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It is shown that any Z-tittered associative algebra R over a field k can be 
embedded in the completion HB of a Z-graded k-algebra @Hi, so that the 
filtration on R is induced by the grading of H. A normal form for the universal 
such H is found. A consequence is that if R is a k-algebra such that R” = (0). then 
R can be’ embedded in a graded k-algebra @Hi of which all homogeneous 
components except H, ,..., H,- , are zero, and so (by the results of part 1 of this 
series) can be embedded in n x n strictly upper triangular matrices over a 
commutative k-algebra. This last result has also been proved by I. V. L’vov. 

Throughout this note, k will be an associative commutative ring with 1. In 
the sections where we prove the main results, we will essentially assume k is 
a field. Results obtainable without this assumption will be studied in [3,4]. 

All k-algebras will be assumed associative, but not unital unless this is 
stated. 

1. FILTERED ALGEBRAS-DEFINITIONS 

By a Z-filtered k-algebra (or simply a$ltered algebra) we shall mean a k- 
algebra R expressed as a union R = lJiezRCi,, such that 

. . . ZR (-2, 2 R(-,, 2 R(,, 2 R(,, 2 Ro, r> a..; (1.1) 

each Rci, is a k-submodule of R ; (1.2) 

R,i,Rti,CR(i+t, (6.i E Z>; (1.3) 

n R(t) = PI. (1.4) 
ieZ 
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Such a filtration on R is equivalent to a function v: R -+ Z U ($03 } 
satisfying 

4x + Y> 2 min(G), u(Y)) (x, Y E RI, (1.5) 

v(cx) > Nx) (cEk,xER), (1.6) 

GY> > v(x) + NY> (X,Y E RI, (1.7) 

v(x)=+a3ox=O (x E R). (1.8) 

The relation between the system of submodules Rti, and the filtration 
function v is given by 

U(X) = sup{i ( x E R(i)}, equivalently R,i,={xI~(x)>i}. (1.9) 

For x E R, the value of the filtration function u on x will be called the order 
of x. 

A homomorphism of filtered algebras f: R + S will mean a map f such 
that 

and 

f is a k-algebra homomorphism, (1.10) 

4f(x))>+) @ER); equivalently f(R,i,) C S(i) V E 12). 
(1.11) 

Such a homomorphism will be called an embedding offiltered algebras (or v- 
embedding) if in place of (1.11) it satisfies the stronger condition 

v(f(x)) = v(x) (x E R); equivalently R,i, = f -'(SC,,) (iE 2). 
(1.12) 

By (1.8) or (1.4) this implies that f is one-to-one, but it is stronger; it says 
that R is isomorphic to a subalgebra of S withfiltration induced by that of S. 
Thus (as in topology) the embeddings are a more restricted class than the 
one-to-one morphisms. 

When we speak of unital algebras, we mean not merely that these are to 
have elements 1 satisfying lx = x = xl, but that we consider among them 
only homomorphisms taking 1 to 1. (“Nonunital” algebras may or may not 
have such elements; if they do we don’t require homomorphisms to respect 
them.) Filtered unital k-algebras are required to satisfy 

1 E R,,,, equivalently u(l)>O. (1.13) 
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If R # (O}, (1.13) is easily shown to imply 

V(1) = 0. (1.14) 

The completion Z? of a filtered algebra R is defined in the familiar manner 
as the algebra of limits of Cauchy sequences. As a k-module it may be 
described by 

k = inv. lim., R/R cij. (1.15) 

2. EXAMPLES OF FILTRATIONS 

(2.1) Let R be a k-algebra and Z G R a 2-sided ideal such that 
niZi = (0). (Note: even if R is nonunital we require ideals to be k- 
submodules.) Then we get the “I-adic filtration” on R by defining RCi, = I’ 
for i > 0, RCi, = R for i < 0. Under this filtration, all elements have 
nonnegative order. (Conversely, in any filtration under which all elements 
have nonnegative order, equivalently, R = R(,,), each R,,, is an ideal of R, 
though not necessarily of the form I’. So in such cases (1.15) is a limit of 
algebras.) Taking Z = {0}, the I-adic filtration gives the triuiul (=least 
nonnegative) filtration. 

(2.2) If S is any k-algebra, the polynomial ring in a central indeter- 
minate, R = S[t], may be filtered by putting u(f) = -deg f. Here all nonzero 
elements have nonpositive order. (Authors having such examples in mind 
often reverse the signs on their filtrations, relative to our definition. Cf. 
[2, p. 691 on the one hand, and [2, p. 961 on the other.) 

