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Abstract

Let =@ N---N @ be the defining ideal of a scheme of fat points in P" x - - - x P with
support in generic position. When all the m;’s are 1, we explicitly calculate the Castelnuovo—
Mumford regularity of /. In general, if at least one m; > 2, we give an upper bound for the
regularity of /, which extends a result of Catalisano, Trung and Valla.
© 2003 Elsevier B.V. All rights reserved.

MSC: Primary: 13D02; secondary: 13D40; 14Q99

0. Introduction

In this paper, we study the Castelnuovo—Mumford regularity of defining ideals of
sets of points (reduced and non-reduced) in a multi-projective space P x - .- x P,

If I C K[xp,---,x,] is the defining ideal of a projective variety X C P”, then the
Castelnuovo—Mumford regularity of /, denoted by reg(/), is a very important invariant
associated to X. It has been the objective of many authors to estimate reg(/) since not
only does it bound the degrees of a minimal set of defining equations for X, it also
gives a uniform bound on the degrees of syzygies of /. The most fundamental situation
is when X is a set of points. Examples of work on reg(/) in this case can be seen in
[5,7,8,15]. Recently, many authors (cf. [4,9—11,16]) have been interested in extending
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our understanding of points in P to sets of points in P x --- x P". We continue
this trend by studying reg(/) when / defines a scheme of fat points in P™ x .- x P".

In the context of N2-graded rings, Aramova et al. [1] have introduced a finer notion
of regularity that places bounds on each coordinate of the degree of a multi-graded
syzygy. Extending the definition of regularity to multi-graded rings is also consid-
ered recently in [12,13]. The usual notion of regularity could be treated as a bound
on the total degree of the multi-graded syzygies. Our results, thus, naturally provide
corresponding results for the new notion of regularity in multi-graded rings.

The N*-graded ring R = K[X1,05 - sX1 0155 Xk,05 - - - » Xk, ] Where degx; ; = e;, the ith
basis vector of N, is the associated coordinate ring of P™ x --- x P". Let X =
{P1,...,Ps} be a set of distinct points in P" x --- x P", The defining ideal of P; is
@i=Lit, s Ligs s Ligts ..o Liy, ) with degl; j=e;. If my,...,m, are positive integers,
then we want to study the regularity of ideals of the form I; = " N---N 7. Such
an ideal I; defines a scheme of fat points Z =m P + - - - + mgPs in P x - -+ x P,
The ideal 7, is both N*-homogeneous, and homogeneous in the normal sense. Thus,
when we refer to reg(/z), we shall mean its regularity as a homogeneous ideal in R,
where R is viewed as a N'-graded ring.

A set of s points X={Py,...,P;} CP" x---xP" is said to be in generic position if
it has maximal Hilbert function Hx(i)=min{dimy R;,s} for all i € N*, where R =®,R;
is the N*-homogeneous decomposition of R. It is shown in [17] that sets of s points
in generic position form an open subset of the Hilbert scheme of all sets of s points
in P x ... x P". Our main results consist of explicitly calculating reg(/z) when Z is
in generic position and reduced (i.e. there is no multiplicity at each point), and giving
a bound on reg(/;) in general.

In the special case that each m; =1 and the set of points is in generic position, we
show

reg(lz) =max{d, + 1,...,d; + 1},

dJrn,-
J =5 for each i=1,...,k

To prove this we use the fact that 7, is both N¥-homogeneous and N'-homogeneous to
obtain information about reg(/z). We also use the Bayer—Stillman criterion for detecting
m-regularity [2].

We then show that if X is generic position, and if m; = m; > - -- = m, with at least
one m; = 2, then

; i— 1 s =1
et <o 1 [Bemt| | [ELm )

where

d[:min{dEN

ny Nk

Our strategy is to investigate the regularity index ri(R/I;) of R/I;, considered as a
N!-graded ring, by extending the results of [5] for fat point schemes in P" to P™ x
- x P, and then use the fact that reg(lz) < ri(R/Iz) + k.

We have organized this paper as follows. In Section 1 we introduce the relevant
information about regularity, the regularity index, and points in multi-projective spaces.
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In the Section 2 we compute the regularity of a defining ideal of a set of points in
generic position. In the last section we bound the regularity for a set of fat points with
generic support.

