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Autism spectrum disorders (ASD) are neurodevelopmental disorders characterized by varying degrees of
dysfunctional communication and social interactions, repetitive and stereotypic behaviors, as well as learning
and sensory deficits. Despite the impressive rise in the prevalence of autism during the last two decades, there
are few if any clues for its pathogenesis, early detection or treatment. Increasing evidence indicates high brain
expression of pro-inflammatory cytokines and the presence of circulating antibodies against brain proteins. A
number of papers, mostly based on parental reporting on their children's health problems, suggest that ASD
children may present with “allergic-like” problems in the absence of elevated serum IgE and chronic urticaria.
These findings suggest non-allergic mast cell activation, probably in response to environmental and stress
triggers that could contribute to inflammation. In utero inflammation can lead to preterm labor and has itself
been strongly associated with adverse neurodevelopmental outcomes. Premature babies have about four
times higher risk of developing ASD and are also more vulnerable to infections, while delayed development of
their gut–blood–brain barriers makes exposure to potential neurotoxins likely. Perinatal mast cell activation
by infectious, stress-related, environmental or allergic triggers can lead to release of pro-inflammatory and
neurotoxic molecules, thus contributing to brain inflammation and ASD pathogenesis, at least in a subgroup of
ASD patients. This article is part of a Special Issue entitled: Mast cells in inflammation.
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1. Prevalence and characteristics of autism spectrum disorders

Autism spectrum disorders (ASD) are pervasive developmental
disorders that include autistic disorder, Asperger's disorder and
pervasive developmental disorder-not otherwise specified (PDD-
NOS) [1]. They are characterized by stereotypic behaviors, variable
deficits in language and social skills and a wide range of other
behavioral problems. ASD manifest during childhood and at least 30%
present with sudden clinical regression of development around
3 years of age [2,3]. Over the last 20 years, there has been an
impressive rise in ASD with current prevalence estimates being about
1/100 children [4,5].

In the majority of cases, the cause of ASD is unknown [6], although
some possible autism susceptibility genes have been identified [7] and
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gene interactions with environmental factors have been suspected [8].
Recent reviews have focused mostly on genomic screens that suggest
there are multiple gene interactions in autism; however, no gene
abnormality alone can explain the apparent increase in ASD
prevalence. Increasing evidence suggests that there are different
ASD endophenotypes, even within the ASD spectrum [9].

2. Immune dysregulation

The concept of some immune abnormality in ASD has been
debated since the 1990s, when a study reported reduced numbers of
CD4+ CD45RA+ lymphocytes (subpopulation responsible for induc-
tion of suppressor T cells or regulatory T cells) in autistic subjects
(n=36) compared to healthy age-matched controls (n=35),
indicating a functional deficit in the innate immune response [10].
Measurement of natural killer (NK) cell activity in blood samples of
autistic children (n=1027) revealed that 45% of the subjects
exhibited low NK cell activity compared to the controls (n=113).
The correlation of this finding with low intracellular glutathione, IL-2
and IL-15 levels may indicate the underlying cause for NK cell
dysfunction in a subset of autistic children [11]. Gene expression of
perforin, granzyme B and interferon-γ (IFNγ) in peripheral blood NK
cells of ASD patients (n=52) was decreased compared to the control
group (n=27) under similar stimulation conditions, indicating
depressed cytotoxicity [12].

In contrast to possibly depressed cell-mediated immunity, the role
of pro-inflammatory molecules appears to be increased in autism.
Peripheral blood mononuclear cells from ASD patients (n=71)
secreted more tumor necrosis factor (TNF) in response to lipopoly-
saccharide (LPS) as compared to controls (n=40) [13]. Plasma levels
of IL-12 and IFNγ were increased in autistic individuals [14] and IFNγ
plasma levels were later found to be positively correlated with the
generation of nitric oxide in autism [15]. IL-6 expression was elevated
in the brains of deceased ASD patients [16]; it was detected at low
levels in the cerebrospinal fluid (CSF) in subjects with autism (n=35)
as compared to control subjects with other neurologic disorders, but
only TNF receptor II was significantly elevated in the serum [17]. TNF
levels were elevated in CSF of patients with ASD but were not elevated
in the serum [18]. Elsewhere, there was significant increase in the
serum concentration of IFNγ, and a trend towards increased
production of IL-6 and TNF in whole blood of autistic children [19].
Macrophage inhibitory factor (MIF), a molecule shown to enhance
immunity through different mechanisms, was higher in the plasma of
probands with ASD than their unaffected siblings and correlated with
severity of ASD symptoms [20].

