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Let 9 and p be prime with 9 = a2 + b2 = 1 (mod 4), a = 1 (mod 4), and 
p = d+ 1. In the nineteenth century Cauchy (Wm. Inst. France 17 (1840) 
249-768) and Jacobi (J. ftir Math. 30 (1846), 166-182) generalized the work of 
earlier authors, who had determined certain binomial coefficients (modp) (see 
H. J. S. Smith, “Report on the Theory of Numbers,” Chelsea, 1964), by determining 
two products of factorials given by nk k$! (modp = 4f+ 1) where k runs through 
the quadratic residues and the quadratic non-residues (mod 9), respectively. These 
determinations are given in terms of parameters in representations of ph or of 4ph 

by binary quadratic forms. A remarkable feature of these results is the fact that the 
exponent h coincides with the class number of the related quadratic field. In this 
paper C. R. Mathews’ (Invent. Math. 54 (1979) 23-52) recent explicit evaluation 
of the quartic Gauss sum is used to determine four products of factorials (modp = 
d+ 1, 9 = 5 (mod 8) > 5), given by nk kJ! where k runs through the quartic 
residues (modq) and the three cosets which may be formed with respect to this 
subgroup. These determinations appear to be considerably more difficult. They are 
given in terms of parameters in representations of 16ph by quaternary quadratic 
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forms. Stickelberger’s theorem is required to determine the exponent h which is 
shown to be closely related to the class number of the imaginary quartic field 
Q(im), q = a* + b2 = 5 (mod 8), a odd. 8 1984 AC&~~C hB8, h. 

1. INTRODUCTION 

Throughout this paper q = 5 (mod 8) is a prime greater than 5, and a and 
b are the unique integers satisfying 

q = a* + b* 7 a= 1 (mod4),b-- ! a(mod q). (1.1) 

The subgroup of the multiplicative group of residues (mod q) consisting of 
quartic residues is denoted by A. The four cosets of A are given by 
Cj = 2jA (j = 0, 1,2,3), where we adopt the convention that Cj+4 = Cj. This 
convention is also used for other quantities which appear later in the paper, 
namely, sj, aj, and Uj, 

Let p = 4f+ 1 be prime. In this paper we determine the quantities 

n kf! (j=O,1,2,3) 
kfC, 

(1.2) 

modulo p. The corresponding quantities for quadratic residues were treated 
by Cauchy [3] and Jacobi [7] in the nineteenth century (see also [ 131). The 
products (1.2) appear to be much more difficult to treat than those 
considered by Cauchy and Jacobi. We make use of a recent deep result of 
Matthews [lo] giving the evaluation of the quartic Gauss sum (see 
Section 3). 

The products (1.2) are determined (modp) in terms of a solution 
(x, U, o, w) of the quaternary diophantine system 

16ph =x2 + 2qu2 + 2qv2 + qw*, 

XW=av2-2p~uv-au2, 

G.C.D. (x, U, v, w,p) = 1, 

(1.3) 

satisfying 

x = -4(mod q), (1.4) 

which arises from the arithmetic of the quartic field K = Q(idm). 
The exponent h in (1.3) is the positive odd integer given by 

h=max(Is,-s,l,ls,-s,l), (1.5) 
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where 

sj=’ r k 
4 kr, 

(j=O, 1,2,3). 

We note that K contains the real quadratic field Q(h) as a subfield, and 
that K is a subfield of the cyclotomic field Q@&, where p4 = exp(2ni/q), as 
(see, for example, [ 1,2]) q-1 

The ring of integers of K will be denoted by R, and the ring of integers of 
the cyclotomic field Q@,) will be denoted by R,. 

2. THE EXPONENT h 

We begin by showing that the exponent h in (I .3) is a positive odd integer. 
Let g be a primitive root (mod q). For j = 0, 1,2,3 we have 

(9-5)/4 
V kr 2j 1 g4rE 2j g  

4-‘- 1 

kzj g4 - I.=0 1 
= 0 (mod q), P-1) 

as g4- 1 f 0 (mod q) since q > 5. This shows that each sj is a positive 
integer. As the sum of the quadratic residues (mod q) is i(q - 1) q, we have 

so + s* = s, + s3 = i(q - 1). (2.2) 

Since a(q - 1) is odd, it follows from (2.1) that so # s2, s, f s3, and that 
h = max(]s, - sz I, ] s, - sj ]) is a positive odd integer. 

Next we give some alternative expressions for h. We have 

i 
s2 -so, if min sj=so, 

O<j<3 

\ 
s3 -s1, if min sj=s,, 

h=\ O<j<3 

i 

so -82, if min sj=s2, 
O<j<3 

s1 - S3r if min sj=s3, 
O<j<3 

so that 
h=$(q- 1)-20~~~3~j, 

h=2 oxny:3sj-j(q- 1). 
(2.3) 

641/19/3-2 
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Throughout the paper we let s, denote the smallest value of the s, 
(j = 0, 1,2,3), and let s, denote the smallest value of the sj with j # m. 
Since, by (2.2), s, < s, < (4 - 1)/S < sn+ 2 Q s,+ 2 we have 

s, - s, < h/2. (2.4) 

This inequality is clearly trivial for s, = s,. For s, # s,, we have 
s, =min{s,+,, s,+~} and smfZ= max{s,+,, s,+~}. Assume that (2.4) is 
false. Then we have 

contradicting s, f s, + 2 = (q - 1)/4 as s, < s, + *. 
We also note that h is related to the class numbers h(K) and h@(h)) of 

K and Q(fi), respectively, in view of the class number formula [5, 121, 

h(K) 
h(Q6)) 

= $- ((so - s*)* + (sl - Q2). (2.5) 

Clearly the right-hand side of (2.5) is an integer so that h(Q(&))Ih(K). 
Thus we have 

h= 1 o)s0-s2~=Js1-sjI= 1 oh(K)=h(Q(fi)). (2.6) 

It is known ]12] that h(K) = 1 for exactly q = 13, 29, 37, 53, 61 (as q > 5), 
so that h = 1 for these values of q. 