1. Preliminaries

Throughout this paper k denotes an algebraically closed field of characteristic zero.
In this section, we recall the needed facts about the Castelnouvo—Mumford regularity,
the regularity index, and points in multi-projective spaces. Let S = K[xg,...,x,] be a
polynomial ring.

Definition 1.1. A graded S-module M is m-regular if there exists a free resolution
0 — ®S(—e, ;) — - — BS(—ey ;) — BS(—eq;) = M — 0
J J J

of M with e;; —i < m for all i,j. The Castelnuovo—Mumford regularity (or simply,
regularity) of M, denoted reg(M), is the least integer m for which M is m-regular.

If I C S, then reg(/) =reg(S/I) + 1. The saturation I of the ideal I C S is the ideal
I:={F¢cS| fori=1,...,n, there exists a » such that x/ - F €I}

I is said to be saturated if I =1I. The regularity of a saturated ideal does not change
if we add a non-zero divisor. In fact,

Lemma 1.2 (Bayer and Stillman [2, Lemma 1.8]). Let I C S be a saturated ideal,
and suppose h is a non-zero divisor of S/I. Then I is m-regular if and only if (I,h)
is m-regular. Thus, reg(l) = reg((1,h)).

The following theorem provides a means to determine if an ideal is m-regular.

Theorem 1.3. (Bayer and Stillman, [2, Theorem 1.10] criterion for m-regularity) Let
1 C S be an ideal generated in degrees < m. The following conditions are equivalent:

(1) I is m-regular.

(ii) There exists hy,...,h; €Sy for some j =0 so that
(a) ((1,h|,...,h,'_|) : h,‘)m :(],hl;---,hi—l)m fOV i= 1,...,j, and
(d) (Lhr,.... k) =Sy

The Hilbert function Hy : N — N of a graded S-module M is defined Hy(¢) :=
dimy M;. It is well known (cf. Bruns and Herzog [3, Theorem 4.1.3]) that there exists
a unique polynomial HPy(¢), called the Hilbert polynomial of M, such that Hy(¢) =
HPy(t) for t>0.

Definition 1.4. The regularity index of a S-module M, denoted ri(M), is defined to be
ri(M) := min{¢|Hy (j) = HPy(j) for all j > ¢}.
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The regularity and regularity index of a S-module are then related as follows.

Lemma 1.5 (Migliore and Nagel [14, Lemma 5.8]). If M is a graded S-module, then
reg(M) — dimM + 1 <ri(M) < reg(M) — depth M + 1.

If M =S/I, then ri(S/I) < reg(S/I) — depth S/I + 1 < reg(/). Hence, we have
Corollary 1.6. If 1 C S, then for all t = reg(l), Hs;(t) = HPsj(t).

Our goal is to investigate reg(/) when / defines either a reduced or non-reduced set
of points in P x --- x P"™ whose support is in generic position.

Let R =K[x1,0,--.,X1n5--sXk05--->Xkn ], With degx;; = e; where e; is the ith ba-
sis vector of N¥, be the N*-graded coordinate ring of P" x --- x P™. Let R, =
k[x;0,...,%;,] be the graded coordinate ring of P" for i = 1,....k. If PP Xx

-« x P™ is a point, then the ideal ¢ C R associated to P is the prime ideal
@=Lt Lin,-- s Ligts. .., Lin, ) with degL;; = e;. Suppose X = {Py,..., P} is
a set of distinct points in P x --- x P and my,...,m, are s positive integers. Let

Iz =" N> NNk,

where ; is the defining ideal of P;, then I, defines a scheme of fat points Z=m;P; +
<o mgPg in P x - - x P" with support X. When m; =1 for all i, Z = X is reduced,
and we usually use /x instead of ;.

Since ht( ;)= Zf.:l n; for each i, it follows that K-dim R/I; = k. Thus, by Lemma
1.5 we have

reg(lz) < ri(R/Iz) + k.

Note that we have equality if £k =1 because then depth R/I; = 1.

We shall find it useful to consider R/I; as both an N¥-graded ring and as a N'-graded
ring. We shall, therefore, use # z(¢) to denote the multi-graded Hilbert function #(t)
= dimg(R/Iz), with t = (t1,....%) € N¥, and Hyz(t) to denote the Nl-graded Hilbert

.....

