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Identification and characterization of adeno sine A1 receptor-
cAMP system in human glomeruli
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Identification and characterization of adenosine A1 receptor-cAMP
system in human glomeruli. Although adenosine is known to affect renal
function through stimulating adenosine receptors, little is known about
A1 receptors in human glomeruli. Thus, we attempted to identify the
adenosine A1 receptor-cyclic AMP (cAMP) system in human glomeruli.
Normal renal cortical tissues were obtained at nephrectomy of patients
with renal cell carcinoma. Glomeruli were isolated using a graded
sieving method or dissected manually under a stereomicroscope. Radio-
ligand binding assay using 2-chloro-N-['H] cyclopentyl adenosine
([3H)CCPA, an A, agonist ligand) was performed at 30°C for 90 minutes.
Cyclic AMP (cAMP) produced in glomeruli was measured after incu-
bation with different concentrations of N6-cyclohexyladenosine (CHA;
A1 agonist) and a phosphodiesterase inhibitor. The specific binding was
saturated within 60 minutes and reversible by adding 1 msi of theophyl-
line. Scatchard plot analysis revealed a single class of binding site (Kd
= 1.78 0.21 nM, Bmax = 271.7 35.8 fmollmg protein). The specific
binding was inhibited dose-dependently by various agents in an order
suggesting A, receptor specificity. CHA inhibited the production of
cAMP in microdissected human glomeruli. This inhibitory effect was
antagonized by 8-cyclopentyl-l ,3-dipropylxanthine (DPCPX; A, antag-
onist). This is the first study revealing the presence of the A1 receptor-
cAMP system in human glomeruli using a radioligand binding assay
method and by measuring the cAMP production.

Adenosine has been shown to be involved in the regulation of
a variety of renal functions such as renal blood flow, glomerular
filtration rate [1] and renin secretion [2, 3] through adenosine
receptors in the kidney, affecting urinary flow and electrolyte
excretion [4, 5]. According to current concepts [6—9], the action
of adenosine is mediated by extracellular receptors designated
A1 and A2, which are coupled to adenylate cyclase through the
inhibitory guanine nucleotide binding protein Gi and stimula-
tory protein Gs. The stimulation of A1 receptors was reported
to inhibit cAMP production in heart muscle cells [10, 11],
adipocytes [8], the central nervous system [12], and renal
tissues including glomeruli [13], mesangial cell [14], thick as-
cending limbs [15] and collecting tubules [4, 16].

Recent animal studies have suggested that the stimulation of
the A1 receptors causes the glomerular contraction [17, 181, the
decreases in glomerular filtration rate, renal blood flow [19—21]
and sodium chloride transport [22, 23], and the inhibition of
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renin secretion [2, 3], erythropoietin secretion [24] and neuro-
transmitter release [25, 26]. However, the characterization of
A1 receptors by using a direct radioligand binding assay has not
been performed extensively in the kidney [27, 28], and little is
known about human glomeruli. Thus, we attempted to identify
and characterize the A1 receptor-cAMP system in human
glomeruli by radioligand binding assay using 2-chloro-N-[3H]
cyclopentyladenosine ([3H]CCPA, a highly selective A1 agonist
ligand [29]) and cAMP assay.

Methods

Isolation of glomeruli for binding assay
Human kidneys were obtained at nephrectomy from patients

with renal cell carcinoma. Techniques for isolation of glomeruli
were according to those reported previously [30], with some
modification. Normal cortical tissues were immediately sepa-
rated from medulla, dissected and minced to a paste-like
consistency. The paste was successively pushed through 120
pm stainless sieve which excluded the tubules, and through a 89
m sieve which retained glomeruli. The suspension of glomeruli
obtained was centrifuged at 120 x g for three minutes and the
supernatant was discarded. This operation was repeated three
times. The purity of the glomeruli was more than 97%. The
glomeruli were rapidly frozen and kept at —80°C until study of
radioligand binding assay. All frozen samples were used within
two months.

Radioligand binding assay
For the radioligand binding assay, the glomeruli were homog-

enized in a Dounce homogenizer in a buffer solution containing
5 mM Tris-HC1 and 5 mrvi EDTA, pH 7.4, at 4°C. Homogenates
were centrifuged at 30,000 >< g for 30 minutes at 4°C. The
glomerular membrane pellets were resuspended to a final con-
centration of 0.3 to 0.5 mg of protein/mI in a buffer containing 50
mM Tris-HCI, 120 mM NaCl and 3 U/mI of adenosine deami-
nase, pH 7.4, and preincubated at 30°C for 30 minutes in order
to remove endogenous adenosine. Protein concentration of the
membrane suspension was determined by the Lowry method
[31]. Fifty microliters of the same buffer containing various
concentrations of [3HICCPA were added to 100 p1 of the
membrane suspension. Nonspecific binding was determined by
adding 1 mr'.t of theophylline, an antagonist of adenosine recep-
tors. The incubation was carried out at 30°C for 90 minutes,
unless otherwise specified. The reaction was terminated by
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filtration through polyethylenimine-treated Whatman GF/C fil-
ters with ice-cold incubation buffer containing 50 ms'i Tris-HC1,
120 mi NaC1 and 0.1% BSA. The filters were then dried and
their radioactivities were counted with a scintillation counter
after adding scintillator. Binding capacity (Bma,j, dissociation
constant (Kd) and results from competition studies were ana-
lyzed with the LIGAND computer program [32].