(2.3) A filtration function v such that equality holds in (1.7) is called a 
Z-valued valuation. Examples are the (p)-adic valuation on a commutative 
UFD R where p E R is a prime, which is nonnegative-valued, the filtration of 
(2.2) when S has no zero-divisors, which is nonpositive-valued, and the 
valuations induced by each of these on their fields of fractions, which assume 
both positive and negative values. 

(2.4) One can get pathological examples by composing a given filtration 
function u with any function a from the range of u (excluding +co) into Z 
which satisfies i < j ti a(i) & a(j), a(i + j) 2 a(i) + a(j), and, in the unital 
case, also o(O) = 0. Examples are a(n) = n* for u nonnegative-valued, a(n) = 
max(n, -10) for u nonpositive-valued, a(n) = greatest integer in n/2 for 
arbitrary u, and in the nonunital case a(n) = n + 1 for arbitrary z.r. 

(2.5) The i&mum of two filtration functions on an algebra R (e.g., 
valuations) is again a filtration function. 
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3. GRADED ALGEBRAS-DEFINITIONS 

In dealing with graded objects, we prefer a terminology which 
distinguishes between homogeneous and not necessarily homogeneous 
elements, giving precedence to the former. Therefore, we define a Z-graded k- 
algebra (or simply graded algebra) H to mean a collection of k-modules 
(Hi)iEZ given with k-bilinear maps Hi X Hj + Hi+ jr written as multiplication, 
and satisfying the associative law 

(XY)Z = 4YZ) (XEH,,yEHi,zEHj). (3.1) 

If H is a graded k-algebra, the k-module oi Hi becomes an ordinary k- 
algebra in an obvious manner. We shall denote this algebra H? It has a 
natural Z-filtration given by 

H:, = @ Hj. 
j&i 

(3.2) 

Its completion with respect to this filtration will be denoted HG ; we see that 

H$ = n Hj. 
j>i 

(3.3) 

We wi!l identify the homogeneous components Hi with their images in H@ 
and H@; thus a typical element of H$ can be written as the sum of a Cauchy 
series 

.y= \’ Xi 
rh9-z;: cc 

(Xi E Hi). (3.4) 

A homomorphism f: G -+ H of graded algebras means a family of k- 
module homomorphisms fi: G, + Hi, respecting multiplication. Unitaf graded 
algebras will be understood to have identity elements 1 E H,, and their 
homomorphisms are required to respect 1. 

(“Conventional” notation was used for graded algebras in 11 J because 
they made such a brief appearance that the point wasn’t worth dealing with. 
But the present notation, as well as the definitions concerning filtrations in 
Section 1, will be used consistently in the remaining papers of this series.) 

4. MODULES 

Let a filtered k-module mean a k-module M expressed as the union of a 
chain of submodules .*a 2 M,- 1j 2 Mfo, 2 MC,, 2 . . . such that n MCi, = (0). 
The order function v on such a module is defined as on a filtered algebra 
(1.9). 
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For such an M, let us define for each i E H 

End,,,(M)u, = {r E End,(M) ( ‘M(j) G M,j+i, for all j E Z}. (4.1) 

It is easy to see that the union of this chain, 

En4dW = U E%,t(W(i,o (4.2) 

is a filtered k-algebra. For any filtered k-algebra R, aj?ltered R-module will 
mean a filtered k-module M given with a homomorphism of filtered rings, 
R -+ End,,,(M); i.e., with a structure of R-module such that (1.7) holds with 
x E R, y E M. (This agrees with the above definition of “filtered k-module” if 
we give k the trivial filtration, see (2.1).) The filtered R-module M will be 
called filtration faithful if the map R + Enda,#M) is an embedding of filtered 
k-algebras; in other words, if for each r E R - {0} there exists x E M - (0) 
such that U(TX) = U(T) + V(X). Every filtered algebra R has filtration faithful 
filtered modules; for example, R itself if it is unital, or if not, k @ R, made 
first into a unital over-algebra of R, and thence a filtered R-module. 

Completions of filtered k-modules are defined as for algebras. It is not 
hard to see that for any filtered k-module M, End,,,(M) embeds naturally in 
Enda,,( and that a filtered R-module structure on a filtered k-module M 
therefore extends to such a structure on ti. 