3. GAUSS SUMS 

Let u, denote the automorphism of Q@,) such that ujJ@& = Hi. We use 
Matthews’ recent deep evaluation [lo] of the quartic Gauss sum to prove the 
following lemma which will be needed later in the proof of our main result. 

LEMMA 1. For j E C, we have 

u,(i&gxqy) = *(-1)‘b-2”4 lbl bidm, 

Na = - jh. 

Proof. It is understood throughout this paper that fractional powers take 
their principal values. We set 0 = arg(o) (-n < 0 < n), where w  = a f bi is 
one of the prime divisors of q in the ring of Gaussian integers. As b # 0 we 
have 8 # K. Clearly we have 

w = q l/*eis, a=q 112 cos 8, b=q ‘I2 sin 8. 
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Now 

wW +JZ = ql/4eifV2 + ql/4e-iO/2 

= 2q’14 cos e/2 

that is, 

Also 

= 2q 1’4 1 cos e/2 1 ( as-z< 2 B,? i 2 2 

( 
+++ose 

1 

l/2 
= 2q “4 

o’i2 + 0 -m = (2q’/2 + 24’/2* 

WV2 _ wl/2 _ __ _ ql/4eff?/2 _ ql/4e-i612 

= 2iq’f4 sin 812 

= 2iq1’4 Ibl J-/sin O/2) 

giving 

=2i41y-& 
( 
f-tms@ 112 

1 

=2iq”‘fi : 
( 

112 
--- +- 

1 
, 

WV2 --w l/Z- * - I h (2q”2 - 2ay 

313 

(3.1) 

We now define a quartic character x, (mod CO) as follows: for a a 
Gaussian integer not divisible by o we set 

so that 

x,(a) = ik, ifa(q-‘)‘4 s ik (mod o), (3.3) 

x,(a) = a(q-‘)‘4 (mod 0). (3.4) 
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Recently Matthews [lo] proved Loxton’s conjecture [9] for the value of the 
quartic Gauss sum, namely, 

@-I 
k=l 

where (] b ]/] a ]) denotes the usual Jacobi symbol. Next we have 
- - 

so11) = &J = L(--1) did = -&J 7 

so that from (3.5) we obtain 

(3.6) 

(3.7) 

Appealing to (3.1), (3.2), (3.5), and (3.7) we obtain 

&,) +gC& = i(-l)‘b+2)‘4 

and 

(3.8) 

(3.9) 

Now We Set G,(m, q) = ~;:;/I,“““, where k is a positive integer and m is an 
integer not divisible by q. It is well known that G,(m, q) = (m/q) fi. We 
now consider G,(m, q). We have 

G4(m, 4 = c 
y=o 

11+ x,(y) + xi(~) + dW P:’ 

= xi(m) &.,) + ( ) : fi + x,(m) ddJ 
that is, 

fi + iXo(m)(-l)(b+2)/4 

ifx,(m) = fl, 
G4(m, d = 

-& +x,(m)(-l)(b+21/4 b 
( ) 
Jfi j/&3&z, 

Ibl lal 
I if x,(m) = fi. 

(3.10) 
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Finally, for m E C,, we have by (3.10) 

~,~~~) 

=(3 (#(G4& 4) - GAL ON) 

= (Al)‘b+ 2)/4 

= (-l)(b+*)P f!$ Xw(m)(-l)‘b+2)‘4 
( ) 

as required. Squaring this result we obtain u,(fi) = -fi and so 

WI& = 
(-l)‘“-“14 ,b, -L id2zaz 

= 2b& (-1)(b-2’4) id-’ 

-2 Ibl fi 

= _ (-1)“‘-4 ,b, bidm, 

as required. 

4. PRODUCTS OF GAUSS SUMS 

We let P be a prime ideal divisor of p in the ring R, of integers of Q@,>. 
The conjugates of P are given by P, = o,(P), I= I,%..., 4 - 1. The 
factorization of p in R, into prime ideals is given by 

pR,=P,P, ... Pqpl. (4-l) 
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We next define a qth-order character xP (modp) as follows: for any integer x 
not divisible by p we set 

x,(x) =& ifx(p-l)‘q = pi (mod P), (4.2) 

so that 

xp(x) G x@-‘)‘~ (mod P). (4.3) 

Corresponding to this character we have the Gauss sum 

tip = exp(WP))T (4.4) 

where n is an integer not divisible by q. Clearly gkg) is an integer of Q(ppq), 
ppq = exp(2xi/pq), that is, g($) E R,, . 

We begin by determining the effect of the automorphism (of Q@,,)) 
4vpq-v& 1 < 1 Qpq, (l,pq) = 1, on g($). We have 

P-l 

mw) = c XPWP:: 
x=1 

P--l 

= c XW’Y)P:: 
y=l 

P--l 

(n-’ = 1 (modp)) 

that is, by (4.4), 

4w.x~)) = XP’V) da. (4.5) 

We now introduce certain products of the Gauss sums gk:) which are 
central to the proof of our theorem. We define 

Qj = n &), j=o, 1,2,3. (4.6) 
keC, 

Clearly each Q, E R,,. We will show that in fact each aj is actually an 
integer of the subfield Q(J’JksCopi) of QQq), that is, of K. 

First we determine the effect of 8, on aj. We have by (4.5) and (4.6) 
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if I E C,,, , Thus by (2.1) we have 

el(aj) = aj+ m 9 if IEC,. (4.7) 

Hence, in particular, for all 13 1 (mod q), we have B,(aj) = aj so each 
ajE R,. 

