph
H(d, q). Then Γ is a distance-regular graph of diameter d with the intersection numbers

c j (Γ ) = j, a j (Γ ) = j (q − 2), b j (Γ ) = (d − j)(q − 1), ( j = 0, 1, . . . , d).

Moreover for any integer j with 0 ≤ j ≤ d and any vertices x, y at distance j in Γ the following
hold:

• The subgraph induced by C(x, y) is a coclique of size j.
• The subgraph induced by A(x, y) is a disjoint union of j cliques of size q − 2.

• The subgraph induced by B(x, y) is a disjoint union of d − j cliques of size q − 1.

• There exists an induced subgraph which is the Hamming graph H( j, q) containing x and y.

Here only we recall the last fact. Let x = (x1, . . . , xd) and y = (y1, . . . , yd). Set T = {i | 1
≤ i ≤ d, xi 6= yi }. Then |T | = j since ∂Γ (x, y) = j. Define

Λ = {z = (z1, . . . , zd) ∈ Xd
| zi = xi for all i ∈ (X \ T )}.

Then the induced subgraph on Λ is the Hamming graph H( j, q) containing x and y. Moreover,
it can be shown that C(w, w′) ∪ A(w, w′) ⊆ Λ for any vertices w, w′

∈ Λ.
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In the rest of this paper let Γ be a distance-regular graph of diameter d = d(Γ ) ≥ 2 and
valency k = k(Γ ) ≥ 3. We denote ci , ai and bi for the intersection numbers ci (Γ ), ai (Γ ) and
bi (Γ ) of Γ . Define

r = r(Γ ) := max{i | (ci , ai , bi ) = (c1, a1, b1)}.

It is known that br > br+1 holds (see [4, Proposition 5.4.4]).
Next we recall the definition and some results for strongly closed subgraphs.

Definition 5. Let Γ be a distance-regular graph of diameter d = d(Γ ) ≥ 2 and valency
k = k(Γ ) ≥ 3. Let Λ be a subset of vertices in Γ . We identify Λ with the induced subgraph
on it.

(i) A subgraph Λ is called strongly closed if C(x, y) ∪ A(x, y) ⊆ Λ for any x, y ∈ Λ.

(ii) We say that the condition (SC)m holds if for any given pair of vertices at distance m there
exists a strongly closed subgraph of diameter m containing them.

(iii) Let (x, y) be a pair of vertices in Γ . Define ∆(x, y) to be the intersection of all strongly
closed subgraphs in Γ containing x and y.

We remark that Γ itself is a strongly closed subgraph in Γ . Hence ∆(x, y) can be defined. It
follows, by definition, that the intersection of strongly closed subgraphs is also strongly closed
unless it is the empty set. Hence ∆(x, y) is the smallest strongly closed subgraph containing x
and y. Suppose that Γ satisfies the condition (SC) j for some integer j with 1 ≤ j ≤ d −1. Then
for any pair (x, y) of vertices at distance j there exists a strongly closed subgraph Ψ of diameter
j containing x and y. Then ∆(x, y) has diameter j since x, y ∈ ∆(x, y) ⊆ Ψ .

Let Λ be a strongly closed subgraph of Γ with diameter m = d(Λ). Take vertices x and y in
Λ. Then any shortest path between x and y in Γ is contained in the subgraph Λ. So the distance
in Λ coincides with the distance in Γ . Hence

Λi (u) = {z ∈ Λ | ∂Λ(u, z) = i} = Γi (u) ∩ Λ

for any u ∈ Λ and i = 0, 1, . . . , m. It follows that if ∂Λ(x, y) = ∂Γ (x, y) = j , then

Λ j−1(x) ∩ Λ1(y) = C(x, y) and Λ j (x) ∩ Λ1(y) = A(x, y).

Thus ci (Λ)-exists and ai (Λ)-exists with ci (Λ) = ci and ai (Λ) = ai for all i = 1, . . . , m.

Moreover if Λ is a regular graph of valency k(Λ), then bi (Λ)-exists with bi (Λ) = k(Λ) − ci − ai
for all i = 1, . . . , m, and thus Λ is distance-regular. However there exist several examples of
non-regular strongly closed subgraphs in a distance-regular graph.

Let G be a connected graph. We define the n-subdivision graph of G, denoted by G(n), the
graph obtained from G by replacing each edge by a path of length n. For any pair of vertices at
distance 6 in the Foster graph there exists a 2-subdivision graph of the Peterson graph containing
them as a strongly closed subgraph (see [11, Theorem 1.4] and [4, Section 13.2A]), and for any
pair of vertices at distance 5 in the Biggs–Smith graph there exists a 3-subdivision graph of the
complete graph K4 containing them as a strongly closed subgraph (see [11, Theorem 1.5] and
[4, Section 13.4]).

There are lots of non-regular distance-biregular graphs as strongly closed subgraphs in the
doubled Grassmann graphs, the doubled Odd graphs, and the Odd graphs (see [9, Section 2]
and [4, Section 9.1D, Section 9.3]).