Hy(ty= > Hz(t,....t) for all teN.

i+t =t

Definition 1.7. A set of s points X = {Py,...,P;} C P™" x --- x P™ is said to be in
generic position if

) ) Hh+m e + ng ‘
H'x(t) =min ¢ dimg R, = ,s p for all e N”,
ni nj

Further results about points in P x --- x P™ can be found in [16,17].

Remark 1.8. If 7 C R is an N¥-homogeneous ideal, then the N*-graded minimal free
resolution of / is

07 -, 41— —=Fg—1—0,
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where #;=®;R(—d; j1,—d;j2,...,—d;x). Since I is also homogeneous in the normal
sense, the above resolution also gives a graded minimal free resolution of /:

0—-F —-F. | — - —=F,—1—0,
where 7| =&;R(—d; 1 —d;j;2»— - —d; ;) where we view R as N'-graded. So if /

is a N¥-homogeneous ideal with & > 2, reg(/) can be interpreted as a crude invariant
that bounds the total degree of the multi-graded syzygies.

The following lemma, which generalizes [16, Lemma 3.3], enables us to find non-zero
divisors of specific multi-degrees.

Lemma 1.9. Suppose X = {Py,...,Ps} is a set of distinct points in P™ X --- x P,
@1, -, @5 are the defining ideals of Py, ..., Py, respectively, and my,...,m are positive
integers. Set I = @\" N---N ¥, and fix an i € {1,...,k}. Then there exists a form
LeR,, such that L is a non-zero divisor in R/I;.

2. The regularity of the defining ideal of points in generic position

Let X C P™" x --- x P"™ be a set of s reduced points in generic position. In this
section we calculate the Castelnuovo—Mumford regularity of the defining ideal of X.
For each i=1,...,k, set

d+n,-
=S 0,
d

and let D := max{d, + 1,...,d; + 1}.

Note that if n; = min{n,,...,n;}, then D =d; + 1. Beginning with a combinatorial
lemma, we use this notation to describe some of the properties of points in generic
position.

d; ;= min {d

Lemma 2.1. Let n > 1. Then, for all a,b > 1,

a+b+n a+n b+n
< .
a+b a b

Proof. Because

<a+b+n> _ (a+b+n)-(a+1+n) (a+n>

a+b ) (a+blatb—1)--(@a+1) | 4

it is enough to show that the inequality

(@tbtmatb—1l+n)---(at+l+n) _ b+n
(a+b)---(a+1) = b
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is true. This is equivalent to showing that

(a+b+n)a+b—14+n)---(a+1+n) - (a+b)Ya+b—1)---(a+1)
(b+n)b—14+n)---(1+n) = b(b—1)---2-1

Rewriting the above expression, we see that we need to show that

st Do o] <o) o] 9

But since

for j=0,...,b — 1 we are finished. [J

Corollary 2.2. Let X C P™" x---xP" be s points in generic position. If (,,...,t;) € N
is such that ty + -+t =D — 1, then #'x(t1,...,t;)=s.

Proof. Suppose that n;=min{n,,...,n;}, and hence, D—1=d;. Lemma 2.1 then gives

Hh+m fh+n T + ni Hh+n Hh+n e +n;
h [5) I 4] 153 Ik
di+n
= .
d;

we have #x(t1,...,4)=s. O

Proposition 2.3. Let Ix be the defining ideal of s points X C P™ x---xP™ in generic
position.

(i) As a N'-graded ideal, Iy is generated by forms of degree < D.

(ii) As a N'-graded ring, R/Ix has Hilbert polynomial HPg, (1) =s (’:l:l)
(ili) Fix an i€ {l,....k} and let L be the non-zero divisor of Lemma 1.9 of degree

e;. If t=(t1,....tr) €NF is such that ty+-- -+t = D and t; > 0, then (Ix,L)i=R;.
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Proof. For (i) it suffices to show that for all t=(t,...,4 )€ N¥ with t;+- - -+ > D+1,
(Ix); contains no new minimal generators. If 7€ N is such a tuple, then there exists
I,me{1,...,k}, not necessarily distinct, such that ¢ — e; — e, € N¥. By Corollary 2.2
it follows that #'x(t —e; —e,)=H'x(t —e;)=s, since t; +---+ 1t —2 = D — 1. Now
apply the results of [17] to conclude that (/x), contains no minimal generators.