Next, as o,(aj) = aj for all r E C,, each aj is in fact an integer of the 
subfield K of Q@,). Thus there are rational integers X, U, V, W such that 

a0 = W + UidTa + Vij/m + IV&). (4.8) 

Then applying Lemma 1 and the result a,(aj) = aj+s (r E C,), we obtain 

a, = f (X - V(-l)(b--2)/4 h idc+m + IY-~)+*)‘~ 

~$j-~dFGF-Wfi). 

a2 = +- (X - W%TZZ - Vidm + W&), (4.10) 

a3 = -$- 

( 

x + y(-ly-*)/4 + id- - U(-l)(b-2)/4 

X+idm-W&j. (4.11) 

The prime ideal factorization 
theorem [ 141, namely, 

so1iJ R,, = 

of &) in R,, is given by Stickelberger’s 

9--l 
nr ’ 

yJ-lH-lr-‘kl91) 

r=1 

where Yr is the unique prime ideal in R pq lying above P,, r-l is the unique 
integer such that rr-’ E 1 (mod q), 0 < r < q, and { JJ} denotes the fractional 
part of the real number y. Hence 

9-I 
keCj r=l 
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=rhI I g@-l,CCs-lV4- z 
k&mr ‘k’q’) 

t=o rsc, 

= fi n ~ym-l)/4-sl-r) 

t=o EC, 

=fIrIr 9 
yP-w-t+2 

t=o r.zc, 

so 

where 

a,Rq = fi fl P;j-W = fi Q;/-112, 

t=o rsc, t=o 

Qt= n P,. 
MC, 

From (4.1) and (4.12) we see that 

that is, 

and so by (2.3) we have 

p’q-4h-1)‘*JJOj (j = 0, 1,2, 3). 

Hence there are rational integers x, U, v, w  such that 

x=pWh--1)/8X 
, u=p (q-4h-lv8U 

, 
pLp(q-4h-1)Pv 

9 

w=p(q-4h--1)/8W 
3 

G.C.D. (x, u, ZJ, w,p) = 1, 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

and so 

Q. = lp~q-41r-lv8 

4 (x + WGZGZ + v&/N 

+ da, (4.16) 

1 
al = -pk7-4h-lv8 

4 
x - ,(-q’b-*‘/4 

(4.17) 
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a2 = (q-4h-1”S (x - uidm - vidm 

+ wa (4.18) 

1 a3 = -..-p(q-4h-l)/8 
4 

x + v(-l)(b-2)/4 

- U(-l)‘b-2’/4 +ihFG&wfi). 

Finally, in view of the fundamental property 

dxhiii5 =P (1 <k<q- 11, 

we have by (4.6) 

ajq = pcq- “‘4 (j=O, L&3), 

(4.19) 

(4.20) 

and so 

16ph =x2 + 2qu2 + 2qv2 + qw2, 

xw = uv2 - 2 (bluv - uu2, 

G.C.D. (x, U, v, w,p) = 1, 

which is (1.3). 
We conclude this section by noting that x satisfies the congruence (1.4). 

This is clear as, by (4.4), we have 

g(&) z 2 pp” = -1 (mod I -P,), 
x=1 

and so, by (4.6), for j = 0, 1,2, 3, we have 

ajr -1 (mod 1 -p,) 

giving (by (4.8)-(4.11)) 

X=a,+a,+a,+a,=--4(modl-p,). 

that is, (by 4.15), 

x = -4 (mod 1 - p,), 

from which (1.4) follows, as the norm of the integer 1 - pq of Q@,) is q. 
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5. STATEMENT AND PROOF OF MAIN THEOREM 

We now state and prove the main result of our paper. 

THEOREM. Letq>5beaprimesuchthatq-5(mod8).Setq=a2+b2 
with a and b defined as in (1.1). Let p = qf+ 1 be prime. 

Let Sj, j = 0, 1,2,3, be defined as in (1.6). It is convenient to distinguish 
two cases: 

Case A. sO, s,, s2, sj not all distinct. If s,,, si, s2, sj are not all distinct 
then they occur as two pairs of equal values. The smaller of these pairs of 
values is denoted by s, = s,, m # n. 

Case B. s,, sl, s2, s3 all distinct. In this case we let s, denote the 
smallest value of s, and let s, denote the next smallest. 

In Case A there exist four solutions, (x, u, u, w), (x, -u, -0, w), (x, U, -U, 

-w>, (x, -u, % -w), of (1.3) satisfying (1.4) with the properties that 
p;( (x2 - qw*), p;( (I b ) xw + 2quv), and that for any of these four solutions we 
have 

n kf!= 
4(-1)Sm+ l 

kcC, 
2x + (-l)(b--2(n--mW abw(x* _ qw*) (modp)’ 

(b*xw + 2 ) b ( quu) 

(5.1) 

n kf!- 
,(-l)sm+ l 

2x + (-1)(b-*WW4 abw(x* _ qw*) (modp)9 (5.2) 
keC, 

(b*xw + 2 (b) quv) 

n 
kaCm,z 

k-1 E y (h + (-‘)‘“(~~~~;“~+~)- qw2)) (modp), (5.3) 

kev kf! E (--‘)‘= 
4 

2x + (-l)(b-2(m-nn’4 abw(x* - qw*) 

(b*xw t 2 lb\ quv) 
(modp) (5 4) 

. . 
II+2 

In Case B there exist four solutions of (1.3) satisfying (1.4) with the 
properties that P’“-‘~ 11(x2 - qw*), pSn-SmJj(lb( xw + 2quu), and that for any 
of these four solutions we have 

kG kf! = (-‘zmIL (modp), 
m 

fl kf!= 
,(-l)sn+l 

keC, 
2x + (-1)(b-*(m-n))/4 abw(x* - qw*) 

(b*xw t 2 1 b( quv) 

(5.5) 

(5.6) 
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We begin by proving the following congruence: if k is an integer not 
divisible by q, r is an integer satisfying 1 < r < q - 1, and 

P = (P - 1X1 - {r-‘k/ql), (5.9) 

then (compare [ 15, p. 4891) 

go13 = -1 (mod q). 
(pp - 1)4 - /3! 

