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Abstraet--A new automatic procedure to numerically recover the sample root mean square norm of  the 
data error for the linear inverse heat conduction problem (IHCP)---when this information is not readily 
available--is presented. Numerical results are described which illustrate the accuracy of  the algorithm. 

1. INTRODUCTION 

The inverse heat conduction problem (IHCP) involves the calculation of surface heat flux and/or 
temperature histories from transient, measured temperatures inside solids. The inverse problem 
arises in a number of situations in engineering practice: quenching of solids in a fluid, measurement 
of aerodynamic heating in wind tunnels and rocket nozzles, design and development of calorimeters 
and infrared computerized axial tomography. 

The IHCP is a mathematically improperly-posed problem because the solution does not depend 
continuously upon the data. 

Regularized methods, restricting attention to those solutions satisfying certain prescribed global 
bounds have been proposed by Miller [1], Miller and Viano [2] and applied to the IHCP by Manselli 
and Miller [3], Hills and Mullholland [4], Murio [5], Tikhovov et al. [6], Carasso [7] and Beck and 
Murio [8]. 

What is of present interest is the fact that, for these methods, the regularization parameter is 
a function of an a priori global bound for the solution and a known bound for the data accuracy. 

In the case where only an upper bound for the/-2 data error norm is known, Miller has shown 
(see Method 3 in Ref. [1]) that it is still possible to select the regularization parameter in a manner 
which is essentially optimal with respect to the given information. However, if the given upper 
bound for the data error norm is not sharp or is not available, as is certainly the case in several 
practical applications of interest, the actual selection of the regnlarization parameter needs further 
investigation. 

In this paper we present an automatic procedure to approximately recover the L2 norm of the 
data error, when this information is not provided, which appears to be new. 

In Section 2, the one-dimensional linear IHCP is presented and in Section 3 the parameter choice 
criterion is discussed. The main result is introduced in Section 4, where we describe the algorithm 
to approximately recover the amount of noise in the data. In Section 5 a test case of a semi-infinite 
body exposed to a heat flux that is initially zero, has a step increase and then drops to zero is 
analyzed and several numerical results are presented. 

2. DESCRIPTION OF THE PROBLEM 

A semi-infinite slab is considered to illustrate the method. After obtaining a measured transient 
temperature history f ( t )  at some interior point x = Xo, the boundary heat flux q(t)  is recovered. 

Linear heat conduction with constant thermal properties is considered, and without loss of 
generality, the problem is normalized by using dimensionless quantities. 

The problem can be described mathematically as follows. The unknown temperature u(x, t) 
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satisfies: 
u,=uxx, 0 < x < o o ,  t > 0 ;  (la) 

u(1, t) ~f( t ) ,  t >0 ;  (lb) 

-ux(O, t) = q(t), t > 0; (lc) 

u(x, 0 ) =  0, 0 < x  <oo ;  (ld) 

u(x, t) bounded as x--¢ oo. (le) 

Here, t is time, x is distance measured from the heated surface and u(x, 0) is the initial uniform 
temperature. The objective is to estimate the surface heat flux history, q(t), given the interior 
temperature measurements at x = 1,f( t ) .  

It is well known that conditions (1) are equivalent to the Volterra integral equation of  the first 
kind, 

f: u(1, t) = q(s) O~b(l, t - s) ds, (2) 
Ot 

where ~b(1, t) is the temperature response at x = 1 for a unit step rise of  the surface heat flux at 
t = 0 .  

In a more abstract setting, equation (2) can be written as 

u(1, t) = Aq(t), 

where A is the "data operator"  and we assume that the unknown function q(t) and the data 
function u(1, t) are L2 functions on some bounded interval of  interest. 

It is then natural to assume that the error function Aq(t) - f ( t )  satisfies and L: error bound of  
the form 

II Aq(t) - f ( t ) I I  = - f ( t ) l  2 dt ~< E. (3) 

In order to help stabilize the inverse problem, we will hypothesize that the unknown function 
q(t) itself satisfies an a priori global/-2 bound: 

II q(t)II ,~ E. (4) 

If  q(t) satisfies conditions (3) and (4), it also satisfies 

IIAq(t)-f(t)l l2 + ~ IIq(t)ll2<<.2E z. (5) 

The approximation for the function q(t) is then chosen as to minimize 

where 

J~(q) = Ilhq - f l 1 2 + ~  IIq II 2 , (6) 

is the regularization parameter. 
In what follows we will indicate the unique solution for the minimization problem in equation 

(6) by q~. 