In the rest of this section we recall several known results for strongly closed subgraphs. They
imply that these examples of distance-regular graphs are almost all distance-regular graphs which
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satisfy the condition (SC)m for some m and contain a non-regular strongly closed subgraph of
diameter m.

The following result is proved by Suzuki in [11, Theorem 1.1].

Proposition 6. Let Γ be a distance-regular graph of diameter d, valency k and r = r(Γ ). Let Λ
be a strongly closed subgraph of diameter m := d(Λ). Then one of the following holds.

(i) Λ is distance-regular.
(ii) 2 ≤ m ≤ r.

(iii) Λ is (non-regular) distance-biregular with c2i−1 = c2i for all i with 2i ≤ m. Moreover
r ≡ m ≡ 0(mod 2).

(iv) Λ is the 3-subdivision graph K (3)
k+1 of a complete graph Kk+1 or the 3-subdivision graph

M (3)
k of a Moore graph Mk . Moreover m = r + 2 ∈ {5, 8}, a1 = 0 and cr+1 = cr+2 =

ar+1 = ar+2 = 1.

In particular, (cm−1, am−1, bm−1) = (cm, am, bm) holds except the case (i).

Suppose that there exists a strongly closed subgraph Λ of diameter m which is distance-
regular. Then ci (Λ) = ci and ai (Λ) = ai for i = 1, . . . , m. Hence k(Λ) = cm + am and
bi (Λ) = k(Λ)− ci (Λ)− ai (Λ) = (cm + am)− ci − ai = bi − bm for i = 1, . . . , m. In particular,
we obtain bm−1 − bm = bm−1(Λ) > 0. Hence a strongly closed subgraph of diameter m is
distance-regular if and only if bm−1 > bm holds.

Let x and y be vertices in Γ with ∂Γ (x, y) = m. Suppose that bm−1 > bm and there exists a
strongly closed subgraph of diameter m containing x and y. Let ∆(x, y) be as in Definition 5(iii),
and let Ψ be any strongly closed subgraph of diameter m containing x and y. Then ∆(x, y) has
diameter m since x, y ∈ ∆(x, y) ⊆ Ψ . The above observation shows that both of ∆(x, y) and
Ψ are distance-regular graphs with the same intersection numbers such that ∆(x, y) ⊆ Ψ . This
implies that ∆(x, y) = Ψ and it is a unique strongly closed subgraph of diameter m containing
x and y.

A graph Γ is said to be of order (s, t) if for any vertex u in Γ the subgraph induced by Γ1(u) is
a disjoint union of t + 1 cliques of size s + 1. Since a strongly closed subgraph of diameter 1 is a
clique of size a1 +2, it is straightforward to see the following lemma (see [4, Proposition 1.2.1]).

Lemma 7. Let Γ be a distance-regular graph. Then the following conditions are equivalent.

(i) The condition (SC)1 holds.
(ii) Each edge lies on a clique of size a1 + 2.

(iii) Γ is of order (s, t), where s = a1 + 1 and t =
b1

a1+1 . �

A connected graph E is called an expanded tree if there are no induced cycles except triangles.
Moreover if each edge lies on a clique of size s + 1, then E is called an expanded tree of order s.

We remark that an expanded tree of order 1 is a tree.
Suppose r = r(Γ ) ≥ 2 and consider a connected induced subgraph Λ of Γ such that

2 ≤ d(Λ) ≤ r. By the definition of r(Γ ) there is no induced cycle of length less than 2r + 2
in Γ except triangles. So Λ is an expanded tree. Let x and y be distinct vertices in Λ and let
i = ∂Λ(x, y). Then there exists a path P of length i connecting x and y in Λ, and there is no
other path of length less than or equal to i connecting x and y in Γ as Γ has no induced cycle of
length less than 2r + 2 except triangles. Hence P is a unique shortest path connecting x and y
in Γ which is contained in Λ. In particular, ∂Λ(x, y) = ∂Γ (x, y) for any x, y ∈ Λ. We remark
that each edge of Γ lies on a clique of size a1 + 2 since c2 = 1 (see [4, Proposition 1.2.1]).
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If Λ is strongly closed, then {z, z′
} ∪ A(z, z′) ⊆ Λ for any edge (z, z′) in Λ, and hence Λ is

an expanded tree of order a1 + 1. Conversely we assume that Λ is an expanded tree of order
a1 + 1 and prove that it is strongly closed in Γ . Let u and v be distinct vertices in Λ and let
m = ∂Γ (u, v). Then m = ∂Γ (u, v) = ∂Λ(u, v) ≤ d(Λ) ≤ r. As cm = 1 and a1 = · · · = am,

there exists a unique vertex w such that {w} = C(u, v) and A(u, v) = A(w, v). Since the
unique shortest path connecting u and v is contained in Λ, we have w ∈ Λ. Since Λ is an
expanded tree of order a1 + 1 and (w, v) is an edge in Λ, we have {w, v} ∪ A(w, v) ⊆ Λ. Hence
C(u, v)∪ A(u, v) = {w}∪ A(w, v) ⊆ Λ and Λ is strongly closed. Therefore an induced subgraph
Λ with 2 ≤ d(Λ) ≤ r is strongly closed if and only if it is an expanded tree of order a1 + 1.