A graded k-module N will mean a system of k-modules (Ni)ipz. If we 
define 

End,,(N), = n Hom,(Nj, Nj+ i> (i E Z), (4.3) 
jcZ 

then these form a graded k-algebra End,,(N), and we can define a graded 
module over a graded algebra in obvious analogy to the definition for 
filtered objects. 

As was the case for algebras, we have functors ( )@ and ( )$ from graded 
modules to filtered modules. It is not hard to verify that for a graded k- 
module N, 

Enda,, z (End,,(N))6. (4.4) 

(On either side of (4.4), the submodule Rci, can be pictured as consisting of 
infinite matrices in which the (h, j) position is occupied by elements of 
Hom,(N,, , Nj) which are zero unless j - h 2 i.) 

5. THE EMBEDDING THEOREM 

Before giving the general proof of our embedding result, let us show the idea 
in a case that is particularly easy to visualize (the case for which the second 
author first noted it.) This is the problem of embedding a nilpotent algebra R 
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over a field k in upper triangular matrices over an associative algebra. For 
concreteness let us consider an R such that R3 = (0). 

We filter R by powers of itself; in this case, R 2 R2 2 (O}. Since k is a 
field, the k-subspace R2 has a complement in R, so we get a k-vector-space 
decomposition R = N, @ N, with N, = R 2. If we think of N, @ N, as a right 
R-module, it is not faithful, since R2 annihilates it, but if we adjoin another 
summand N, = k, on which R acts by l(ni + nz) = n, + n, (ni E Ni), we get 
a faithful module N0 = N, + N, + N,. Now R acts on N@ in a “triangular” 
fashion, giving an embedding 

i 

0 Hom(N,,, NJ Hom(N,, NJ 
RG 0 0 Hom(N,, N,) c T,(End,(NO)>, (5.1) 

0 0 0 

as desired. 
It was noted in [l] that embeddability in upper triangular matrices is 

equivalent to embeddability in certain sorts of algebras Ho. It is this version 
of our result that is most convenient to generalize to arbitrary filtered 
algebras. 

THEOREM 1. If k is a field and R a (unital or nonunital) filtered k- 
algebra, then R can be embedded ai a (unital or nonunital)filtered k-algebra 
in a completed graded k-algebra H @. 

More generally, this is true tf the hypothesis that k is a field is weakened 
to say that for each iE Z, Ro+,) is a k-module direct summand in R,,,, or 
still more generally, tf R has a filtration faithful filtered module M such that 
for each i E Z, MC,+,, is a k-module direct summand in Mo,. 

Proof: The hypotheses are successively weaker; let us assume the last 
one, and write 

M(i) = Ni 0 M(i+ I) (i E Z). (5.2) 

We think of the Ni as forming a graded k-module N. Then N@ embeds as a 
dense filtered submodule of A4, so 

(5.3) 

We now have embeddings of filtered k-algebras 

R + End,,JM) + Endn,,(&) g Endn,,(NG ) z End,,(N)G, 

the last having the desired form H EJ. 1 

(5.4) 

Let us record separately the consequence for nilpotent R. 
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COROLLARY 2. If k is a field and R an associative k-algebra satisfying 
R” = {0}, then R can be embedded in HQfor a graded k-algebra H such that 
all components Hi are zero except for i = l,..., n - 1. Hence by [ 1, 
Theorem 11, R can be embedded in strictly upper triangular n x n matrices 
over an associative, and even an associative commutative k-algebra. (Cf: 
Note below.) 

Remarks on prooJ: The existence of an upper triangular embedding over 
an associative k-algebra can be proved directly, as sketched above for 
R3 = (0). Alternatively, the first sentence, which is equivalent to either 
version of the last sentence by [ 11, can be obtained from the above Theorem: 
Note that in that Theorem, if R = R(,, , then by replacing H by a graded 
subalgebra if necessary, one can assume Hi nonzero only in positive degrees; 
and if further R(,, = (0) we can then assume by going to a quotient of H if 
necessary that H is zero in all degrees >n. Now if R” = (0) and we filter R 
by R,i, = R’, we get the asserted result. 1 

(5.5) Note: The last (and formally strongest) statement of the above 
Corollary has also been proved by I. V:L’vov [8]. (The statement in [S] 
adds the conclusion that the associative commutative algebra can be taken to 
satisfy C” = (0). But it is not hard to see that if any C gives the desired 
embedding, then C’ = tC[t]/t”C[t] yields a similar embedding and satisfies 
C’” = {O).) L’vov’s result is presented as a refinement of a result of A. Z. 
Anan’in, who gives in [9] sufficient conditions for an algebra over a field k 
to be embeddable in non-strictly upper triangular matrices over a 
commutative associative k-algebra, which in particular are satisfied by 
nilpotent algebras. 