We recently showed that levels of the peptide neurotensin (NT),
which is present in both the brain and gut, were elevated in the serum
of young autistic patients [21]. NT can stimulate lymphocyte
proliferation [22], activate T cells [23], enhance IL-1 production
from macrophages [24], and trigger mast cell activation [25]. Unlike
NT, substance P (SP) was not elevated as also previously reported
[26,27]; β-endorphin was also not elevated, even though it had been
reported to be increased in the CSF of a small group of children (n=9)
with infantile autism [28]. We also recently showed that NT can
stimulate mast cells to release mitochondrial DNA extracellularly and
that such DNA was significantly elevated in the serum of autistic
children [29].

With respect to other neuropeptides, archived neonatal blood was
analyzed with immunoaffinity chromatography, and serum levels of
vasoactive intestinal peptide (VIP) and calcitonin-gene related
peptide (CGRP) were reported to be higher in children with ASD
(n=69) and those with mental retardation without ASD (n=60); in
contrast, levels of substance P (SP) and nerve growth factor (NGF)
were similar to those of controls [26]. Nevertheless, the same authors
using Luminex immunoaffinity arrays later showed no difference in
any of these peptides between autistic subjects and controls [27].
There may be a persistently inappropriate immune response of
autistic subjects to antigenic stimuli, also observed in their unaffected
siblings, suggesting a particular genetic background influenced by
environmental triggers [30]. A number of papers have reviewed
family or personal history of immune disorders in many children with
ASD [31,32], prompting the suggestion that ASD may have a
“neuroimmune” component [31–33].

3. “Allergic symptoms” in children with ASD

Many ASD children suffer from “allergic-like” symptoms [34],
although their exact prevalence remains unknown compared to the
general population. Many of the “allergic-like” symptoms reported by
ASD children could be consistent with chronic idiopathic or chronic
autoimmune urticaria [35]. A case-control study, nested within a
cohort of infants born in California between 1995 and 1999, examined
the association of “immune-related conditions”with ASD using health
records and reported that prevalence of maternal psoriasis, asthma,
hay fever and atopic dermatitis during the second trimester of
pregnancy correlated with N2-fold elevated risk of ASD in their
children [36]. Increased allergic problems (i.e., atopic dermatitis,
asthma and rhinitis, as well as high serum IgE, number of eosinophils
and positive skin tests) were present in 70% of Asperger patients
(n=15) compared to 7% of age-matched healthy controls (n=15)
[37]. In a National Survey of Children's Health, parents of autistic
children (n=483) reported more symptoms of allergies (also
anxiety/depression), with food allergies being the most prevalent
complaint, than those of healthy control children (n=84,789) [38].
Nevertheless, there are limitations relevant to the subjective nature of
parents' perception about allergies, since these were not confirmed by
a clinician. A link between allergies and autism is also suggested by a
recent preliminary study of children with ASD (n=245), which
indicated that the strongest association of autismwaswith a history of
allergies [39].