(5.10) 

Settingf= (p - 1)/q we have from (4.3) 

xp(x) = xf(mod P,) 

and so 

xp(x) e Ytf(mod P,), (5.11) 

where r-’ is the unique integer satisfying rr - ’ = 1 (mod q), 1 < r - ’ < q - 1. 
Then we have by (4.4) and (5.11) 

Next by the binomial theorem we have 

p,“=(l+@,-l))“= r : 
( 1 j=O / 

@, - l)j, (5.13) 

so that from (5.12) and (5.13) we obtain, after interchanging the order of 
summation, 

p--l p-1 

g(& = 2 (‘p, - ly’ c x’-‘~ 
j=O x=j 

We now consider 

p--l 

E(j) = c xr-lW J . 

x=j ( ) 
(5.15) 
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We have 

P--l 

E(j) = 2 x’-‘~ x(x- 1) *** (x-(j- 1)) 

X=1 j! ’ 

that is, 

P-l 

E(j) = c x’-‘~ 
.X=1 m=l 

(5.16) 

where 

Aj(j) = f9 Aj- l(j) = ~(~r-l2)! ,..*, A,(j)= (-l)‘-l. 
j 

(5.17) 

Interchanging the order of summation in (5.16), we obtain 

E(j) = -& A,(j) 'i' A?~+"'* 
x=1 

(5.18) 

AS 

ifI=O(modp- l), 
ifIfO(modp- I), 

(5.19) 

we obtain from (5.18) that 

E(j) = - 6 L 4dj) (modp) 
m=l 

r-%f+m=O(modp-I) 

Lilfl 

u=l 
r-jk+u=O(modq) 

U/f-l 
c 4,(j) (mod A, ti=l 

u-q(l-lr-‘k/ql)(modq) 

that is 

tl/qU/fl+lr-‘k/q)1 

E(j)= - c 
$f(tq--qlr-‘kdj) (moddn (5.20) 

t=1 

Writing j =fl + m, with 0 < m <f, so that [jlf] = 1, we have 

t’/q+lr-Wqll 
E(.fl+m)=- C A 

fctq-elr-‘klqljdfl+ m) (mod&. (5.21) 
t=1 
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The sum on the right-hand side of (5.21) is empty unless 

[ 
;+ {r-%/q} > 1, 1 

that is, 

Thus the smallest value of j for which E(j) is possibly non-zero (mod p) is 
given by E= q(1 - {r-‘k/q}), m=O, that is,j=(p- I)(1 - {r-‘k/q})=p. 
Indeed using (5.21) and (5.17), we obtain 

E@) = -A,@) = - i (mod p). 

Then, from (5.14), we obtain 

(5.22) 

d,$) z - @“i ‘I4 (mod YF+l). 

Next, from (5.23), we obtain 

AS yr llpp - 1, Sfll@, - l)B, we have 

giving 

go13 
= -L (mod Yr), cpp - 1y - /3! 

which completes the proof of (5.10). 
Next we derive the following congruence: for integersj and e we prove 

aj = (-l)se+l 
PS’ 

n kfr (mod Z), 
kcC, 

(5.24) 

where r E Cj+*-,. From (4.6), (5.9), and (5.10) we have 

9 (@, _ l)~,-l)(q--I)l4-~~~~(r-~klql 
(mod 9,). (5.25) 
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As rE Cj+2--e, we have 

and 

FYI ((4 - qlr-‘Wlf)! 
ksCJ 

= n kf!, 
ksC, 

and so 

(Go, q)P-I)&! 5R;! (mod-P,), r E Cj+Z--e. (5.26) 

e 

From the well-known identity 

p=&- I)(&- l)... (&-l-l), 

we have (as p,., = 1 (mod Yr)) 

that is, 

~2.3 --* (p - 1) (mod $), 

(pp _p1,P-l - -1 (mod Yr). (5.27) 

Hence, by (5.26) and (5.27), we have 

aj(-l)se - 1 

PS’ 
= - (mod Yr), 

kvc kf! 
rE Cj+*-e, 

e 

completing the proof of (5.24). 
We next take j= 0 in (5.24), obtaining 

a0 _ WSe+’ (mod 9) -= 
PS’ k~cw *’ 

r E C,-,. 

e 

(5.28) 



A THEOREM OF CAUCHY AND JACOBI 325 

Multiplying (5.28) by psePSm, we obtain 

Qo - e-l)se+‘Pse-sm (mod9’“-,)(S,-s,)+l) -= 
P Sm kvc u-! ’ ’ 

(5.29) 

e 

where r~ C,-,. Appealing to (2.3), (4.16), and (5~29)~ we have 

ttx + 4ZGT + uidm + w&j = aO/pSm 

(5.30) 

where r E C,-, and (x, U, u, w) is a solution of (1.3) satisfying (4.21). 
Further from (4.18) and (4.12) (with j = 2), we have 

a(x - uidm - mj/M + wd> = a2/pSm 

E 0 (mod S,@- 1)(Se+2-%9, (5.3 1) 

where r E C,-,. From this point on, we shall assume that e is either m or n, 
so that 

se (S,+z* (5.32) 

From (5.32) we have 

(P - l)(% - %n) + 1 < (P - l)(%+ 2 - L), 

so that by (5.30) and (5.31) we obtain 

(5.33) 

where F-E C,-,. 
Appealing to (4.12), (4.17), and (4.19), we have 

(5.35) 
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where r~ C,-,. Hence, as s,+~ # s,+~, we have 

g@-l)min(s,tl-s,,s,t3 r -sm)ll 4(x - wfi>, (5.36) 

where r E C,-,. Thus, in particular, we have: 

1 

Case A:YJj(x - wfi), r E C,-, or C,-,; 

Case B: Yr;(j(x - w&), r E C2--n, (5.37) 

y,@- l)(S.-Sm) 11 gx - Wfi), r E C*-m. 