Let x and y be distinct vertices with m := ∂Γ (x, y) ≤ r in Γ . Then there exists a unique
shortest path (x = x0, x1, . . . , xm = y) of length m connecting x and y as c1 = · · · = cm = 1.

Define

Σ (x, y) :=

m⋃
i=1

({xi−1, xi } ∪ A(xi−1, xi )).

Then Σ (x, y) is an expanded tree of order a1 + 1 with diameter m such that m ≤ r. Hence
Σ (x, y) is a strongly closed subgraph of diameter m. Then Σ (x, y) = ∆(x, y) since any
strongly closed subgraph Λ containing x and y also contains (x = x0, x1, . . . , xm = y) and
A(xi−1, xi ) ⊆ Λ for i = 1, . . . , m.

This observation shows that a distance-regular graph with r = r(Γ ) ≥ 2 always satisfies the
condition (SC)m for m = 1, 2, . . . , r. Moreover any strongly closed subgraph of diameter m
with 2 ≤ m ≤ r is an expanded tree of order a1 + 1.

We say a strongly closed subgraph Λ is trivial if 2 ≤ d(Λ) ≤ r. We should consider non-trivial
strongly closed subgraphs.

The following results are proved in [9, Proposition 4.5] and [8, Theorem 1].

Proposition 8. Let Γ be a distance-regular graph of diameter d, valency k and r = r(Γ ).

Suppose that the condition (SC)m holds for some m with r +1 ≤ m ≤ d−1 and a strongly closed
subgraph of diameter m is a non-regular distance-biregular graph. Then one of the following
holds.

(i) Γ is either the doubled Grassmann graph, the doubled Odd graph, or the Odd graph.
(ii) r = 4, m = 6, a1 = · · · = a6 = 0, c5 = c6 = 2 and k ∈ {3, 57}.

Proposition 9. Let Γ be a distance-regular graph of diameter d and r = r(Γ ). Let m be an
integer with r + 1 ≤ m ≤ d − 1. If the condition (SC)m holds, then the condition (SC)i holds
for all i with 1 ≤ i ≤ m.

The following corollary is a direct consequence of Propositions 6, 8 and 9.

Corollary 10. Let Γ be a distance-regular graph of diameter d, valency k ≥ 3 and r = r(Γ ).

Let m be an integer with r + 1 ≤ m ≤ d − 1. Suppose the condition (SC)m holds. Then the
condition (SC)i holds for all i with 1 ≤ i ≤ m. Moreover one of the following holds.

(i) bm−1 > bm and any strongly closed subgraph of diameter m is distance-regular.
(ii) Γ is either the doubled Grassmann graph, the doubled Odd graph, or the Odd graph.

(iii) r = 4, m = 6, a1 = · · · = a6 = 0, c5 = c6 = 2 and k ∈ {3, 57}.

(iv) m = r + 2, r ∈ {3, 6}, a1 = 0 and cr+1 = cr+2 = ar+1 = ar+2 = 1.
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Proof. The first assertion follows by Proposition 9. Let Λ be a strongly closed subgraph of
diameter m. Then Λ is either one of the graphs in Proposition 6(i), (iii), (iv). If Λ is distance-
regular, then bm−1 > bm and (i) holds. If Λ is non-regular distance-biregular, then either (ii) or
(iii) holds by Proposition 8. If Λ is a graph as in Proposition 6(iv), then (iv) holds. The corollary
is proved. �

The Foster graph and the Biggs–Smith graph are the only known examples of a distance-
regular graph as in Corollary 10(iii) and (iv), respectively. A distance-regular graph as in
Corollary 10(iii), (iv) with br+1 = a1 + 1 is the Foster graph and the Biggs–Smith graph,
respectively, since it has valency k = cr+1 + ar+1 + br+1 = 3 (see [3] or [4, Theorem 7.5.1]).
A distance-regular graph as in Corollary 10(ii) with bm = a1 + 1 for some m is the doubled Odd
graph (see [4, Section 9.1B, Section 9.3]).

Let Γ be a distance-regular graph of diameter d and r = r(Γ ) with r + 2 ≤ d. Let m be an
integer with r + 1 ≤ m ≤ d − 1 such that bm−1 > bm . If Γ satisfies the condition (SC)m , then
Γ satisfies the condition (SC) j for j = 1, 2, . . . , m by Proposition 9. Let Λ be a strongly closed
subgraph of diameter m. Then Λ is distance-regular since bm−1 > bm . Take any pair (x, y) of
vertices in Λ and let j = ∂Γ (x, y). Then ∆(x, y) has diameter j since Γ satisfies the condition
(SC) j . By the definition of ∆(x, y) we have ∆(x, y) ⊆ Λ. Hence ∆(x, y) is also a strongly
closed subgraph in Λ of diameter j containing x and y. Therefore Λ also satisfies the condition
(SC) j for all j = 1, 2, . . . , m. This implies that Λ satisfies the condition (∗) in the introduction.