3. P A R A M E T E R  CHOICE C R I T E R I O N  

The following two lemmas and Theorem 1 are proved, with minor modifications, by Morozov 
[9] and are included here for completeness. For  a more recent discussion of the problem of  
minimizing a quadratic objective function subject to a quadratic constraint, see Gander [10]. 

In actual computations only E, an upper bound for the L2 norm of  the data error, is given. In 
general, E is not known and, consequently, it is not clear how to select the regularization parameter 
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u. Once a particular choice criterion is applied, the solution q~ is then obtained by solving the 
discretized version of the normal equations 

(A *A + ~tI)q, = A *fi (7) 

We begin our discussion by studying the behavior of each of the two terms in equation (6) as 
a function of the regularization parameter =. If  we write 

B, = A*A + ~I, (8) 

using equation (7) and the fact that B, is positive definite and symmetric, it follows that 

d d 
d-~ II q, I1' = ~ (Bj 'A* f ,  B g ' A  * f )  = - 2(B~l q,, q,) ~< 0. 

Moreover, since by equation (7) A*f  # 0, we conclude that under this hypothesis, 

d 
d-~ IIq~l12 < 0" 

We have proved the following. 

Lemma 1 

Let q~ be the solution of equation (7) with A *f # 0. Then II q~ II 2 is a decreasing function of ~t > 0. 
Similarly, we find that 

IIAq~ - f  II 2 = (Aq~ - f ,  Aq~ - f )  

= - = ( B g a A  *f, A *f)  -- (Bg'A *f, a *f)  + ( f , f )  

and 

d 
__ 2 2 o t ( B ~ a A , f , A , f )  d~ I I A q , - f  II : 

Again, if A *f # 0, we conclude that 

Thus, Lemma 2 follows. 

= 2~(Bgt q~, q~) t> 0. 

d 
d-~ l[ Aq~ - f 112 > O. 

Lemma 2 

If q~ is the solution of equation (7) and A *f # 0, then II A q ~ - f  II 2 is an increasing function of 
~ > 0 .  

When only an upper bound E for the data error is known, the monotone behavior of [[ q~ [[ 2 in 
Lemma 1 strongly suggests to study the related problem 

min II q~ ][ 2. (9) 
IIAq~-f[I ~ t  

That is, to find the solution of the IHCP with the smallest L2 norm for which the residual 
error remains below a certain given level. This approach was introduced by Miller in Ref. [1] as 
Method 3. It is shown in Ref. [1] that this solution is essentially optimal with respect to the given 
information, even though E is unknown. 

The relationship between the original problem (6) and the associated problem (9) is described 
in the following. 

Theorem 1 

If  [[ Aq~ - f  [I = E for some ~ > 0 then q~ is the unique solution of problem (9) obtained by solving 
problem (6) with ~t = 0~. 
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Proof. Because of  the monotone behavior of the residual (Lemma 2), the value ~ for which 
II Aq~ - f  II 2 = E2 is unique. Suppose that q~ is not a solution of the problem (9). Then, from equa t ion  
(12), there exists q~ :~ qa such that l[ q~ II 2 ~< II qa II 2 and II AG - - f  II 2 ~ [I Aqa - f  [I 2. It follows then that 
II AG - f  II 2 + ct II q~ II 2 ~< If Aq~ - f  II 2 + ~ II qa I[ : which is impossible since q~ minimizes problem (6) 
with a = a. 

Theorem 1 determines a particular parameter choice criterion and, at the same time, shows how 
the criterion uniquely characterizes the solution of  the IHCP. 

The following steps summarize the application of  the method to the IHCP, assuming that 
~tma x = 1 is a valid upper bound for 0t. 

Step 1. Set 0tmi . = 0, ~max = 1 and choose an initial value of  a between ~mi, and Ctma x. 
Step 2. Compute q~ using equation (7). 
Step 3. Compute the residual II A q ~ - f  II. 
Step 4. If II A G - f  11 = E + ,1, where r/is a given tolerance, exit. 
Step 5. Update the values of  ~tmi . ,  atm~ and ct using the bisection method. 
Step 6. Return to Step 2. 