From (5.33) and (5.37) we see that in Case A 

zlr t<x + wm7 zt tcx - wdi>, r E C,-, or C,-,; 

and that in Case B 

I 

9y-q f(x + w&j), %;(f(x - whi), r E C2--n, 

-P,;l%x + da, 9f-1)(sn-sm) 11 i(x - w&), r E C,-,. 

Hence in both cases we have 

gy)cs.-sd 11 t(x’ - qw2), r E C,-, or C2-,. (5.38) 

It follows from (1.3), (2.4), and (5.38) that 

P sdm 11(x* - qw’), ps+m 1(x2 + qu* + qv2. (5.39) 

Next we show that 

P s,--sm Il(lbld + 2auv - Iblu2), 

P Sn-Sm [I(1 b 1 xw + 2quv). 

(5.40) 

(5.41) 

From (5.39) we have that 

and we note that 

(x2 - qw2)2 

P m”-sf?l) Il(x’ - qw2)2 (5.42) 

= (x” + qwy - 4qx*w* 

= (16~~ - 2q(u* + v’))’ - 4q(av2 - 2 lb/ Uv -au’)’ 

= 256~~~ - 64qph(u2 + v’) + 4q((bl v* + 2cm~ - [blU2)2. (5.43) 



A THEOREM OF CAUCHY AND JACOBI 321 

Appealing to (2.4), (5.42), and (5.43) we see that (5.40) holds. Then, as 

lb1 xw + 2quv = a(lbj v* + 2auv - lb1 u’), 

we have (5.41). 
From (5.34) we have 

f 
( 

x - v(-1y~-2)/4 + i1/Tig.%qy + U(-l)‘b-2)‘4 

.+Jz4-w$q 

= 0 (mod g~-l)(Srt+l-sm)), 

I 

ifrE C2-n, 
- (P-~)(s,+l-sm) 0 (mod 9’, 1, ifrE C2--m, 

(5.44) 

and from (5.35) we have 

+ x + v(+‘-2’/4 b *d----- ,b, I 2q + 2afi - U(-l)‘“-2”4 

= 

1 

0 (mod SF- I)(Sn+J--Sm)), ifrE C2-n, 
- cl--l)(S,+,-s*) 0 (mod Yr h ifrEe,-,. 

(5.45) 

Adding (5.44) (respectively (5.45)) to (5.31) and multiplying by 4, we 
obtain 

zx - u + ,(-q-‘/4 b 
,, ) idGZ%Z 

+ 
( 
u(-I)(~-~)/~ -L - v id- 

lbl 1 

ifrE C2-n, 
0 (mod g(p-l)min(s,tl-s,.s,.2-s,) ifrEC,-,, 

and 

2X - 

0 mod s~-l)min(S,+2-s,,s,+,-s,,), ifrE C,-,. 

(5.46) 

(5.47) 

641/19/3-3 
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Appealing to (5.46) we have, after taking 2~ over to the right-hand side in 
(5.46) and squaring, that 

- 
( 
U(-q’b-2”&- v 

Ibl 1 
* (2q - wG> 

U+v(-q’b-dL 
lb1 I( 

~(-l)‘~-~)/~ b- v 
Ibl 

I 
~m~~P,@-l)mln(S~t~-S~,S~+z-S~)), ifrE C2-n, 
(mod ~r@-l)mln(S,tl-S,,S~.2-S,)), if r E C,-,. 

(5.48) 

Similarly, appealing to (5.47), we have 

U7v(-~)(b-2)/4b Ibl)2Pq+24i) 

_ U(-l)‘b-2’/4 b Ib( +v)z(24-24) 

_ 4 u _ ,(-q’-‘b 4-l) 
(b-2)/4 

Ibl 

I 
crnod g~-l)min(S.+2-S,,S.+,-S,)), ifrE C2-., 
(mod g~-l)min(S,+2-S,.S,t3-s~)), ifrE C,-,. 

(5.49) 

Simplifying the expression in (5.48) and appealing to (5.40), we have, for 
each solution (x, u, V, W) of (1.3) satisfying (4.21), that 

tb+ 2’4 (x2 + qd + qd) 

I 
(mod ~~-l)min(S,tl-S,,S,+2-S.)), ifrE C2--n, 
(mod g~-l)min(S,t1-S,.S,+2-S,)), ifrE C,-,. 

Similarly, simplifying the expression in (5.49) we have 

6 ~ (-l)‘b-2)‘4 (x’ + 422 + qv2) 

bv2+2a&m-bu2 

I 

(mod~~-""'"'S"+2-S",S"t3-S.)), ifrE C2-n, 
(mod g~-l)mln(S,+2-S.,S,+I-S,)), ifrE C,-,. 

(5.50) 

(5.5 1) 
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From (1.3) we have 
x2 + qu2 + qv2 = 4(x’ - qw’)(mod#) 

and 
bxw 2bquv 
- 

Q + Ibla 
-=bv2 +$fuv-bu’, 

so that (5.50) and (5.51) become 

@ I)min(S,+l-S,,S.+z-S.) (mod 9’r - 17 
(mod grlP-l)min(S,+I-S,.S,,2-S.)), 

if r E CZmn, 
ifrE Czmrn, 

(5.52) 

I 
(mod ~~-l)min(S,t2-Sn,S.+3-S.)), ifrE C2-n, 
(mod S~-l)min(S,+2-S,,Smt3-S,)), ifrE C,-,. 