3. Designs

In this section we study a design obtained from strongly closed subgraphs in a distance-regular
graph. In the end of this section we will remark that designs obtained from the Hamming graphs
are trivial.

First we recall the following result proved in [7, Proposition 4.1].

Proposition 11. Let Γ be a distance-regular graph of diameter d ≥ 2, and h be an integer with
1 ≤ h ≤ d − 1. Suppose bh−1 > bh and the condition (SC)h holds. Then the following hold.

(i) For any pair (x, y) of vertices at distance h − 1 there are exactly bh−1
bh−1−bh

strongly closed
subgraphs of diameter h containing x and y. In particular, (bh−1 − bh) | bh−1.

(ii) For any vertex u in Γ there are exactly
∏h−1

i=0
bi

bi −bh
strongly closed subgraphs of diameter h

containing u. In particular,
∏h−1

i=0 (bi − bh) |
∏h−1

i=0 bi .

Here we reprove the following generalization. Proposition 11 is the cases of j = h − 1 and
j = 0.

Proposition 12. Let Γ be a distance-regular graph of diameter d ≥ 2. Let j and h be integers
with 0 ≤ j < h ≤ d − 1. Suppose bh−1 > bh and the condition (SC)h holds. Then for any pair
(x, y) of vertices at distance j there are exactly

h−1∏
i= j

bi

bi − bh

strongly closed subgraphs of diameter h containing x and y. In particular,
∏h−1

i= j (bi − bh) |∏h−1
i= j bi .
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Proof. Let S be the set of strongly closed subgraphs of diameter h containing x and y. We count
the size of the set

{(z,Λ) | z ∈ Γh(x) ∩ Γh− j (y),Λ ∈ S, z ∈ Λ}

in two ways. For any z ∈ Γh(x)∩Γh− j (y) there exists a unique strongly closed subgraph ∆(x, z)
of diameter h containing x and z. Then y ∈ ∆(x, z) and thus ∆(x, z) ∈ S. Conversely each Λ in
S is distance-regular with ci (Λ) = ci and bi (Λ) = bi − bh for all i with 1 ≤ i ≤ h. Hence we
have

b j · · · bh−1

c1 · · · ch− j
=

∑
Λ∈S

b j (Λ) · · · bh−1(Λ)

c1(Λ) · · · ch− j (Λ)
= |S|

(b j − bh) · · · (bh−1 − bh)

c1 · · · ch− j
.

The desired result is proved. �

Let X and B be sets together with an incidence relation I. Then a structure (X, B, I ) is called
a t-(n, `, λ) design if X has n elements, each element of B is incident with exactly ` elements
of X and any t elements of X are incident with λ common elements of B. It is known as the
Fisher’s inequality that λ(n − 1) ≥ `(` − 1) holds for a 2-(n, `, λ) design.

More information for designs can be found in [2] (see also [4, A6]).
Then we can prove the following fact as a direct consequence of the previous result.

Corollary 13. Let Γ be a distance-regular graph of diameter d ≥ 3. Let j and m be integers
with 1 ≤ j < m ≤ d − 1. Suppose b j−1 > b j , bm−1 > bm and the condition (SC)m holds. Let
(u, v) be a pair of vertices at distance j − 1. Define P (resp. L) to be the set of strongly closed
subgraphs of diameter j (resp. m) containing u and v. Then D := (P,L, ⊆) is a 2-(n, `, λ)-
design, where

n =
b j−1

b j−1 − b j
, ` =

b j−1 − bm

b j−1 − b j
and λ =


1 if m = j + 1,
m−1∏

i= j+1

bi

bi − bm
if m ≥ j + 2.

In particular, λb j (b j−1 − b j ) ≥ (b j−1 − bm)(b j − bm) holds.

Proof. There are exactly n elements inP by Proposition 11(i). Each element Λ ofL is a distance-
regular graph with bi (Λ) = bi − bm for i = 1, . . . , m. Hence it contains exactly ` elements
of P by applying Proposition 11(i) to Λ. Let P and P ′ be two distinct elements of P. Take
x ∈ Γ1(u)∩Γ j (v)∩P and y ∈ Γ j (u)∩Γ1(v)∩P ′. Then P = ∆(x, v) and P ′

= ∆(u, y). We have
∂Γ (x, y) = j+1 or otherwise y ∈ C(x, v)∪A(x, v) ⊆ P and x ∈ C(y, u)∪A(y, u) ⊆ P ′ which
implies that P ′

= ∆(u, y) ⊆ P and P = ∆(x, v) ⊆ P ′. If an element Λ in L contains both of
P and P ′, then Λ contains x and y. Conversely if Λ contains x and y, then v ∈ C(x, y) ⊆ Λ and
u ∈ C(y, x) ⊆ Λ. Hence P = ∆(x, v) ⊆ Λ and P ′

= ∆(u, y) ⊆ Λ. It follows that an element
Λ in L contains both P and P ′ if and only if Λ contains both x and y. Thus there are exactly λ

elements in L containing both P and P ′ by Proposition 12. The last assertion follows by Fisher’s
inequality. �

Corollary 14. Let Γ be a distance-regular graph of diameter d ≥ 3. If bd−3 > bd−2 > bd−1
and the condition (SC)d−1 holds, then the following hold.