Since X is in generic position, for >0 we have

t+k—1
Hx(t): Z %x(l‘l,...,tl{): Z SZS( k—1 )

f+e =t f+e =t

Since HPpyy, is the unique polynomial that agrees with Hy for £>0, (ii) now follows.
To prove (iii) we only need to consider the case i=1. Since L is a non-zero divisor,
the exact sequence

0 — (R/Ix)(—e1) ZER/Ix — R/(Ix,L) — 0
implies that
i ry (s sty = Hx(t1- o 1) — Hx(ti — Lo, 1) for all £ NF,

where #'x(t; — 1,tp,...,1)=0 if 1 — 1 < 0. Now suppose that #; +- -+ = D with
t; > 0. Since (ty —1)+6+---+1t = D—1, by Corollary 2.2 we have S x(¢,...,4)=

Leenslh

Theorem 2.4. Let Ix be the defining ideal of s points X C P™ x --- x P™ in generic
position. Then

reg(Ix) =max{d; + 1,...,d; + 1},

d—i—n,«
p =s o fori=1,...,k.

Proof. Without loss of generality, we assume that n; > n, > --- = ng > 1. It thus suf-
fices to show that reg(Ix) =dj + 1 = max{d; + 1,...,d; + 1}.

We first show that reg(Ix) > d;. By Lemma 1.9 there is a non-zero divisor L of
R/Ix with degL = ¢;. As a N-homogeneous element of R, degl = 1. Since Ix is
saturated, by Lemma 1.2 it is enough to show reg(/x,L) > d.

From the short exact sequence

where d; := min {d

0 — (R/Ix)(—1) R/l — R/(Ix,L) — 0
of N!-graded rings, and from Proposition 2.3(ii) we deduce that

t+(k—2)>

HPR/(IX,M(I)—HPR/IX(f)—HPR/Ix(f—1)—S< P
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If we can show that HPp, 1)(di) # Hrjuy)(di), then by Corollary 1.6, we can
conclude that reg(/x,L) > di. So, write Hgyr, 1)(dr) = A+ B, where

A= Z H Ryt - 5 ti—1,0) and B:= Z A Ri(1e ) (115 125 - 1)

t+- et =dy i+ Ftp=dy, bty >0

From the short exact sequence
0 — (RIx)(—ex )5 R/ — R/(Ix, L) = 0.
of N¥-graded rings, we have

Hrie ) (s te) = A ri (b, te) — A (.t — 1),

where %R/]X(tl,...,tkfl,tk -1)=0 if #, = 0. Thus,

A= Y Hwrplt..-1.0).

i+t =dy
Since t; + - -+ + tx_1 = di, by Corollary 2.2 we have #'py, (t1,...,4%—1,0) =s. Hence,
dip+k—2

A=Y s=s ( o ) = HPg(1,.1)(dk)-

ti4 ety =dy
d+ ny
=S 0,
d

B = %R/([X,L)(O:“':Oadk):%X(Oa”'aoydk) - %X(O,...,O,dk - 1)

diy — 1+ n;
= S5 — >O
dp—1

Thus, HR/(IX,L)(dk) = HPR/(]X,L)(dk) + B> HPR/(IX,L)(dk), as desired.

We now show that reg(/x) < d; + 1 by demonstrating that I is (dy + 1)-regular. By
Proposition 2.3(i), as a N'!-graded ideal I is generated by elements of degree < d;+1.
For each i€ {1,...,k}, by Lemma 1.9 there exists a non-zero divisor L; € R/Ix with
deg L; =e;. After a change of variables in the x; ;’s, a change of variables in the x, ;’s,
etc., we can assume that L; =x;o for i=1,...,k.

By the Bayer—Stillman criterion (Theorem 1.3), to show that /x is (dy + 1)-regular,
it is enough to prove:

On the other hand, because d; = min {d

(@) ((Ix>X1,05 -+ +»Xj—1,0) = Xj,0)dp+1 = (Ix>X1,05 -+ -5 Xj—1,0)d,, TOr j=1,...,k,
(b) (]X,)Cl,o,...,)Ck’())korl :Rd;ﬁrl-

Proof. (a) We need to only show the non-trivial inclusion [(Zx,x1,0,---X;—1,0):X/,0]4,+1
C (Ix,X1,0,---,Xj—1,0)a,+1 for each j. If j=1, then the statement holds because x; o is
a non-zero divisor.
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So, suppose j > 1. Set J := [(Ix,X1,0,---,Xj—1,0) : Xj0]. Because J is also NE-
homogeneous, if F€J;, 11, then we can assume that deg FF =t = (¢,...,4 ) with #; +
---+ 1t =dj + 1. There are now two cases to consider.