(5.53) 

We now restrict our attention to Case A. As the values of sj in this case 
appear as two equal pairs of values with sj and Sj+ 2 distinct for j = 0, 1,2,3 
wededuce that n=m+ 1 or n=m+3. Hence 

min(s,+, -s,, s,+2 -s,> = I 
s nt2 - s,> 1, ifn = m + 1, 

0, ifn=m+3, 

min(s,+, -s,,smt2-s,)= 1 0, ifn = m + 1, 
S n+2 -s,> 1, ifn=m+3, 

I 

(5.54) 

min(s,+,-s,,s,+,-s,)= 
0 ifn=m+ 1, 
S nt2 -s,> 1, ifn=m+3, 

min(s,+, -s,, s,+3 -s,) = I S n+2 - s,> 1, ifn=m t 1, 

0, ifn=m t 3. 

From (5.52), (5.53), and (5.54), we see that 
(-l)(m-n-1)/2 (+b-2)/4 +2 _ qw2) 

2 bxw+2+quv 
( ) 

(-l)(n-m-1)/2 (-1)(b-2)/4 4X2 _ qw2) 

(mod S,), if rE C2-n, 

(5.55) 

(mod -P,), if r E C,-,. 
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Substituting (5.55) into (5.33) we obtain 

w C-1) 31-7 
(b-W-n))/4 a(x’ _ qwz) 

bxw+2+puv 

lb--Z(n--m))/4 a(x’ _ qw2) 

bmv+2+uv 

(5.56) 

= (-l)s,+l 
- n kfr (mod Zh ifrE C,-,. 

keC, 

As both sides of the congruences in (5.56) are rational integers, the required 
congruences (5.1) and (5.2) follow immediately. 

Next, a simple modificaton of Wilson’s theorem yields for positive 
integers c and d satisfying c + d = q, 

cf! df! z (-l)“-’ = (-l)df-’ (modp), (5.57) 

so that, as (q - 1)/4 is odd, we have 

&- n kf! (modp) (j=O, 1,2,3). (5.58) 

keC, 
ksCi+z 

Using (5.58), the congruences (5.3) and (5.4) now follow from (5.1) and 
(5.2). 

We note that the expressions on the right-hand sides of (5.1)-(5.4) are 
independent of the choice of solution tx, u, v, WI, (x9 -% -v, WI, 
(x, u, -u, -w), or (x, -u, u, -w) for which our Theorem holds. 

We observe that from (5.39) and (5.41) we have p;((x2 -q4w2) and 
p J’ ) b 1 xw + 2quv, completing the proof of our Theorem in Case A. 

Next we turn our attention to Case B. We begin by determining 

kG kf! (modp) and 
In 

kEg+, kf! tmodp). 

From (5.33), with e = m, we have 

&x+w\/;;,= (-l) 

s,+1 

kQc kf! 
(mod X), r E C,-,. (5.59) 

m 
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From (5.37) we have (as s, > s, in this case) that 

f (x - wfi) = 0 (mod Yr), r E c,-,. (5.60) 

Adding (5.59) and (5.60) we obtain 

x~ t-lYm+l 
n kfr (mod $1, r E c,-,. 

ksC,,, 

(5.61) 

As the expressions on the left- and right-hand sides of the congruence 
(5.61) are rational integers (modp), we obtain 

n kf! s t-l)smtl (modp), 
keC, X 

which is (5.5). In view of (5.58) we also have 

n kf! = (-1)‘“lx (modp), 
kSCm+z 

which is (5.7). Finally, we determine 

kG W @odd and n kf! (modp). 
n ksCn+z 

To obtain this determination we use (5.33) with e = n, that is, with r E C,-, . 
This case is more complicated as both sides of the congruence (5.33) contain 
positive powers of 9, and it is necessary to determine the exact power of S, 
dividing both sides of the congruence. In this case we have s, < s, < 
S n+2 < Sm+2 with n = m + 1 or n = m + 3. Hence we have 

mints,+, -wnt2 -sn)=sn+*-s,2- 1, 
mints,,,-s,,s,+,-s,)=s,+,-s,~ 1, ;;; 1; 1 ;’ (5.62) 

9 

and so by (5.52), (5.53), and (5.62) we have 

& _ (-q(b-*(m-n))/4 @2 _ p3) 
(mod Z>, I E C,-,. (5.63) 

However, we need to determine fi modulo 91@-‘)cSn-Sm’t ’ in order to be 
able to use (5.63) in (5.33). 

Defining an integer E by 

(5.64) 
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we have from (5.43) that 

E* = q (mod#), 

so that for t E C,-, we have 

Moreover, in Q&J, we have from (5.63) that YrI & - E, and, conse- 
quently, Z;( & t E. 

Thus, for r E C,-, we have & = E (modpy-“*), and trivially 
(p - 1) h > (p - l)(s, - s,J t 1 by (1.4), so that 

~ - (-l)(b-*(m-n))/4 qx* _ qw*) 
(mod S$‘- l)(Sn-S~)t ‘). (5.65) 

2 bxw t 2hquv 

Using this expression for fi in (5.33) we obtain 

(b-Z(m-n))/4 +2 _ q,,,2) 

bxw t Z+quv) 

~ (-l)sn+ l psnmsm 
nksC kfr (mod ~~-l)cSn-Sm)+ ‘). (5.66) 

” - 

As the left- and right-hand sides of (5.66) are rational integers and the 
integers of Q&J can be factored uniquely as products of prime ideals, we 
obtain 

(b-2(m-n))/4 +2 _ qw2) 

bxw t 2&quu 

~ (-l)sn+lpsn-sm (mOdpSn-Sm+l) 
l-I W 

keC, 

(5.67) 

Now (5.6) follows immediately from (5.67), and (5.8) follows upon applying 
(5.57). Finally, from (5.39) and (5.41) we have 

P Sn-smll(x2 -q4w2), psn-smll(lb(xw t Zquv), 

completing the proof of our Theorem. 
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6. SOLUTION OF THE SYSTEM (1.3)-(1.4) WHEN h= I 

When h = 1 (this includes all q < 61) we show that the Diophantine 
system (1.3)-(1.4) has precisely four solutions. If (x, U, u, w) is one of these, 
the others are (x, -u, -u, w), (x, v, -u, -w), and (x, -v, II, -w). This 
implies that when h = 1 we may use any solution of (1.3)-( 1.4) when 
applying the Theorem in Section 5. 