Preparation of glomeruli for cAMP assay
A method for preparing isolated glomeruli has been reported

previously [33]. Briefly, normal renal cortical tissues were
obtained at nephrectomy from patients with renal cell carci-
noma. The tissues were sliced and incubated at 30°C for 45
minutes in a Krebs-Ringer bicarbonate buffer solution (KRB,
pH 7.4), which contained 0.1% BSA and 0.1% collagenase and
was exposed to 95% 02/5% CO2. Glomeruli were dissected
under a stereomicroscope in an ice-cold modified Hanks'
HEPES solution (pH 7.4) containing 3 U/mI of adenosine
deaminase and 2.5 x l0— M of Ro 20-1724, a phosphodiester-
ase inhibitor. Isolated glomeruli were without capsules and
arterioles and the structure was well preserved. Two glomeruli
were transferred to 20 d of a modified Hanks' HEPES solution
in a siliconized glass culture tube for enzyme assay.

Assay of cyclic AMP
Techniques for incubation and assay of cellular cyclic AMP

in glomeruli were similar to those reported previously [33].
Mter five minutes of preincubation at 37°C, 20 d of modified
Hanks' HEPES solution containing various concentration of
N6-cyclohexyladenosine (CHA; a selective adenosine A1 ago-
nist), 7.3 x l0— M of parathyroid hormone (PTH, 1-34; human)
and/or 5 x l0— M of 8-cyclopentyl-l ,3-dipropylxanthine
(DPCPX; a selective adenosine A1 antagonist) were added to
the incubation medium. The incubation was continued for an
additional two minutes at 37°C. The reaction was terminated by
adding 50 l of ice-cold 10% trichloroacetic acid and the
solution was extracted three times with 0.8 ml of water-
saturated ether. Cyclic AMP was determined by radioimmuno-
assay after acetylation (New England Nuclear kit). Data were
expressed as means SE. Statistical analysis were performed
by Student's t-test after ANOVA.

Materials
[3H]CCPA was obtained from New England Nuclear (Bos-

ton, Massachusetts, USA). The following compounds were
obtained from Sigma Chemical Company (St. Louis, Missouri,
USA): collagenase (type I), adenosine deaminase, N-2-hydroxy-
ethylpiperazine (HEPES), PTH, CHA, DPCPX and 5'-N-eth-
ylcarboxamidoadenosine (NECA, an A1 and A2 agonist). YT-
146, a selective adenosine A2 agonist [34], was supplied by Toa
Eiyo Ltd. (Fukushima, Japan). Ro 20-1724 was supplied by
Hoffmann LaRoche Ltd. (Basel, Switzerland).

Results

Radioligand binding assay
The binding of [3H]CCPA for human glomerular membranes

was saturable (Fig. 1) and reversible (Fig. 2). Maximum binding
was obtained within 60 minutes after the start of incubation.
The apparent rate constant of this pseudo first-order reaction
has been calculated to be 0.103 min' (r = 0.98). The dissoci-

Time, minutes
Fig. 1. Kinetic analysis of[3H] CCPA binding to the human glomeru-
lar membranes as a function of time. The specific binding of the
radioligand was rapid and saturable. Maximal binding was obtained
within 60 minutes. Insert: Pseudo-first order kinetic plot of [3H] CCPA
binding. Data were used to determine Bt (amount of [3H] CCPA bound
at time "t") and Beq (amount of [3H] CCPA bound equilibrium). This
line (r = 0.98) has a slope, Kap, equal to the observed rate constant of
the pseudo-first order reaction.

ation studies were performed by adding 1 m of theophylline, a
nonspecific adenosine receptor antagonist, to the reaction mix-
tures after saturation (Fig. 2). Dissociation was also rapid. The
Kd value (1.62 nM) calculated from the association and disso-
ciation studies correlated reasonably well with the value ob-
tained from the Scatchard plot analysis. Scatchard analysis
revealed the presence of single high-affinity binding site with a
Kd of 1.78 0.21 nM and a Bmax of 271.7 35.8 fmollmg of
protein for the glomerular membranes (N = 10). A representa-
tive saturation curve and its Scatchard plot analysis are shown
in Figure 3. Binding to the low affinity state was not reliably
detected under these conditions. Nonspecific binding was about
30% of the total binding at Kd. Competition studies with various
adenosine analogues showed that the binding of [3H]CCPA to
human glomerular membranes was inhibited in a dose-depen-
dent manner (Fig. 4). Ki values (means of 3 experiments)
against the binding of F3HJCCPA were calculated using the
LIGAND and the results were as follows; 1.6 nM for DPCPX
(A1 antagonist), 2.1 nM for CHA (A1 agonist), 7.2 nM for NECA
(A1 and A2 agonist), 66 n for YT-l46 (A2 agonist), 6000 nM for
theophylline (nonselective antagonist) (Table 1). The results
suggested an adenosine A1 receptor specificity.