There is also evidence of non-IgE-mediated “allergic symptoms.” In
a hospital-based case-control study, based on questionnaires com-
pleted by the parents and scored blindly by an allergist, 30% of autistic
children (n=30) had a family history of allergic features compared to
2.5% of age-matched “neurologic controls” (n=39) (pb0.005);
however, there was no difference in serum IgE or skin prick tests to
12 common antigens between autistic subjects and controls [40],
suggesting non-allergic mast cell activation. There was also no
difference in IgG, IgA or IgM levels [40]. One study reported elevated
IgG4 levels in children with autistic disorder (n=114) compared to
normally developing children (n=96) [41]. However, the significance
of this finding is not apparent because high levels of IgG4 antibodies to
foods during infancy are associated with tolerance later in life [42],
while many ASD children are in fact intolerant to foods. Moreover,
testing for IgG4 against foods is not recommended for diagnosis of
food hypersensitivity. Another study investigated the prevalence of
atopic and non-IgE-mediated disorders in ASD children (a) with
frequent infections and behavioral problems (n=26) and (b) without
frequent infections (n=107), compared to non-ASD controls
(n=43). Even though the prevalence of atopic disorders in ASD
subjects was similar to that of the controls, non-IgE-mediated food
allergy was observed at a significantly higher rate in both ASD
subgroups compared to controls [43].

One representative case is that of a 12-year-old Caucasian male
with a history of gastrointestinal (GI) complaints, diarrhea and
frequent rashes at various parts of the body since birth (Fig. 1), often
precipitated by certain foods. Exhaustive clinical testing including
immune function, autoimmune indices, serum IgE, tryptase, number
of eosinophils, tissue transglutaminase and gliadin antibodies, viral
antibody titers were negative. This child was developing normally
until 2.5 years of age, at which point he exhibited developmental
delay andwas diagnosedwith regressive autism. At about 8 years old,



36 T.C. Theoharides et al. / Biochimica et Biophysica Acta 1822 (2012) 34–41
he developed hives after eating steak and was suspected of being
sensitive to meat carbohydrate components (see Addendum In
Press).

A preliminary report indicated that the prevalence of ASD is 10-
fold higher (1/10 children) in mastocytosis patients than in the
general population (1/100 children) [44]. Mastocytosis is a spectrum
of disorders with a prevalence of about 1/4,000 children, which
involves proliferation and activation of mast cells in the skin (urticaria
pigmentosa, UP) and other organs [45], leading to skin reactions, food
allergies often in the absence of positive skin testing, and food
intolerance, but also behavioral problems [46,47]. One possible case is
that of a 4-year-old Caucasianmale whowas diagnosedwith UP at the
age of 1 year. The pediatrician at that time suggested that the skin
spots would go awaywith time; however, they increased after routine
vaccination at age 3 years old (Fig. 2A). Soon thereafter, the child
regressed and was diagnosed with PDD-NOS. The child also often
experienced skin rashes (Fig. 2B), associated with worsening of his
behavioral status, even though he tested negative to various antigens
on skin prick and RAST tests. It should be noted, however, that this is
an atypical case given that the diagnosis wasmade after 3 years of age,
which does not comply with DSM-IV criteria. In addition, one would
need to be sure that other potential contributing metabolic disorders,
including a mitochondrial disorder, had been ruled out.

4. Non-immune mast cell triggers

Mast cells are critical for allergic reactions [48] but are also
important in both innate and acquired immunity [49], as well as in
inflammation [50]. Functional mast cell-neuron interactions occur in
the GI tract [51] and the brain [52]. Mast cells are involved in GI
pathology, inflammation and increased intestinal permeability [53],
Fig. 1. Photographs of skin areas from a non-atopic, Caucasian male with ASD showing
non-specific rashes (boxes) associated with eating steak.
whichmay also explain frequent GI-related symptoms in ASD patients
[54], especially abnormal intestinal permeability [55].

Many substances originating in the environment, the intestine or
the brain can trigger mast cell activation [48] (Fig. 3), leading to
release of numerous bioactive mediators. These include histamine,
prostaglandins, proteases, and vascular endothelial growth factor
(VEGF), as well as cytokines, such as IL-6, IL-8, IL-9, IL-13, and TNF.
Bacterial LPS activates toll-like receptor-4 (TLR-4) on mast cells and
induces selective release of TNF [56]. High levels of TNF were reported
in the CSF [18], and high IL-6 gene expression was noted in the brain
[16] of autistic patients. CSF and microglia of ASD patients had high
levels of macrophage chemoattractant protein-1 (MCP-1) [57], which
is also a potent chemoattractant for mast cells [58]. In contrast, ASD
plasma levels of transforming growth factor-beta1 (TGF-β1) were low
[59], which is important in view of the fact that TGF-β1 inhibits mast
cell function and high affinity IgE receptor (FcεRI) expression [60].
TGF-β is also an important mediator released by regulatory T cells [59]
and the low plasma TGF-β levels in autistic patients indicate reduced
regulatory T cell function in autism.