In the first case, one of #,...,¢—; > 0. Suppose #; >0 with 1 </ < (j —1). Then
by Proposition 2.3(iii) we have F€R, C (Ix,x10); € (IxsX1,0,-.-,Xj—1,0). Since
(Ix,X1,05---»Xj—1,0): € (Ix,X1,0,.--,%j—1,0)d,+1 (as vector spaces), we are finished.

,,,,,

,,,,,

F € (Ix)(0,.0,50tt) © (X6X1,05 -+ -5 X = 1,00, 0, 150ti) S (I X1,05 -+ + 5 X~ 1,0 )1+

(b) Since Ryi1 = @ totyy=dst1 Ry, and because (Ix,x1.0,-..,%0) is also NA-
homogeneous, it is enough to show that R,C(/x,x1,0,...Xk0), for all t=(¢,..., t)eNF
with £+ - -+, =d;+1. But for any ¢ € N¥ with t;+- - -4#,=d; +1, there exists at least
one t; > 0. Thus, by Proposition 2.3(iii) we have R; C (Ix,x1,0); C (Ix,X1,05--+>Xk,0)1>
thus completing the proof of (b).

Since we have just shown d; < reg(/x) < dy + 1, the desired conclusion now fol-
lows. O

Remark 2.5. If X is a set of s points in generic position in ", we recover the well
known result that reg(/x) =d + 1 where d = min {1 ‘ (lt”) =5 }

3. Bounding the regularity of fat points in " X ... X P™

Let X={Py,...,P;} CP" x---xP"% and m; = --- = m; € NT. Suppose ;, is the
defining ideal of P; for i=1,...,s Let [ =1; = " N--- N @, In this section, we
give an upper bound for reg(/) when X is in generic position. If we consider R/l as

a N'-graded ring, then by Lemma 1.5
reg(/) =reg(R/I) + 1 <ri(R/I)+ dimR/l =ri(R/]) + k.

To bound reg(/), it is therefore enough to bound ri(R//). For convenience, we assume
that n; = --- = ng. In the sequel, we shall also abuse notation by writing L for the
form L €K[x;o0,...,X; ], the hyperplane L in P" defined by L, and the subvariety of
P™ x - .. x P defined by L.

Lemma 3.1. If @ is the defining ideal of point P € P" x --- x P™, then
ri(R/p*)Y=a—k for all a > 1.
Proof. Since @ defines a complete intersection of height Zf;l n;, Lemma 1.5 gives

ri(R/p“) = reg(R/9*) — k + 1. The conclusion follows since reg(p?) = areg(p) =a
by Conca and Herzog [6, Theorem 3.1]. [
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Lemma 3.2. Suppose Py,...,P,,P are points in generic position in P™ x---x P"_ and
let @; be the defining ideal of P; and let ¢ be the defining ideal of P. Let my,...,m,
and a be positive integers, J = @' N---N @, and I =J N p°. Then

ri(R/I) < max{a — k,1i(R/J),1i(R/(J + 9*))}.

Furthermore, R/(J + %) is artinian.

Proof. The short exact sequence of N'-graded rings
0—R/I - R/JDR/@*— R/(J+ p*)—0

yields Hgj(t) = Hgy(t) + Hgjpe(t) — Hpjs+p)(t). Combining this with Lemma 3.1
gives

ri(R/I) < max{a — k,1i(R/J),1i(R/(J + %))}

To show that R/(J + @) is artinian, we need to show that there exists b such that
for all = (t1,...,4) € NF, if there is #; > b, then (R/(J + ©*)), =0. So, it suffices to
show that there exists such a b so that for all £ = (¢#,...,%) with ¢; > b for some j,
then all monomials of R of degree ¢ are in (J + 9“). Suppose M is a monomial in R
of degree ¢t. Then M=N|N, - -- N, where N; are monomials in {x;0,...,%,} and of

degree #;. It is enough to show N; € (J + ).