In the summer of 1978, Bergman and Anan’in learned of each other’s then 
still unpublished results in this area, but not their proofs. (Bergman’s results 
at that time were those of [ 11, and Section 6 of this paper. They were later 
announced in [ 111. Anan’in’s result had been announced in [ 10, p. 41.) 
Subsequent contributions by L’vov and Vovsi, respectively, were also 
independent. 

6. THE UNIVERSAL CONSTRUCTION 

Let k again be an arbitrary commutative ring, and R any filtered k- 
algebra. Then there is a universal example of: a graded k-algebra H with a 
homomorphism of filtered algebras S: R -+ H @. Indeed, consider the graded 
k-algebra U(R) presented by generators 

ai E U(R){ (a E R, i > v(a)), (6.1) 

481/84/l-3 
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and the relations needed to make the map 

a homomorphism. (Beware our notation! Observe which elements are in R, 
and which in U(R).) To express these relations without complicated 
restrictions on ranges of indices, we make the convention that a, = 0 for 
i < v(a) (values for which no such generators are introduced in (6.1)). Then 
these relations can be written 

(a + b)i = ai + bi (a, b E R, i E Z), (6:3) 

@Ii = 44 (aER,cEk,iEL), (6.4) 

(ab),= K- 
o(a)<]~i-v(b) 

ajbi-j (a, b E R, i E if). 

In the unital case, one also has a set of relations saying that u( 1) = 1. For 
simplicity we postpone introducing these till the end of this discussion. 

(Brief digression: If we did not refer to filtered algebra homomorphisms, 
such a universal object would not’exist. For instance, the k-algebra R = k[xJ 
admits ordinary k-algebra homomorphisms into algebras H5 which take x 
to elements of arbitrarily large negative order. Hence these cannot all factor 
through a single homomorphism of R into one algebra U@, since the image 
of x in UG would have to have some finite order. Even using 
homomorphisms of filtered algebras, R does not in general have a universal 
such homomorphism into a _noncompleted algebra U? So filtered algebra 
homomorphisms into rings H @ give precisely the “right” conditions for this 
universal construction.) 

We shall obtain below a normal form for elements of U(R), assuming that 
k is a field, or more generallly, that for each i E Z, RCi,/RCi+ 1j is free as a k- 
module. It will be evident from this normal form that the map R + U(R)& is 
an embedding of filtered algebras. This was, in fact, the first author’s original 
proof of Theorem 1. 

Since RCi)lR(i+ I) is a free k-module, Rti+ 1j is a k-module direct summand 
in RCi, with free complement: 

R(i) =Fi OR(i+l). (6.6) 

Let us take a k-basis Xi for each Fi, and let X = U Xi. It is not hard to 
verify that every element a E R can be written uniquely as a sum converging 
in the filtration topology: 

a= r a (x)x. (6.7) 
i>v(a).xexf 

Here for each i > v(a), a(x) E k is nonzero for only finitely many x E Xi, 
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and the equation (6.7) means that if, for j E Z, we denote by ati’ the partial 
sum, over i ranging from v@z) to j, then v(a - u(j)) > j for all j. 

If we apply u: R --) U(R)@ to (6.7), and project onto the jth component 
U(R)j. we get 

aj = -7 
v(o)<i2j,xexi 

a(x> xj in U(R)j (a, a as in (6.7)). (6.8) 

This says that in U(R), all of the generators aj (a E R, j> u(a)) can be 
expressed in terms of the xi (x E X). Hence we can eliminate all the 
generators (6.2) except for those with a E X from our presentation of U(R), 
and take (6.7)-(6.8) as our definition of aj for general a E R. Relations (6.3) 
and (6.4) now become immediate consequences of this definition (6.8), and 
all cases of (6.5) become consequences of those cases with a, b E X, because 
of the k-bilinearity of the multiplication ofR. Hence U(R) is presented by 
generators 

and relations 

Xj E U(R )j (xEXi,j>i), (6.9) 