Mast cells also express viral TLR-3, activation of which by viral
double-stranded RNA induces release of IL-6 and TNF without
degranulation [61]. The ability of viruses to trigger mast cell activation
is especially relevant, since a number of rotaviruses have been isolated
from 75% of asymptomatic neonates [62] and could activatemast cells.
Environmental toxins linked to developmental neurotoxicity [63],
such as polychlorinated biphenyl (PCB) and mercury, have been
associated with ASD [64,65], but they also activate mast cells [66,67].
Mast cells can be stimulated by non-allergic triggers to release some
mediators selectively, without degranulation [68]. For instance, the
peptide corticotropin-releasing hormone (CRH) stimulates selective
release of VEGF [69]. CRH is typically secreted from the hypothalamus,
but it can also be secreted from nerve endings outside the brain,
where it exerts pro-inflammatory effects [70–72]. In fact, CRH acts
synergistically with NT to increase vascular permeability [73]. It was
recently reported that NT levels are increased in the serum of young
children with autistic disorder as compared to normal, age-matched
controls [21]. Most recently, we reported that NT induces extracellular
release of mitochondrial DNA, which is a potent immunogen and was
detected in the serum of young autistic patients [29].

5. The effect of perinatal stress

The effect of CRH may be relevant to ASD, because ASD patients
have been reported to have high anxiety levels and cannot handle
stress appropriately [74]. Prenatal or perinatal stress may also
contribute to the development of ASD through excessive release of
CRH. Specifically, CRH is increased in the serum of mothers who
delivered preterm babies and correlates with their level of anxiety
near the end of gestation [75]. Maternal serum CRH can cross the
placenta, and high amounts of CRH could be produced by the placenta
itself [76] in response to external or intrauterine stress. Recent reports
suggest a potential association between preterm children and autism.
In particular, one retrospective study investigated rates of autism in
preterm children born in Atlanta, GA (1981–93), who survived to 3
years of age, through the Metropolitan Atlanta Developmental
Disabilities Surveillance Program, and showed that preterm birth at
b33 weeks gestation was associated with a two-fold higher risk of
autism in all infants [77]. Another prospective follow-up assessment
on 91 ex-preterm infants (b1500 g at birth) at a mean age of
22 months found 26% of these children to have a positive Modified
Checklist for Autism in the Toddlers (M-CHAT) test [78]. A more
recent study found that 21% of infants (212/988) born before
28 weeks of gestation screened positive using M-CHAT as compared
to 5.7% of healthy children 16–30 months old [79]. Maternal
separation stress and CRH are associated with a dysfunctional
mucosal barrier in rodents [80]. A short period of restraint [81] or



Fig. 2. (A) Photographs of skin areas from a non-atopic, Caucasian male with ASD and UP lesions (arrows), and (B) non-specific rash (box), associated with ASD symptoms.
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maternal deprivation stress [82] also increased the severity of
experimental autoimmune encephalomyelitis.

The blood–brain barrier (BBB) appears to be compromised in ASD
patients as indicated by the presence of serum auto-antibodies against
brain proteins (neuron-specific antigens, especially from the cerebel-
lum, cross-reacting with encephalitogenic proteins from milk,
Chlamydia pneumoniae and Streptococcus group A) in mothers and
children with autism [32,83–86]. In fact, CRH can disrupt the BBB
through mast cell activation [87] and also increases intestinal
permeability of human colonic biopsies [88].