(i) (bd−3 − bd−2) divides both (bd−2 − bd−1) and bd−1.

(ii) (bd−2 − bd−1)
2

≤ bd−1(bd−3 − bd−2).
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Proof. Put j = d − 2 and m = d − 1 in Corollary 13. Then we have a 2-(n, `, 1)-design, where

n =
bd−3

bd−3 − bd−2
and ` =

bd−3 − bd−1

bd−3 − bd−2
.

Since both ` − 1 and n − ` are integers, the first assertion is proved. The second assertion
follows by Fisher’s inequality `(` − 1) ≤ n − 1 for 2-(n, `, 1)-designs. �

Corollary 15. Let Γ be a distance-regular graph of diameter d ≥ 4. Let m be an integer with
2 ≤ m ≤ d − 2. If bm−2 > bm−1 > bm > bm+1 and the condition (SC)m+1 holds, then the
following hold.

(i) (bm−2 − bm−1) divides both (bm−1 − bm) and (bm − bm+1).

(ii) (bm−1 − bm)2
≤ (bm − bm+1)(bm−2 − bm−1).

Proof. Let Λ be a strongly closed subgraph of diameter m +1. Then it is a distance-regular graph
with bi (Λ) = bi − bm+1 for i = 0, . . . , m. The desired results follow by applying Corollary 14
to Λ. �

Take a pair (x, y) of vertices at distance j − 1 in the Hamming graph H(d, q) and let
D := (P,L, ⊆) be the design defined in Corollary 13. Then D is a trivial design. In fact, there
exists a one-to-one correspondence between L and the family of all (m − j +1)-elements subsets
of P as follows:

Let x = (x1, . . . , xd), y = (y1, . . . , yd) and T = {i | 1 ≤ i ≤ d, xi 6= yi }. Then we have
|T | = j − 1. For any subset S of (X \ T ), where s = |S|, the induced subgraph on

Υ(S) = {z = (z1, . . . , zd) ∈ Xd
| zi = xi for all i ∈ (X \ (S ∪ T ))}

is the Hamming graph H(s + j − 1, q) containing x and y which is strongly closed in H(d, q).

Conversely, for any strongly closed subgraph Λ of diameter s + j − 1 containing x and y, take
z ∈ Λs+ j−1(x) ∩ Λs(y). Let T ′

= {i | 1 ≤ i ≤ d, xi 6= zi } and S′
= (T ′

\ T ). Then we
have T ⊆ T ′ and |T ′

| = s + j − 1 by considering the distance in the Hamming graph. Thus
|S′

| = s and Υ(S′) is a strongly closed subgraph of diameter s + j −1 containing x and z. Hence
Λ = ∆(x, z) = Υ(S′). This implies that there exists a one-to-one correspondence between the
family of all s-elements subsets of (X \T ) and the set of all strongly closed subgraphs of diameter
(s + j − 1) containing x and y. Therefore there exists a one-to-one correspondence between L
(resp. P) and the family of all (m − j + 1)-elements subsets (resp. all 1-elements subsets) of
(X \ T ).

Let Γ be a distance-regular graph of diameter d and r = r(Γ ) which satisfies the condition
(SC)m for some integer m with r + 1 ≤ m ≤ d − 1. Suppose that m − r is large. Then we obtain
many designs and many restrictions for the intersection numbers of Γ by Corollaries 13 and 15.
It may suggest that m −r cannot be so large except for the case that almost all designs are trivial.
This observation will be a step to solve our problem in the introduction.

4. Proof of the theorems

In this section we prove our main results. First we collect the following known results which
we need to prove our main results.

Proposition 16. Let Γ be a distance-regular graph of valency k ≥ 3, diameter d ≥ 2 and
r = r(Γ ). Then the following hold.
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(i) If Γ contains an induced quadrangle, then ci − bi ≥ ci−1 − bi−1 + a1 + 2 for i = 1, . . . , d.

(ii) Suppose that Γ is of order (s, t) such that ci = i and ai = i(s − 1) for all i with 1 ≤ i ≤ d.
Then Γ is the Hamming graph H(t + 1, s + 1).

(iii) Suppose that Γ is of order (s, 1) with d = r + 1. Then Γ is either the Hamming
graph H(2, a1 + 2) or the collinearity graph of a generalized 2d-gon of order (s, 1) with
d ∈ {3, 4, 6}. In particular, cr+1 = 2 and ar+1 = 2a1.