Glomerular cAMP system

Our previous study [35] showed that cAMP production
increased as a function of time, and reached virtually a maxi-
mum within two minutes alter the start of the incubation. Thus,
glomeruli were incubated for two minutes in this study. A linear
relationship was observed between the number of glomeruli and
cAMP formed in the presence of 7.3 x l0— M of PTH during
two minutes of incubation. Therefore, two glomeruli were
incubated in one tube. The dose-response relationship between
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Time, minutes

Fig. 2. Reversibility of [3Hj CCPA binding to the human glomerular
membranes. Dissociation curve was determined by adding theophylline
to a final concentration of 1 mM after radioligand was first incubated
with the membranes for 60 minutes. Insert; First order rate plot of the
dissociation of the receptor-ligand complex. Data were used to deter-
mine Bt (amount of [3H] CCPA binding at time "t") and Bo (amount of
[3H] CCPA binding at time zero). The line, determined by linear
regression analysis (r = 0.99) has a slope, K2, equal to the first order
rate constant.
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Fig. 3. A representative saturation curve of[3H] CCPA binding to the
human glomerular membranes. Membrane solution prepared from
human isolated glomeruli was incubated with [3H] CCPA solution (0.06
to 9.8 nM). Nonspecific binding was determined by adding I mst of
theophylline. Incubation was done at 30°C for 90 minutes. Insert;
Scatchard analysis shows a straight line, indicating a single binding site.

PTH and cAMP production in the glomeruli showed that
half-maximum stimulation occurred at 1 x iO M PTH [351.
Thus, PTH at a concentration of 7.3 x iO M was chosen to
stimulate adenylate cyclase. Under these assay conditions,
CHA, an adenosine A1 agonist, significantly inhibited cAMP
production at concentrations of 5 x 10—8 M and 5 x iQ M
compared to basal value (from 28.4 3.4 to 23.6 2.2 and 22.1

2.0 fmol/glomerulus, respectively: P < 0.05). However, this
inhibitory effect was no longer apparent at S x l0 M (Fig. 5).
In the presence of 5 x io— M of DPCPX, an adenosine A1

Fig. 4. Representative competition curves of various adenosine ana-
logs with [3H] CCPA binding to the human glomerular membranes. Ki
of each analogue is as follows: 8-cyclopentyl-dipropylxanthine
(DPCPX, an adenosine A1 antagonist,• •), 1.4 nst; N6-cyclohex-
yladenosine (CHA, an adenosine A agonist, O—O), 1.9 nM; 5'-N-
ethyl- carboxamidoadenosine (NECA, an adenosine A1, A2 agonist

6.8nM; 2-octinyl-adenosine (YT-146, an adenosine A2 agonist,
A A, 63 nM; and theophylline (E1—l), 5400 nM.

Table 1. Ki values of adenosine analogs for the binding of [3H]CCPA
to the human glomerular membranes

Adenosine analogs Ki nM

DPCPX; A1 antagonist 1.6
CHA; A1 agonist 2.1
NECA; A1 and A2 agonist 7.2
YT-t46; A2 agonist 66
Theophylline 6000
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Data are means of 3 experiments.

antagonist, the inhibitor effect of CHA was disappeared. More-
over, high concentrations of CHA (5 x 10 M) stimulated
cAMP production (from 26.4 3.4 to 36.1 3.2 fmol/glomer-
ulus; P < 0.05) possibly through the A2 receptor. PTH (7.3 x
1O M) stimulated cAMP production in human glomet-uli from
28.4 3.4 to 123.4 17.8 fmol/glomerulus. CHA at concentra-
tions ranging from 5 x 10_s to 5 X 10 M significantly inhibited
PTH-stimulated cAMP production (Fig. 6). This inhibitory
effect was antagonized by DPCPX (Fig. 6).

Discussion

The present study first demonstrated in human glomeruli the
presence of a single class of binding sites for [3HICCPA, an A1
agonist, by using the radioligand binding assay and the inhibi-
tory effect on cAMP production through stimulation of the A1
receptor.