It is intriguing that mast cell-derived IL-9 induces intestinal
permeability and predisposes to oral antigen hypersensitivity in
children [89], while it also exacerbates newborn brain toxic lesions
[90]. Perinatal mast cell activation, in response to allergic or non-
immune triggers, could disrupt the gut–blood–brain barriers [70]
through cytokines [87,91] and permit neurotoxic molecules to enter
the brain and result in brain inflammation, thus contributing to ASD
pathogenesis (Fig. 4). BBB disruption has also been documented in the
brain of patients with other inflammatory diseases, such as multiple
sclerosis, where it precedes any pathological or clinical symptoms [92–
94]. This process may worsen by vulnerability due to genetic,
metabolic, allergic, autoimmune, environmental and/or other factors.

6. Conclusion

The evidence discussed above does not imply a cause and effect
relationship. The issue of “allergies” in ASD still remains poorly
defined and controversial. The study designs used to elucidate
evidence about atopic and “allergic-like” symptoms in patients with
ASD are mostly case-control studies, inherently subject to possible
reporting bias of parents. Subjects with ASD susceptibility genes and
hypersensitive mast cells may represent a unique subgroup of
patients who are more likely to respond to environmental and stress
triggers, leading to worsening ASD. It is important to investigate mast
cell-associated triggers andmediators in patients with ASD, especially
at the time the diagnosis is made. Such efforts could help unveil novel
aspects of the pathogenesis of ASD, identify potential biomarkers, as
well as lead to new therapeutic approaches. Reduction of stress during
gestation and infancy, as well as drugs that could inhibit mast cell
activation and prevent BBB disruption or block brain inflammation,
may prove useful in at least a subgroup of autistic children.

We have shown that the naturally occurring flavonoids quercetin
and luteolin, which are safe [95], can inhibit human mast cell release
of inflammatory molecules. Quercetin can reverse acute stress-
induced autistic-like behavior and reduces brain glutathione levels in
mice [96]. Quercetin also can protect against rat swimming-stress-
induced increase in serum lipid hydroperoxide levels [97]. Luteolin
inhibits maternal IL-6-induced autism-like behavioral deficits in
social interaction in mice [98]. Luteolin also inhibits microglia
production of IL-6 [99], can induce anti-inflammatory changes in
glial cells [100] and can inhibit cytokine release from peripheral
blood monocytes from multiple sclerosis patients [101]. Finally,
luteolin (5, 7, 3’, 4’-tetrahydroxyflavone) is closely related to 7, 8-
dixydroxyflavone, recently shown to mimic brain-derived
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Fig. 3. Schematic representation of mast cell activation by allergic and non-immune triggers, and its possible involvement in the pathogenesis of autism.
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neurotrophic factor (BDNF), which is neuroprotective [102]. Luteolin
could, therefore, be useful in treating neuroinflammatory diseases,
either alone or as an adjuvant to other therapeutic approaches [103].
Unfortunately, flavonoids, especially luteolin are lipophilic and
poorly absorbed after oral administration, with significant liver
metabolism [104,105]. The unique flavonoid-containing dietary
supplement NeuroProtek has been formulated to increase oral
bioavailability and holds promise for reducing gut–blood–brain
barrier disruption and brain inflammation.

7. Disclosures

The authors declare that they have no competing interests. TCT is
the inventor of patent application US 12/534,571 covering the
diagnosis and treatment of ASD.

8. Addendum in Press

Additional papers reported increased prevalence of ASD especially
after 1986 [106,107]. A recent paper reported increased plasma levels
in children with ASD of the chemokines RANTES, MCP-1 and eotaxin
[108], all of which are potent chemoattractants for mast cells
[109,110,111]. It was also just reported that delayed angioedema
and urticaria could develop after eating beef, lamb or pork due to IgE
antibodies specific for the meat carbohydarate epitope galactose-a-
1,3-galactose [112]. Finally, diagnostic criteria were just proposed for
a new entity, "Mast Cell Activation Syndrome" [113], which could
explain the findings in many ASD patients who "present with signs
and symptoms involving the dermis, gastrointestinal track, and
cardiovascular system frequently accompanied by neurologic com-
plaints [113].
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