The algorithm involves, in principle, the solution of several least squares problems. 

Remark 
The bisection method, in Step 5, is implemented as follows: 

Let F(ct) = II AG - f  II 2 _ E2. Then if F(~t) > r/, we set ~tm,x = ~t. If  F(0t) < -~/, we set 
~mi, = Ct. The updated value of  ~ is always given by (0tmi . + ~ma~)/2. 

4. NOISE R E C O N S T R U C T I O N  

The noisy data func t ionf ( t )  can be written a s f ( t )  = u(1, t) -I- e(t), where u(l ,  t) is the true data 
temperature at x = 1 and e(t) is the data error function, with II e(t) II = ~. Using the parameter 
choice criterion of  the previous section, the solution of  the IHCP depends on the regularization 
parameter ct and also on ~ through the r.h.s, of  the canonical equations (7). We notice that ct is 
a function of  the upper bound E and, consequently, we shall denote our solution q'- instead of  q~, 
for ~ fixed. The quality of  the solution q'~ depends strongly on the sharpness of the upper bound 
E since a is chosen such that II Aq'~ - f  II = E, and it is not clear how to proceed if the information 
about E is very poor  (E >> ~). In actual computations, is it possible to decide if the given upper bound 
E for the data error is sharp or not? 

We begin by rewriting problem (9) as 

IIGII 2= min Ilq~ll 2 (10) 
II A ~  - f II ~< t 

and investigating how sensitive is II q~ II to small changes in E. 
From 

d II q'-[12 d d8 
dE = d--~ l[ q~ l[ 2 d-~E' 

recalling that the parameter choice criterion gives 

E ~ = (Aq'- --f, Aq~ -- f) ,  

it follows that 

de 2 d 2 d~ 
2E = d---~- = d--~ II A G  - f  If d---~ 

( l l )  

(12) 

d o t  
= 2~(B~-lq~' q~) d-~E' (13) 
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using the formulae in Lemma 2. On the other hand, 

d 2d~ - I  , d~t 
d~ IIq'~ll d--~ = -2(B~ q,,  q;)d--~E (14) 

from the computations in Lemma 1. Combining equations (13) and (14) we obtain 

d II q; II 2 2E 
. . . .  . ( 1 5 )  

dE 0~ 

If  E >>~, formula (15) indicates that II q~ II changes little with ~ because the constraint in equation 
(10) is easily satisfied. As E approaches ~ (E > Z), II q'-II becomes more sensitive to changes in ~ and 
finally, if E < ~, the constraint in (10) is very restrictive and d/& II q'-II 2 turns out to be large in 
magnitude. Thus, to numerically recover Z, the amount of noise in the data, we can proceed as 
follows: introduce a decreasing sequence of upper bounds E~ = ~0/2 ~, i = O, 1, 2 . . . . .  with ¢0>>~, and 
solve the IHCP for each i (in order) using the parameter choice criterion of Section 3. At the same 
time, we monitor Re= IIq~ T M  I I -  II q'.'ll and stop when R;>  R, where R is some input tolerance 
parameter. Ideally, we should have E~+ i < ~ <~ E~, and we take ¢~ as our approximation for ~. 

In Section 5, Problem 2 shows some practical applications of this method. 

5. N U M E R I C A L  RESULTS 

In Problem 1, using the algorithm described in Section 3, the approximate reconstruction of a 
surface heat flux q (t) is investigated for a semiAnfinite body which is exposed to a heat flux of value 
1 between t = 0.2 and t = 0.6 and is zero at other times. The time interval of interest is [0, 1] and 
the solution was computed by solving the discretized version of the normal equations (7) with 
At = 0.01. Since the associated linear system is positive definite, Choleski's method was used. With 
n = l/At, the n x n matrix approximating the operator A has entries 

~ 0, if i < j  

a u = [ ~ b [ 1 , ( i - j + ½ ) A t ] - d p [ 1 , ( i - j - ½ ) A t ] ,  if i >~j, 

1 ~< i, j ~< n, where 

, (x ,  t)-- 2 ,/7 exp(-x2/4t) -  x erfc(x/2 ), 
x /n  

and they correspond to the temperature response at x = 1 for a unit heat flux at x = 0 for 
( j -  ½)At ~< t < ( j  + ½)At. The exact temperature data for the problem is u(l ,  t) and u(1,jAt) is 
denoted uj. The noisy data f ( t )  is obtained by adding a random error to uj, i.e. 