From Section 4 we know that (1.3)-( 1.4) is solvable in integers. Let 
(x, U, v, w) and (x’, u’, v’, w’) be any two solutions of this system. We set 

y = ~p(q-s)‘8(x + iudm + ivdm + wfi), 

y’ = $pcq-s)‘s(x’ + iu’dm + iu’dm + WI&), 
(6-l) 

and note that y and y’ are integers of K satisfying 

))jj= y’y =p(9-l)/4, p’9-s”8 I/ y, p’4-vbll y’. (6.2) 

From (6.2) we see that the only prime ideals of R, dividing the principal 
ideals yR, and y’R, must divide p, so that the Pi are the only prime ideals 
dividing yRq and y/R,. Let y1 denote either of y, y’. We have 

y,R, =p;l . . . pcq-l q-19 (6.3) 

for non-negative integers Ci. As y1 E K, we have 

qhGCJ = YIR,, ?-EC,, (6.4) 

so from (6.3) we obtain 

for all s E Ci (i = 0, 1, 2, 3), (6.5) 

y,R, = I”r ( n Ps) ‘j+*. 
i=O SEC, 

(6.7) 

Multiplying (6.6) and (6.7) together and appealing to (6.2), we obtain (as 
pRq = P, ... P,-J that 

u. + u* = 24, + us = (q - 1)/4. (6.8) 
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Also from (6.2) and (6.6) we see that 

min uI = (q - 5)/S. 
O(i(3 

(6.9) 

There are exactly four 4-tuples (uo, ui, u2, u3) satisfying (6.8) and (6.9), 
given by 

Ul u2 

k - W (4 + 3)P 
(4 + 3)P (4 + 3)/g 

;;;:g ;; l :g 

u3 

(4 + 3)P 

;;:g 
(4 - W 

One of these four possibilities gives the exponents in the prime ideal decom- 
position (6.6) of yR,. The other three give those for a,(y) R, (s,E C,, C,, 
C,). Since the exponents in the prime ideal decomposition of y’R, must also 
be given by one of the four possibilities above, we have 

Y’R, = as(r) R, 9 for some s. 

As y’ and a,(r) both belong in R, we have 

Y’R, = O,(Y) R,. 

Further, as f 1 are the only units in R, [5, p. 41, we have y’ = *o,(y). Since 
the rational parts of both y’/fp’q-5”8 and ~~(y)/fp(~-‘)” are congruent to 
-4 modulo q, we must have y’ = a,(r). This completes the proof that there 
are only four solutions to (1.3)-( 1.4) when h = 1. 

We note that when q = 13, this resolves in the affirmative a conjecture of 
Muskat and Zee [ 11, p. 191. When h > 1, numerical evidence would appear 
to suggest that if h is the least exponent for which the system (1.3)-(1.4) is 
solvable then it has exactly four solutions. 

7. BINOMIAL COEFFICIENTS (modp) AND NUMERICAL EXAMPLES 

As Smith [ 131 has noted, the results of Cauchy [3] and Jacobi [7] greatly 
generalize the results of earlier authors who determined certain binomial 
coefficients ($) (1 < s < r < q - 1) modulop. For quaternary quadratic 
systems similar to or coinciding with (1.3) when h = 1, congruences (modp) 
for certain binomial coefficients have been given by Emma Lehmer [8] and 
by Hudson and Williams [6, Theorems 16.1 and 19.31. 

In this section we use (5.57) to reformulate our theorem in terms of 
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binomial coeffkients for certain small values of q. We also give three 
numerical examples. (See Examples 7.1, 7.2, and 7.3.) 

For 5 < q < 61 (then h(K) = 1; see [ 121) there are, by Section 6, exactly 
four solutions to (1.3)--(1.4) and we have the following corollary. 

COROLLARY. Let (x, u, u, w) be any solution of the system (1.3)-( 1.4) 
with h= 1, q<61. Then we have 

X E-- 3(x2 - 13w2) w  
2 + qxw + 13UV) 

(modp = 13f+ l), (7.1) 

X 3(x2 - 13w2) w  
=-T- 8(xw + 13uu) (modp= i3f + I), (7.2) 

(:;)(‘;)kf) E-- ; + 5(x2-2gw2)w ( 
8(xw + 29uu) m” 

dp=29f+ 1) 
7 (7.3) 

($1 (3 (‘g _ x 5(x*-29w*)w 
(lkY)(l;) - 2 8(xw+29uv) (modp=2gf+1), (7*4) 

E-Z!- (x2-37w2)w (modp=37f+ l), (7.5) 
2 8(3xw + 372~) 

rtg rg =-A (x2-37w2)w 
2 + 8(3xw + 37uv) 

(modp = 37f + l), (7.6) 

(7.7) 
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X 7(x2 - 53w2) w  
‘-‘2-- 8(xw+53uv) 

(modp = 53f+ l), (7.8) 

8(3xw + 61Ur,) tmodp = 61f+ ‘), (7.9) 

Remarks. The congruences (7.1) and (7.2) were established in [6, 
Theorem 16.11. Each binomial coefficient in (7.1)-(7.10) is selected to be a 
representative binomial coefficient of order q as defined in [6, Sect. 21. 