(iv) Suppose that a1 ≥ 1, cr+1 = 2 and ar+1 = 2a1. Then cr+2 ≥ 3. Moreover if Γ is of order
(s, 2) with cr+2 = 3, ar+2 = 3a1 and d = r + 2, then r = 1 and Γ is the Hamming graph
H(3, a1 + 2).

Proof. (i), (ii) These are proved in [12,6] (see also [4, Theorem 5.2.1, Corollary 9.2.5]).
(iii) [4, Theorem 4.3.4] implies that Γ is a line graph. It follows, by [4, Theorem 4.2.16], that

Γ is a lattice graph (i.e., Hamming graph H(2, a1 + 2)) or the collinearity graph of a generalized
2d-gon of order (s, 1) with d ∈ {3, 4, 6} since Γ is of order (s, 1) with d = r + 1.

(iv) This is proved in [10, Proposition 2, Proposition 5]. �

We recall that the Hamming graph Γ = H(d, q) is a graph of order (q − 1, d − 1). Moreover
for any pair (x, y) of vertices in Γ the subgraph induced by B(x, y) is a disjoint union of d − j
cliques of size q − 1, and the subgraph induced by C(x, y) is a coclique of size j , where
j = ∂Γ (x, y). In general the following holds.

Lemma 17. Let Γ be a distance-regular graph of diameter d ≥ 2. Suppose that the condition
(SC)m holds for some integer m with 1 ≤ m ≤ d −1. Then Γ is of order (s, t), where s = a1 +1
and t =

b1
a1+1 . Moreover, for any integer i with 1 ≤ i ≤ m the following hold.

(i) For any pair (x, y) of vertices at distance i the subgraph induced by B(x, y) is a disjoint
union of bi

a1+1 cliques of size a1 + 1.

(ii) For any pair (x ′, z′) of vertices at distance i + 1 the subgraph induced by C(x ′, z′) is a
coclique of size ci+1. In particular, ci+1a1 ≤ ai+1.

Proof. The condition (SC)i holds for all i with 1 ≤ i ≤ m by Proposition 9. Then Lemma 7
shows that Γ is of order (s, t), where s = a1 + 1 and t =

b1
a1+1 .

(i) Take any z ∈ B(x, y). It is sufficient to see that A(y, z) ⊆ B(x, y). Since the condition
(SC)i holds, there exists a strongly closed subgraph Λ of diameter i containing x and y. Suppose
that there exists w ∈ A(y, z)\ B(x, y). Then w ∈ A(x, y) ⊆ Λ and thus z ∈ A(y, w) ⊆ Λ which
is a contradiction as i + 1 = ∂Γ (x, z) ≤ d(Λ) = i. Hence the desired result is proved.

(ii) Take any y′
∈ C(x ′, z′). Using the same manner as in the proof of the statement (i) we

obtain A(y′, z′) ⊆ B(x ′, y′). Hence C(x ′, z′) is a coclique of size ci+1 and ⋃
y′∈C(x ′,z′)

A(y′, z′)

 ⊆ A(x ′, z′).

The left-hand side is a disjoint union and the desired result is proved. �

Lemma 18. Let Γ be a distance-regular graph of valency k ≥ 3 and diameter d. Let m be an
integer with 2 ≤ m ≤ d − 1. Suppose that bm = a1 + 1. If the condition (SC)m holds and a
strongly closed subgraph of diameter m is the Hamming graph H(m, a1 + 2), then d = m + 1
and Γ is the Hamming graph H(m + 1, a1 + 2).
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Proof. Let Λ be a strongly closed subgraph of diameter m which is the Hamming graph
H(m, a1 + 2). Then c j = c j (Λ) = j and a j = a j (Λ) = ja1 for all j with 1 ≤ j ≤ m.

By putting i = m + 1 in Proposition 16(i) we have cm+1 ≥ cm − bm + a1 + 2 = (m + 1). It
follows, by Lemma 17(ii), that

(m + 1)(1 + a1) = cm + am + bm ≥ cm+1 + am+1 ≥ cm+1(1 + a1) ≥ (m + 1)(1 + a1).

This implies cm+1 = m + 1, am+1 = (m + 1)a1 and bm+1 = 0. Hence d = m + 1 and Γ
is the Hamming graph H(m + 1, a1 + 2) by Lemma 17 and Proposition 16(ii). The lemma is
proved. �

We will use an inductive argument by the previous lemma. So we consider the cases m = r +1
and m = r + 2 in the next proposition. Some informations for the graphs in the statement can be
found in [4, p 221, Section 12.3, Section 13.2A, Section 13.4].

Proposition 19. Let Γ be a distance-regular graph of valency k ≥ 3, diameter d and r = r(Γ ).

(i) Assume that r + 2 ≤ d. If the condition (SC)r+1 holds and br+1 = a1 + 1, then Γ is either
the Pappus graph, the Coxeter graph, the dodecahedron, the Desargues graph, the Foster
graph, the Biggs–Smith graph, or the Hamming graph H(3, a1 + 2).