f = u : + S j ,  j = l , 2  . . . . .  n, 

where dij is a Gaussian random variable of variance a 2. The average perturbation used in these tests 
is for tr = 0.01 and corresponds to approximately 5% of the maximum true temperature value, 
which is about 0.2. The residual error was measured using the sample root mean square norm given 
by 

s=Fl-Lnj=~, 
where rj indicates the j th component of the residual vector A q~ - f .  Depending on the initial choice 
of ct, convergence to the value a determined by the criterion was reached in no more than 10 
iterations. With E = a, the tolerance r/, used in Step 4 of the algorithm, was set to reflect a 0.05 
error in the satisfaction of the constraint. 

The exact data temperature is given by u(l ,  t) = ~b(1, t - 0.2) - ~b(1, t - 0.6). Independently of 
the initial guess, the value of a is about 8 × 10 -4 and the associated error norm of the solution 
is approx. 0.22. Figure 1 shows the solution obtained using the criterion and Table 1 illustrates 
the relationship between the parameter ~t and the approximate error norm of the solution. 

In Problem 2, we attempt to numerically recover £ using the method introduced in Section 4. 
In all cases, we consider the test problem described in Problem 1 adding to the true data vector 
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funct ion  obta ined using the parameter  cho ice  criterion wi th  ~ ~ 8 x 10 -4. 

the corresponding noise vector with II (&l, 62 . . . . .  6,) II = ~, For each ~, we generate a family of  data 
vectors with the same norm by merely permuting the 6~s components. The results are summarized 
in Tables 2 -4 .  The first column in these tables represent the minimum and maximum values of 
II q': II in the family of  problems, depending on the associated c~ (second column) and the selected 
parameter a (third column). 

Table 2 corresponds to the problem with error norm ~ = 5.5 x 10 -4. Our algorithm produces the 
approximation E7 ~ 3 x 10 -4. 

Table 3 corresponds to the problem with E = 5.5 x 10 -3 and approximation E3 = 5 x 10 -3. This 
case is also illustrated in Fig. 2 for the averaged values of  II q'~' I[. 

Finally, Table 4 corresponds to the problem with ¢ = 5 . 5  x 10 -2 and approximation 
El = 5 X 10 -2. 

Table 1. Error norms of  the Table 2. Norm of the solution as a function of  
solution as a function of  

II q~i II Ei 
a Error norm 

0.331,0.332 ~0=0 .04  0.250 x 10 i 
10 -7 3.37 0.425,0.426 c I =~o/2 0.781 x 10 -I  
10 -6 0.912 0.492,0.494 ~2 =Eo/22 0.244 x 10 -3 
10 -5 0.271 0.541,0.543 ~3 =~0/23 0.839 x 10 3 
l0 4 0.193 0.572, 0.575 ~4 = E0/24 0.315 x 10 3 
10 -3 0.231 0.590,0.592 es=Eo/25 0.118 x 10 3 
10 -2 0.366 0.608,0.612 ¢6=~0/26 0.147 x 10-4,0.221 x 10 4 

1.410, 1.987 ¢7 = ¢0/27 0.720 x 10 -8, 1.44 x 10 -~ 
6.655,9.438 ~s=Eo/28 0.113 x 10-9,0.450 x l0 -9 

Table 3. Norm of the solution as a function of  ¢ Table 4. N o r m  of  the solution as a function of  E 

0.330, 0.334 ¢0=0 .04  0.250 × 10 -I  0.098,0.132 ~o = 0.1 0.159,0.218 
0.423, 0.436 ~I = ¢0/2 0.703 x 10 -2, 0.781 x 10 -2 0.469, 0.516 ~t = ~0/2 0.249 x 10 -2, 0.341 x 10 2 
0.502,0.517 E2 =£0/22 0.176 x 10-2,0.195 x 10 -2 15.1,25.0 E2 = ~0/22 0.381 x 10-6,0.763 x l0 -6 
0.678, 0.801 ~3 = ~o/23 0.687 x 10 -5, 1.37 x 10 5 

26.7, 35.6 ~4 = ~0/24 0.169 x 10 -s, 0.335 x 10 - s  
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