Rabbit glomeruli were previously reported to contain A1
receptors with a Bmax of 7.7 fmol/mg protein using binding
experiments with ['25IIHPIA, an A1 agonist ligand [27]. The
present study showed that human glomeruli contain a much
higher density of A1 receptors (Bmax = 271.7 35.8 fmol/mg
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Fig. 5. Effect of CHA (an A, agonist) on basal cAMP production in
human glomeruli in the absence (O----O) andpresence (• •) o.f 5 X
jp—5 M of DPCPX (an A, antagonist). For incubation conditions see
Methods. Each point is the mean SE of 8 separate experiments, each
in triplicate. * P < 0.05 compared to the basal value (no CHA added).
** P < 0.05 compared to the values at same concentration of CHA (no
DPCPX added).

protein) compared to those of the rabbit, even if the difference
in methods is considered. The high concentration of [311]CHA
binding sites in human glomeruli and the low concentration in
the guinea pig glomeruli have been demonstrated previously by
autoradiography [361, while the biochemical characterization as
well as intracellular signal transduction systems of the A1
receptors has not been evaluated. The Ki values of adenosine
analogs for the binding of [3H]CCPA to the human glomerular
membranes were slightly higher than the previous data in the rat
brain [291. For example in the rat brain using [3H]CCPA as a
ligand, Ki values of DPCPX, NECA, and theophylline were 0.3,
2.8, and 5750 n respectively. The actual reason for these
differences are not clear. However, differences of species and
organs as well as assay conditions may be the possible reasons
for these differences of Bm.x and Ki.

In this study, we measured cAMP levels in isolated intact
glomeruli. Because direct measurement of adenylate cyclase
activity required excess ATP as a substrate, we had to use the
broken cell. However, in the broken cell, the inhibitory effect of
adenylate cyclase could not be always demonstrated [33, 371,
possibly due to damage of the linkage between receptor and
adenylate cyclase. Therefore, we used intact glomeruli and
found inhibition of adenylate cyclase by stimulating the ade-
nosine A1 receptor.

In this study, we demonstrated that CHA inhibited cAMP
production in isolated human glomeruli through stimulation of
the A1 receptor. Furthermore, we found that in the absence of
DPCPX, a high concentration (5 X lO M) of CHA had no
effect or even a stimulatory effect on basal cAMP production in
the presence of DPCPX. These results suggest that human
glomeruli might contain not only A1 receptors but also A2
receptors, and therefore A2 receptor-induced stimulation of
cAMP production might be added to A1 receptor-induced

0 5x109 5x108 5x10-75x10 5x105

Concentration of CHA, M

Fig. 6. Effect of CHA on PTH-stimulaied cA MP production in isolated
human glomeruli in the absence (O----O) andpresence (• •) of5 x

M of DPCPX. For incubation conditions see Methods. Each data
point is the mean SE of 8 separate experiments, each in triplicate.
Value without PTH is 39.2 2.1 fmol/glomerulus (no DPCPX added) or
42.3 4.7 fmol/glomerulus (DPCPX added). * P < 0.05 compared to
the value without CHA. P < 0.05 compared to the each value at the
same concentration of CHA (no DPCPX added).

inhibition of cAMP. In the presence of PTH we could not find
A2 receptor-stimulated cAMP production. This may be ex-
plained by the fact that the adenylate cyclase system was
already stimulated maximally by PTH. These results are con-
sistent with the fact that adenosine has a high affinity for A1
receptors and low affinity for A2 receptors. The inhibitory effect
on cAMP production of the A1 receptor stimulation in the
human glomeruli was greater than that in rat glomeruli [13J.
Because we used the same method for both studies, this
difference may be due to the difference of A1 receptor density
between the two species.

There are several types of cells in the glomerulus. Because in
this study an interaction of A1 receptor and PTH on cAMP
formation was observed in human glomeruli, one of the possible
sites of localization of the adenosine A1 receptor is in the cell
type that responds to PTH. A previous immunohistochemical
study showed that cAMP fluorescence increased in visceral
epithelium (podocyte) after perfusion with PTH [381. Therefore,
the A1 receptor might exist in this cell type. However, a recent
report showed that A1 receptor stimulation inhibits cAMP
production in the rat mesangium [141. Thus, further studies will
be required to identify the cell types where the A1 receptor
exists in the human glomerulus.

Recent studies suggest the existence of an additional cellular
pathway for the action of adenosine, the phosphoinositol path-
way, in which calcium is the intracellular messenger. In renal
tissues it has been reported that adenosine stimulates the
turnover of inositol phosphates and the elevation of cytosolic
free calcium through stimulation of the A1 receptor [4, 14, 39,
401.

In summary, this is the first study to characterize the ade-
nosine A1 receptor by direct radioligand binding assay and
show the inhibitory effect on cAMP production through this A1
receptor in human glomeruli. More studies will be required to
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investigate the physiological role of this A1 receptor-cAMP
system in human glomeruli.
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