The above corollary was originally proved using Jacobi sums but this 
method appears difficult to extend to arbitrary q. We note that this approach 
explains why the number of binomial coefftcients in the numerator plus those 
in the denominator in (7.1)-(7.10) is precisely (q - 1)/12 if and only if 
q = 13 (mod 24). Lastly, we remark that the number of binomial coefftcients 
in (7.7) and (7.8) differs because of cancellation of a binomial coefficient in 
the former congruence. 

Congruences for binomial coefficients like the above may be derived when 
q > 101 although the derivation is somewhat tedious. The following three 
examples illustrate some of the possibilities which arise when applying the 
Theorem in Section 5. Examples 7.1 and 7.2, which we give both in terms of 
factorials and in terms of binomial coefficients (modg), illustrate Case B. In 
Example 7.1 the least exponent for which (1.3) is solvable is h = 3 and 
numerical data indicate that there are only four solutions of (1.3)-(1.4). In 
Example 7.2 the least exponent for which (1.3) is solvable is 1 (although 
h = 3). In this example there are twelve solutions of (1.3)-( 1.4). The 
congruences (5.1)-(5.8) hold for exactly four of these twelve solutions. 
Finally, Example 7.3 illustrates Case A. Case A can occur only if h(K)/ 
h(Q(&)) is a perfect square but the converse may not be true (see, e.g., 
Tables I and II for q = 181). 
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TABLE I 

Values of h*(K) = h(K)/h(Q(&)), 5 < q < 1000 

4 h*(K) 4 h*(K) 9 h*(K) 

13 1 277 17 661 9 

29 1 293 9 677 25 

31 1 317 13 701 25 
53 1 349 5 709 61 
61 1 373 5 733 45 

101 5 389 41 757 125 

109 17 397 13 773 29 

149 9 421 25 797 37 

157 5 461 25 821 17 

173 5 509 13 829 145 
181 25 541 61 853 17 

197 5 557 13 877 37 

229 17 613 25 941 41 
269 13 653 25 997 25 

TABLE II 

Values of sj, j= 0, 1, 2, 3, for 5 < q < 300 

13 1 1 2 2 157 19 18 20 21 
29 4 3 3 4 173 23 22 20 21 
37 4 5 5 4 181 19 22 26 23 
53 7 7 6 6 197 25 26 24 23 
61 7 8 8 7 229 27 26 30 31 

101 14 12 11 13 269 31 34 36 33 
109 11 12 16 15 277 36 32 33 37 
149 17 17 20 20 293 35 38 38 35 

EXAMPLE 7.1. Let q= 101 (a = 1, b = - lo), p = 607, so that p* = 

368449. Then s,, = 14, sr = 12, s2 = 11, s1 = 13 so that h in (1.3) is equal to 
3. We note that (1.3) is not solvable if h is replaced by any exponent less 
than 3, and that there are exactly four solutions when h = 3 and x = -4 
(mod q), namely, (x, U, V, w) = (-8185, -966, 1971, -5013), together with 
the three solutions (x, -u, -II, w), (x, U, -u, -w), and (x, --a, u, -w). 

It is easily checked that for this solution we have p\l(x’ - qd) and 
pll(lbl xw + 2quv). Consequently, our Theorem asserts that, with f = 6, we 
have 
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(-1)” 

I-I M-1 

53f 54f 46f 44f 40f 42f 95f 94f 90 

= (4f)(9f)(13f)(14f)(l7~)(20~)(42f)(40~)(44~(~~~) - 

- 8 185 = 294 (mod 607). 

We have veritied this congruence by direct computation. 
Moreover we must have, with f = 6, that 

- 302 (mod 607), 

(34599)(-5013) 
+ 8(299381- 340657) 

ksC, 

= 302 (mod 607). 

EXAMPLE 7.2. Let q= 157 (a = -11, b= -6), p= 1571, so that 
p* = 2468041. Then s,, = 19, S, = 18, S, = 20, s3 = 21 so that h = 3 in (1.3). 
However, in this case (1.3) is solvable if h is replaced by 1. There are (as a 
consequence which will be discussed elsewhere) 12 solutions of (1.3) with 
h = 3. Among these is the solution (x, U, U, w) = (-23868, -3254, -8570, 
-14948). For this solution we again have p /[(x2 -qw*) and pll(lblxw + 
2quu). Thus the Theorem in Section 5 together with (5.58) yields, with 

f = 10, that 
133f 98f 97f 63f 135f 88f 116f 102f 

(-1)" ( 
j=jLg 

2f )(lSf)( 5f )(29f)( 28f)(43f)( 2lf)( 32f) 

kec, 

= 23868 = 303 (mod 1571). 

Moreover 

(-1)‘9 -= 
,!',,kf! - 

= 1090 (mod 1571), 
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ll(2031994 - 2237795)(-14948) 
B(1674839 + 2387767) 

1712390 
55 

1571 
= 1090 (mod 1571). 

EXAMPLE 7.3. Let q = 149 (a = -7, b = -IO), p = 1193. Then s0 = 17, 
s, = 17, s2 = 20, s3 = 20 and (as s2 - s0 = s3 - si) we are in Case A. Note 
that for this example (1.3) is not solvable if h is replaced by 1 or 2 and that 
we have four solutions with h = 3 and x 3 -4 (mod q) as in Example 7.1. 
Taking any one of these, say, 

(x,u,u, w)= (2380, 2744, 8824, 3392), 

we have 

-2380 
2 * 

- 7(36-550)(3392) 
8(838+9) 

509 (mod 1193). 

Indeed, we have verified by direct computation that 

(-1)” 
~ = 690 (mod 1193) 
k;c,kf! - 

and ~- (-')" = 509 (mod 1193). 
l-I W 

kcC,, 
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