(xY)i= T 
Lw<JTz--u(Y) 

xjYi-j (x, y E X, i > u(x) + U(Y)), (6.10) 

where the left-hand side of (6.10) is defined using (6.8) with u = xy E R. 
We now want to use the equations (6.10) as “reductions,” in the sense of 

[3], to simplify expressions for elements of U(R). For this purpose, we 
isolate one length-2 term from each of these equations, and use this relation 
to eliminate all occurrences of this term from expressions in U(R). Let us 
make this the first term of the summation. Thus we rewrite (6.10) as 

xu(.x)Yi-o(x) = (xY)i - r 
dx)<,Ti--L,(y) 

xjYi-j (x, Y E X i > u(x)+ U(Y)>. 

(6.11) 

Let us call a generator xj of U(R) a “head generator” if j = v(x). Then (6.11) 
allows us to eliminate or “push to the right” all head generators involved in 
monomials occurring in expressions for elements of U(R). If we assign to 
each formal monomial p in the generators (6.9) a nonnegative integer 
“index,” defined to be the sum over all head generators occurring in p of 
their positions in the monomial, counting from the right (e.g., the index of 
x,x[,x;b, if x, and xi, are head generators, is 3 + 2 = 5), and partially order 
these monomials by writing p > q if either p is longer than q, or it has the 
same length but greater index, then we see that every application of (6.11) to 
a monomial sends it to a k-linear combination of monomials lower than itself 
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under this partial ordering. This partial ordering has descending chain 
condition, hence successive applications of these reductions eventually carry 
every expression to a sum of irreducible monomials, that is, monomials 
involving no head generators except perhaps as their final factor. 

The irreducible monomials thus span U(R); we wish to verify that they 
form a free basis for U(R) as a (graded) k-module. To do this, we must show 
that all “ambiguities” of our reduction system (6.11) in the sense of [S] are 
“resolvable” relative to the above partial ordering. These ambiguities involve 
terms 

xtO) Yu(Y) zj (x, Y, z E x j 2 u(z)>, (6.12) 

which can be reduced either beginning with the first pair of terms or with the 
last pair. A brute force verification of resolvability is possible, but would be 
tedious (especially since the terms (x-Y)~ in (6.11) will be general linear 
combinations of generators, some of which will be head generators and some 
not) and, ultimately, unenlightening. Let us instead use the trick introduced 
in [5, Section 41. Let F denote the free graded k-algebra on the generators x.~ 
(x E X, j >,v(x)), which is where our formal expressions live, and let us write 
down in F@ the associative law of multiplication for the product ‘JFh>t>(x, x,, 
Ci>uCy) Yi Cj>u(z) J z. for some particular x, y, z E X namely: 

We now apply the reduction (6.11) to all terms x,,(,, yi in the 
parenthesized expression on the left, and to all terms Yl~(y~Zj in the 
parenthesized expression on the right. Since (6.11) is equivalent to (6.10), the 
results can be seen to be 

s CxY)i C zj and -T Xi’ (yz)j. 
I j 7 1 

Now applying (6.11) to monomials of the form w,(,,,~z~ occurring on the left, 
and x Dtxjwj on the right, these products reduce, respectively, to 

S ((xY)z)i and s (x(Yz)>i, 
I I 

(6.15) 

which are equal term-by-term by the associativity ofR. Now if we look at 
the homogeneous component of a given degree, say V(X) + u(y) + j, we 
observe that our first round of reductions involved exactly one application of 
(6.11) to the first pair of factors of the monomial x,~,~~~~,,,z~, namely, in 
going from the left-hand side of (6.13) to that of (6.14), and exactly one 
application of (6.11) to the last pair of factors of that same product, namely, 
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in going from the right-hand side of (6.13) to that of (6.14). Since we began 
with an equality, (6.13), and ended with equal terms, (6.15), these two 
reductions of x v~x~yU~y~zj must give results that are equal modulo the other 
reductions that we performed-and all of these affected terms lower under 
our partial ordering than ~,(~)y~(,,) , z.. This establishes that the ambiguities in 
question are “resolvable relative to the partial ordering,” which as shown in 
[ 51 means that they are actually resolvable, and that our reduction system 
does give a normal form. 