Let Oy,...,0,, QO be the projections of Py,...,P,,P in P". Since the points are in
generic position, the projections are distinct. Let 24,...,.2, and 2 be the defining ideals
of 01,..., 0, Q in A=K(xj,...,X;,,]. Then it is easy to see that A/(:Q’I”‘ n-- N2 +24)
is artinian. As well, 2{" N-- -m,@;"?g J and 2° C p° and thus 21" N--- N2 +2¢ C
(J + %), and this is what needs to be shown. [J

From Lemma 3.2, to estimate ri(R/I) we need to estimate (ri(R/(J + £“)), or equiv-
alently, the least integer ¢ such that (R/I(J + %)), =0, when this ring is considered
as N-graded.

Lemma 3.3. With the same hypotheses as in Lemma 3.2, and considering the N'-
gradation, we have

() Hyjr () = Yy dimi[(J + 9)/(J + 9™ )], for all t > 0.

() If P=[1:0: -+ :0]x--x[l:0--:0] then [(J+ @")/(J+ "], =0if
and only if either i > t, or i <t and GM € (J + ") for every monomial M
of degree i in {x1,1,. ., X1,y sXk 1>~ >Xkmum }» and every monomial G of degree
t—iin {xl,o,xlo,...,xk,o}.

Proof. The first assertion follows from the short exact sequences:
0= (J+ @)+ ") = RI(J+ ™) = RI(J +p') =0,

where i =0,...,a — 1.
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To prove (ii), if i > ¢, then (J + '), = (J + '), =J,. So suppose i < t. We see
that © = (X1 15+ X1 n1s- > Xk 15+ - Xkp ). Thus ((J + @)/(J + 9'1)),=0 if and only if
(9" € (J + o), if and only if FM € (J + p'*!) for every monomial M of degree
i {X] 15+ s XLngs- e s Xk1s- > Xkn, } and every form F € R,_;. But because (J + p'!)
is N¥-homogenous, we can take F to be N*-homogeneous, and so F =G+ H where G
is a monomial of degree ¢ — i in xy,...,x0 and H € @. Since HM € g)”l, we have
((J 4+ @H/(J + 9')), =0 if and only if GM € (J + '), as desired. [

Lemma 3.4. Let Py,...,P., P be points in generic position in P" x ---P" with
ny =---=n, and let my = --- = m, be positive integers. Set J = " N---N @i
Suppose a=(ay,...,ar) € N¥ is such that nk(Zf:1 a;) = >, m; and Zf;l a; = my.
Then we can find a; hyperplanes L;\,...,L;,, in P, that is, L;; €Kk[x)o,...,x;,,] for
all 1 =1,...,a;, such that

L=]] (ﬁL,,,) eJ

j=1 \I=1

and L avoids P.

Proof. If r<n; for all j, then for each j we can find a linear form L;ck
[xj.0,-- %), that passes through Pi,...,P, and avoids P. If we take L;, = L; for
all j, we have

r 5

k
L:HL?/ Egg‘lﬂm...ﬂ@\rﬂgggflnlﬂ_”mpmr:
j=1

where |a| = Zf;l a;, since |a| = my = -+ = m,. Moreover, L avoids P.

Suppose now that ny <np_; <--- <njpp <r<n <...<n;. We shall use induc-
tion on »;_, m;. Note that if 7| m; < n; then the conclusion follows since in this
case r < ny < n; for all j. If ay =ar_y =---=a;; =0, then the conclusion follows
as in the case r < n; for all j. Suppose there is pe{/+ 1,...,k} such that a, # 0.
Choose a hyperplane L, in P"» (Ly €K[x,0,...,X,,]) that avoids P and passes through

. k
Pi,...,P,,. Since m(> 7, a;) = >, m;, we have

k r r
g (Zm) —me =y mi—ne =y mi—n,
i=1 i=1 i=1
:(m1_1)+"'+(mnp_ 1)+mn,,+1+"'+mr-

If we set (b1,....,bp—1,bp,bp41,....08) = (ai1,...,ap_1,a, — 1,a,41,... + a;), then we
have

k k
ny (Z bi) =ny <Z ai) —n = (my =)+ +(my, =) +my o+ +my.

i=1 i=1
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By induction there exists L;1,...,L;, in P for all j that avoids P such that

-1 my,—1 iy .
| | Lilep " n--nen’ nNg, fl‘ N- N ™.
1 =1

k b
L:

J

If we take L-L; we have the conclusion since L; € o1 N---N n, (the a, hyperplanes
in P"» are Lpi,..osLpp, and L;). [

Proposition 3.5. Let Py, ... P,, P be points in generic position in P™ x - - - x P™ with
ny = --- = ng. Suppose my = --- = m, = a are positive integers. Set J=@\"N- - -N@.
Let t be the least integer such that nit > Zl:] m; +a— 1. Then

ri(R/(J + ©)) < max{m; +a — 1,t}.