(ii) Assume that r + 3 ≤ d. If the condition (SC)r+2 holds and br+2 = a1 + 1, then Γ is
either the Desargues graph, the Foster graph, the Biggs–Smith graph, or the Hamming graph
H(4, a1 + 2).

Proof. Lemma 17 shows that Γ is of order (s, t) with s = a1 + 1 and t =
b1

a1+1 .
(i) Put h = r+1 in Proposition 11(i). Then (br −br+1) = (t−1)(a1+1) divides br = t (a1+1),

and thus t = 2. If s = 1, then Γ has valency 3, and thus Γ is either one of the graphs in the
statement by using the classification of distance-regular graphs of valency three (see [3], [4,
Theorem 7.5.1]). Suppose s > 1. Let Ξ be a strongly closed subgraph of diameter r + 1. Then
Ξ is distance-regular with k(Ξ ) = cr+1 + ar+1 = k − br+1 = 2(a1 + 1) and thus Ξ is of order
(s, 1) with s > 1 and d(Ξ ) = r + 1. Hence cr+1 = cr+1(Ξ ) = 2, and ar+1 = ar+1(Ξ ) = 2a1
by Proposition 16(iii). Since

3(1 + a1) = (cr+1 + ar+1 + br+1) ≥ cr+2 + ar+2 ≥ 3(1 + a1)

by Lemma 17(ii) and Proposition 16(iv), we have cr+2 = 3, cr+2 = 3a1, br+2 = 0 and d = r+2.

Hence Γ is the Hamming graph H(3, a1 + 2) by Proposition 16(iv).
(ii) Put m = r + 2 in Corollary 10. Suppose that br+1 = br+2 = a1 + 1. Then Γ is either

the doubled Odd graph 2O3 (the Desargues graph), the Foster graph or the Biggs–Smith graph.
We assume that br+1 > br+2. Then there is an integer n ≥ 2 such that br+1 = n(a1 + 1) by
Lemma 17(i). Put h = r + 2 in Proposition 11(i). Then we have n = 2 and br+1 = 2(a1 + 1).

Let Λ be a strongly closed subgraph of diameter r + 2. Then Proposition 6 implies that Λ is
distance-regular with bi (Λ) = k(Λ) − ci (Λ) − ai (Λ) = (cr+2 + ar+2) − ci − ai = bi − br+2
for all i with 0 ≤ i ≤ r + 2. Apply Proposition 11(i) to Λ with h = r + 1. Then
(br (Λ)−br+1(Λ)) = (t−2)(a1+1) divides br (Λ) = (t−1)(a1+1). Thus t = 3 and Γ is of order
(a1 + 1, 3). Moreover, Λ is of order (a1 + 1, 2) as k(Λ) = cr+2 + ar+2 = k − br+2 = 3(a1 + 1).

If a1 = 0, then Γ has valency 4 and hence Γ is the Hamming graph H(4, 2) by using the
classification of distance-regular graphs with valency four [5]. If a1 > 0, then Λ is the Hamming
graph H(3, a1 +2) by (i) since br+1(Λ) = br+1 −br+2 = (a1 +1). Therefore Γ is the Hamming
graph H(4, a1 + 2) by Lemma 18. �
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We remark that each graph in Proposition 19(i) satisfies the condition (SC)r+1 and any
strongly closed subgraph of diameter r + 1 is a polygon except the case that Γ is the Hamming
graph. Each graph in Proposition 19(ii) satisfies the condition (SC)r+2 (see [11, Theorem
1.4–1.5] and [9, Section 2]). The Desargues graph is the doubled Odd graph 2O3. The doubled
Odd graph 2Ok with diameter d = 2k − 1 satisfies the condition (SC)d−1 and any strongly
closed subgraph of diameter d − 1 is a non-regular distance-biregular graph (see Proposition 6
and [9, Section 2]). However the dodecahedron, the Foster graph and the Biggs–Smith graph do
not satisfy the condition (SC)d−1 by Corollary 10.

Proposition 20. Let Γ be a distance-regular graph of valency k ≥ 3, diameter d and r = r(Γ )

with r + 4 ≤ d. Let m be an integer with r + 3 ≤ m ≤ d − 1. If the condition (SC)m holds and
bm = a1 + 1, then Γ is either the doubled Odd graph 2Ok , or the Hamming graph H(d, a1 + 2).