Let us now note the adjustments to be made in the case of unital graded 
and filtered algebras. First, to (6.3)-(6.5) we add 

Ii=&, (i E Z). (6.16) 

Next, we must assume that we can choose our k-bases Xi such that 
1 E X0. Then we can use (6.16) to eliminate all occurrences of generators li ; 
hence we take for our generating set the elements (6.9) with x ranging only 
over X - { 1 }. However, we keep x ranging over all of X in the definition 
(6.8). In formulating our relations (6.10) and reductions (6.11) we again 
have x and y ranging only over X - { 1 ], but the case of (6.10) (and hence 
(6.11)) where x or y is 1 follows from (6.16). The resolution of ambiguities 
is achieved exactly as for the nonunital case. 

In summary, 

THEOREM 3. Let k be a field and R a filtered (unital or nonunital) k- 
algebra; or more generally, let k be a commutative ring and R a filtered k- 
algebra which admits k-module splittings (6.6). For each i, let Xi be a k-basis 
for Fi, and in the unital case assume also that we can take 1 E X,. Write 
x= (J xi. 

Let U(R) be the graded algebra, unital or nonunital, respectively, with a 
universal homomorphism offiltered k-algebras u: R --t U(R)%, and for a E R, 
j E Z define aj E U(R)j as the degree j component of u(a) E U(R)G. 

Then in the nonunital case, U(R) is defined by the generators Xj (x E X, 
j > v(x)) and relations (6.1 l), and has for basis the set of all monomials in 
these generators that do not involve generators x0(,, except possibly as the 
last factor. 

In the unital case the same is true with the generating set X replaced by 
X - ( 1 }, but with “monomials” understood to include the empty 
monomial “ 1.” I 

Since all the head generators, and in the unital case i0 as well, become 
distinct basis elements of U(R), we see that u: R + U(R)@ is an embedding 
of filtered k-algebras, which when k is a field yields the result of Theorem 1. 

If we use the method of Section 6 of [5] instead of that of Section 1, we 
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can get a slightly more general result by essentially the same arguments. Let 
us record this as 

COROLLARY 4 (to proof of Theorem 3). Zf in the context of Theorem 3 
we do not assume a splitting with free complements F, as in (6.6), but only a 
k-module splitting 

Rci,=Ni@Rci+l) (6.17) 

(but in the unital case, for i = 0, replace this by R,,, = N, @ k 0 R(,,), and 
we write Ni,j for the projection of u(N,) in U(R)j, then we can conclude that 
U(R) is generated as a graded k-algebra by the Ni,j (i < j), that each U(R)j 
is the k-module direct sum of the products 

Nil,jl "' Nin,jn 
(j= j, + . . . + j,; i, < j, with strict inequality 

except for m = n), (6.18) 

and that these products are naturally isomorphic to the tensor products 

Nil O/c .. . ok Ni,. (Here n > 1 in the nonunital case; n > 0 in the unital case, 
with the empty tensor product of k-modules understood to mean 
kc U(R),.) i 

7. U(R) IS UBIQUITOUS 

The following result is amusing. 

PROPOSITION 5. Let k be a f?eld, R a filtered unital k-algebra, H a 
graded unital k-algebra, and f: R + H” a v-embedding. Let E be the graded 
k-algebra obtained by adjoining to H an indeterminate z E E,. Define the 
conjugated embedding g: R + E @ by 

g(x)= (1 -z)f(x)(l -z)-’ (xER), (7.1) 

and let V be the graded subalgebra of E generated by the homogeneous 
components of the elements of g(R). Then V is naturally isomorphic to U(R). 

Sketch ,of proojI By the property characterizing the universal map u: 
R + U(R)O, there exists a unique homomorphism 

y: U(R)* E (7.2) 

such -that_ th_e embedding of filtered algebras g (7.1) factors R --t” 
U(R)@ jy@ EQ. The conclusion of our Proposition, stated precisely, is that 
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y is one-to-one on each homogeneous component. To prove this result, we 
examine the structure ofE. 

Let us choose for each i a basis Bi for Hi as a k-vector-space, with 1 E B,. 
Then for eachj, a basis of Ej is given by the set of words (including, when 
j = 0, the empty word 1) in the elements of {z} U (U Bi) - { 1) that have 
degree j (z being assigned degree 1, and elements of Bj degree i), such that no 
two elements of lJ Bi occur in succession. (Cf. [5, Corollary 8.21.) 