Proof. Without loss of generality take P =[1:0:---:0] x --- x [1:0: --- :0]. Then
=11 XL s Xk 1. Xk, ). If # < n; for all j, then we can find a hyperplane
L;in P, ie., L; €K[x}0,...,X; ], containing Py,..., P, and avoids P for each j. Then
LicpiN---Ngp, for all j.

Suppose G :x‘ll"o . -x,‘;fo is a monomial of degree m; in {x,...,xr0}. Then L :=
LY - LFepi"n---nph C p"n-- N =J. We can rewrite L; =x; o+ H; where
Hje(xj1,-..,x), n) C . Then LeJ 1mphes G €J + . Thus, for any monomial M of
degree iin @' for some 0 <i<a—1, GMeJ + ', Since a — 1 >1i, this implies
that for any monomial G of degree m; +a—1—i in {xy0,...,X0}, and any monomial
M of degree i in o', GM € (J + @'*!) because G is divisible by a monomial of degree
mi. By Lemma 3.3, this implies that ri(R/(J + %)) <m; +a— 1.

Suppose now that » > n;. Since n; = - -- = ng, by a change of coordinates we may
assume that

P = [0:1:0:---:0]%x[0:1:0:---:0]x---x[0:1:0:---:0]
P, = [0:---:0:1:0:---:0]x[0:---:0:1:0:---:0]%x---
——
ni i
X[0:---:0:1].

Ny

So for 0 <j <m, p;={xiqll=1....k, g # j}).
Let #=max{m +a— 1,¢} and 0 <i < a— 1. Suppose now that G =x{';---x/) is
a monomial of dggree h—iin {x10,...,X0}, and M:]_[I;:1 Hﬁo xi"q" is a mopomial
of degree i in ¢'. Because of Lemma 3.3 we need to show that GM € (J + p'*!).
It can be seen that

i— Sk 9] i— Cln,
MGg/) Z L1 K)lz > e N P 211 i
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We also have, since i <a— 1,
k k
E a;=h—1i>m; > max mlfiJrE cl,l,...,mnAfiJrE Cln
i=1 i=1 i=1
and

k
ny, Zaj = ni(h — 1) =nih — in;
j=1

r r
Zij—Fa—l—ink?ij—&-i—ink
J=1 j=1

r k ni
> E m; + E E Clg — Ing
j=1

I=1 g=1

k k
= (ml—H-Z c/,1> +-t (mnk—i—kz c;,nk> +my 1+ my.

=1 =1

Using Lemma 3.4, there exists L;1,...,Ljq €K[x;0,...,X;,,] for each 1 <j <k such
that

L= L m—it37 e m"k7’+z"’~"k My 1 m,
*H Hm €9 AR NN N N---Ng

ng+1 r

and L avoids P. This implies that LM €J.

Since L;, avoids P. we can write L; ,=x; 0+ H;,, where H; , € (x;1,...,X;,,) C §.
Then L =x{'y---x{}y + N, where N € . Thus, since LM €J, then GM € (J + h
which is what we need to prove. [J

Theorem 3.6. Suppose Pi,...,Ps are points in generic position in P" x ... x P
(s=2and ny =---=mn), and my =my = --- = m, are positive integers. Set I =
@' NN @M. Then

ri(R/l) < max {ml +my — 1, ’72217”1_1—‘ } ’

ng
where [q| denotes the smallest integer t such that t > q.

Proof. Note that n; > --- > ny, so

oo ]
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Also, min{t|nit = q} = [q/ni]. So, if we take g=3 ", m; +m,;; — 1, and use Propo-
sition 3.5 and Lemma 3.2, together with induction successively, we will have the
conclusion. [

We obtain an immediate corollary which gives a bound on the regularity of the
defining ideal of a scheme of fat points in P™ x - .- x P,

Corollary 3.7. With the hypotheses as in Theorem 3.6 we have

o =1
reg(/) < max {ml +my — 1, [Zj’lnmw } + k.
k

Remark 3.8. When k =1 we recover the result of [5] which was proved to be sharp.
One may expect the bound in Corollary 3.7 to be sharp also.
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