Proof. We prove the assertion by induction on m. If bm−1 = bm , then Γ is the doubled Odd graph
2Ok by Corollary 10 as m ≥ r +3 and bm = a1 +1. We assume that bm−1 > bm = a1 +1. Then
bm−1 = n(a1 + 1) for some integer n with n ≥ 2 by Lemma 17, and n = 2 by putting h = m in
Proposition 11(i). Let Λ be a strongly closed subgraph of diameter m. Then Λ is distance-regular
with bi (Λ) = bi − bm for all i with 0 ≤ i ≤ m. In particular, bm−1(Λ) = a1 + 1. Suppose that
m = r + 3. Then Λ is one of the graphs in Proposition 19(ii). If Λ has valency 3, then a1 = 0
and Γ has valency k = cm + am + bm = 4, and hence Γ is the doubled Odd graph 2O4 by
using the classification of distance-regular graphs with valency four [5]. If Λ is the Hamming
graph H(4, a1 + 2), then Γ is the Hamming graph H(5, a1 + 2) by Lemma 18. Suppose that
m ≥ r + 4. Then Λ is either the doubled Odd graph or the Hamming graph H(m, a1 + 2) by
the inductive hypothesis. If Λ is the doubled Odd graph, then it contains a non-regular distance-
biregular graph Ξ of diameter m − 1 as a strongly closed subgraph. Then Γ is a distance-regular
graph which satisfies the condition (SC)m−1 and contains a non-regular distance-biregular graph
Ξ of diameter m − 1 as a strongly closed subgraph. Hence Γ is the doubled Odd graph 2Ok by
Proposition 8 as bm = a1 + 1. If Λ is the Hamming graph H(m, a1 + 2), then Γ is the Hamming
graph H(m + 1, a1 + 2) by Lemma 18. �

Proof of Theorem 1. Let r = r(Γ ) = max{i | (ci , ai , bi ) = (c1, a1, b1)}. Suppose that
d = r + 1. Then k = cr + ar + br = 2(1 + a1) and Γ is of order (a1 + 1, 1). Hence Γ is
either the Hamming graph H(2, a1 + 2) or the collinearity graph of a generalized 2d-gon of
order (a1 + 1, 1) with d ∈ {3, 4, 6} by Proposition 16(iii). Suppose that d ∈ {r + 2, r + 3}. Then
Γ is either the Pappus graph, the Coxeter graph, the Hamming graph H(3, a1+2), the Desargues
graph or the Hamming graph H(4, a1 +2) by Proposition 19. Suppose that d ≥ r +4. Then Γ is
either the doubled Odd graph 2Ok or the Hamming graph H(d, a1 + 2) by Proposition 20. The
theorem is proved. �

Theorem 1 shows that a distance-regular graph which satisfies the conditions (i) and (ii) in the
introduction is a Hamming graph since other graphs in Theorem 1 have trivial strongly closed
subgraphs of diameter 2 which are not distance-regular.

Proof of Theorem 2. (iii) ⇒ (ii) ⇒ (i). These are straightforward.
(i) ⇒ (iii). The Pappus graph and the Coxeter graph have valency 3. Strongly closed

subgraphs of diameter d − 1 in the doubled Odd graph 2Ok are non-regular distance-biregular
graphs. The desired result is proved by Theorem 1. �

Finally we prove Theorem 3. We need the following lemma.
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Lemma 21. Let Γ be a distance-regular graph of diameter d and r = r(Γ ) such that r +3 ≤ d.

Suppose that bd−2 = 2bd−1 and the condition (SC)d−1 holds. Then bd− j = j bd−1 holds for all
j with 1 ≤ j ≤ d − r. In particular, r = 1.

Proof. We write b := bd−1 and e := d − r − 1. We prove the first assertion by induction on j.
The cases j = 1 and j = 2 follow by our assumption. Corollary 14 shows that there exists a
positive integer f such that (bd−2 − bd−1) = f (bd−3 − bd−2) and

b2
= (bd−2 − bd−1)

2
≤ bd−1(bd−3 − bd−2) = b

(
b

f

)
.

Hence we have f = 1 and bd−3 = 3b. The first assertion is proved if d = r + 3. Suppose that
r + 4 ≤ d. Let 3 ≤ j < d − r and assume that bd−i = ib for i = 1, . . . , j. Then there exists a
positive integer n such that (bd− j − bd− j+1) = n(bd− j−1 − bd− j ) and

b2
= (bd− j − bd− j+1)

2
≤ (bd− j+1 − bd− j+2)(bd− j−1 − bd− j ) = b

(
b

n

)
by putting m = d − j + 1 in Corollary 15 and our inductive hypothesis. Hence we obtain n = 1
and bd− j−1 = ( j +1)b. The first assertion is proved. Put j = 1 and h = d −1 in Proposition 12.
Then

d−2∏
i=1

bi

(bi − bd−1)
=

(
(e + 1)b

eb

)r (
eb

(e − 1)b

)
· · ·

(
3b

2b

) (
2b

b

)
=

(e + 1)r

er−1

is an integer. The second assertion is proved. �

Proof of Theorem 3. Let s = a1 + 1. Then there exists an integer n such that bd−1 = ns and
bd−i = ins for all i with 1 ≤ i ≤ d −1 by Lemma 17(i) and Lemma 21. Put j = 0 and h = d −1
in Proposition 12. Then

d−2∏
i=0

bi

(bi − bd−1)
=

(
(d − 1)ns + s

(d − 1)ns

) (
(d − 1)ns

(d − 2)ns

)
· · ·

(
3ns

2ns

) (
2ns

ns

)
=

(
(d − 1)n + 1

n

)
is an integer. Hence n = 1 and bd−1 = a1 + 1. The desired result follows by Theorem 1. �
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