If such a word has z’s in positions pl, pz,..., p,, let us call r the weight of 
the monomial, and p, + pz + ..- + pr its moment. (For instance, zbzzb’ has 
weight 3, and moment 8 = 1 + 3 + 4.) If a E Ej - {O), we may write a as a 
linear combination of monomials, collect together the summands of maximal 
weight, and among those the terms of maximum moment; we shall call the 
sum of these terms the dominant part of a. 

For ,an element a E R, let us write its images under u: R + U(R)& and f: 
R + H@ using, respectively, (6.2): 

u(a)= c aiE U(R)5 
i>tJ(cl) 

and 

Hence 

f(a) = ‘T 6&H%. 
iGab 

(7.3) 

g(a)= (1 -z)f(a)(l -z)-’ 

=(1-z)( x ai (1+z+z2+**.). 
i>o(a) i 

We can write the degree j term of this equation as 

cj = r hizj-i - T zg,zj-i- I 
u(a)$i<j r(aiTi< j 

I (7.4) 

We see that the part of (7.4) of highest weight will be given by the i = v(a) 
terms if these terms are nonzero. These terms are 

[a;,,), z] Zj-“(a)-’ if j > u(a), 

if j = u(a). 
(7.5) 

au(a) 

A sufficient condition for (7.5) to be nonzero is 

j > u(a), and if v(a) = 0 the expression for 6, E H, does not 
involve the basis element 1, (7.6) 
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and in this case we see that the highest-moment part of (7.5), and thus the 
dominant part of (7.4), is 

We now need to go back and put an additional condition on our choice of 
basis B for H. As in the proof of Theorem 3, let RCi, = Fi @ RCi+ II and let Xi 
be a basis for Fi, with 1 E X,, so that U(R) has the basis described in 
Theorem 3. From the fact that f: R -+ H CS is a u-embedding, it follows that 
elements f(x) (x E Xi) are linearly independent modulo (H G)Ci+ 1j, and 
hence that their images .iZi E Hi are linearly independent. Indeed, these are 
the leading terms of the f(x), since for x E Xi, U(X) = i. Hence we can 
assume B chosen so that 

Bi ~ {Xi (X E Xi} (iE Z). (7.7) 

We now note that for x E X - (1) and j > v(x), condition (7.6) holds, 
hence by our preceding observation the dominant part of li is the single 

monomial 

f,,(,) Zj- L”x). (7.8) 

NOW consider a member of the basis for U(R)i found in Theorem 3: 

w = xj(!/, . . . x;;n’, (x@) E X - { 1 }, x j(p) = i, j(p) 2 ZI(X(~‘) 

with strict inequality for p < n). (7.9) 

Its image in Ei will be 

y(w) = q;;, . . . q,!:;‘, . 

We claim that the dominant part of (7.10) is 

(7.10) 

$1, LNx(‘))z j(l)-v(+(l)) ... 2 otx(“))z j(n) - IQ”)) (7.11) 

It is not true in general that the dominant part of a product is the product of 
the dominant parts of the factors. But this is true if, first, in the maximum- 
weight part of each factor all monomials involve the same number of 
occurrences of elements of B, and second, none of the multiplications of 
monomials that must be performed among monomials of the dominant part 
brings together two elements of B-these conditions ensure that the moment- 
function will behave well. Both these conditions hold in this case in view of 
the form of (7.8), and the fact that j(p) - u(x@)) > 0 except perhaps for 
p = n. 
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It follows that the images under y of distinct monomials (7.9) in our basis 
of U(R)j have distinct monomials in the basis of E as their dominant parts. 
Hence no nontrivial linear combination of these images can be 0, proving 
that y: U(R) + E is one-to-one, as required. 1 

What about a nonunital version? The problem is to define (7.1). In a 
nonunital ring it is generally convenient to let an expression like (1 + a)b or 
6( 1 +.c) be used as an abbreviation for b + ab or b + bc; and in our 
complete ring H@ the factor “( 1 - z)- “’ can be rewritten 1 + (z + z* + ..a) 
and interpreted in this way. One finds that 

(1 -z)c(l -z)-‘=c+ [c,z](l -z)-’ 

=c+[c,z]+[c,z](z+z2+-0) (7.12) 

and one can verify directly that this defines an automorphism of H C5, though 
it is easiest to see this by adjoining a unit. In any case, we get 

COROLLARY 6 TO PROOF. The statement of Proposition 5 holds for 
nonunital algebras, if (7.1) is interpreted using (7.12). 1 

8. REMARKS ON UNIVERSAL CONSTRUCTIONS 

(a) We noted in Section 6 that given a filtered algebra R, there does not, 
in general, exist a graded algebra H with a universal homomorphism of 
filtered algebras from R to the non-completed graded algebra 
@-essentially because every element a E R would have to go to a sum of 
homogeneous terms in finitely many degrees &(a), but no specific finite 
bound is given on this set of degrees. 

However, we can set up a variant of the concept of filtered algebra for 
which such a universal map does exist. Note that for any graded ring H, we 
can define two filtration functions H@ + L U { + 00 } : 

=inf{i]a,#O), I w rai =inf{-i]a,#O}. 
( 1 

(8.1) 

(For instance, in k[x] these are, respectively, the “order in x” and the 
negative of the “degree in x” functions.) They are related by the condition 

u(a) + w(a) ,< 0 (a # 0). (8.2) 

Let us call a k-algebra R with a pair of filtrations satisfying (8.2) 
“bifiltered.” A bifiltration is equivalent to an expression of R as the union of 
a system of k-submodules R,i,j, (where RCiqj, = {a 1 i < v(a) < -w(a) < j)). 
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satisfying appropriate conditions. Given a bililtered algebra R, there will 
exist a graded algebra H with a universal homomorphism of bililtered 
algebras R -t Ho, taking each a E R to a sum ar,(a, + ... + a-..,,,. We have 
not investigated normal forms for such universal expressions, but we note 
that for these purposes, the analog of (6.6) should be splittings 

Rti,j, = Fi.j 0 (R,i+ 1.j) + R,i.j- I,>* (8.3) 

(b) Suppose G is an arbitrary group, and H = (Hi)iec a G-graded k- 
algebra, defined in the obvious way. For any formal infinite sum 

a = y a, E rl Hi, (8.4) 
isG ieG 

let us define the support of u in G, 

spt(u) = (i E G 1 ui # 0) c G. (8.5 > 

Suppose now that G is an ordered group. If we define 

WO = (I G G ] Z is well-ordered, under the ordering of G}, (8.6) 

H@“‘O= /uEnHi 1 spt(u)E WO/ 

can be made a k-algebra with good properties. (Cf. [7, Theorem VII.3.8, 
p. 2761, and [6].) 

We could again define a G-valued “filtration function,” v(a) = inf spt(u) E 
G u (+a } on How’, making it a “G-filtered k-algebra.” This function has 
some useful properties, but in general there will not exist a construction 
associating to every G-filtered algebra R a G-graded algebra H with a 
universal filtered algebra homomorphism R + How’. This is because, unless 
G g Z or {0}, the sets {i E G 1 i 2 v(u)} are not well-ordered, and so have no 
maximal well-ordered subsets. 

But again we can get a universal construction by varying our concept of 
filtration. Note that the support function on a ring Hew0 satisfies the 
following conditions, analogous to (lS)-( 1.8): 

spt(x + Y) c spt(x> u spt(y), (8.8) 

spt(cx) c spt(x) (c E k), (8.9) 

sPtw> E spt(x) spt(JJ) (G written multiplicatively), (8.10) 

spt(x) = 0 0 x = 0. (8.11) 

Let us call a k-algebra R with a function V! R -+ WO satisfying the 
conditions listed above for the function spt a “G-well-filtered k-algebra.” A 
homomorphism of G-well-filtered k-algebras means an algebra 
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homomorphismf such that for all a, V(f(a)) L V(a). Now for every G-well- 
filtered algebra R one can find, by the exact analog of the construction of 
Section 5, a G-graded algebra U(R) with a universal homomorphism of well- 
filtered algebras, R + U(R)owo. 

The concept of well-filtered algebra subsumes those of E-filtered and Z- 
bifiltered algebras: We can identify the former with Z-well-filtered algebras 
such that for all a # 0, V(a) has the form (i 1 i > i,} (where, of course, 
i, = v(u)), and the latter with Z-well-filtered algebras such that for all u # 0, 
V(u) has the form {i,] i, < i ( il}. Of course, starting with a Z-filtered or 
bifiltered algebra H@ or H@ arising from a graded algebra H, these 
constructions do not give the same well-filtrations as the support function 
does (by (8.8k(8.1 l)), but rather certain “coarsenings” thereof. 

Classes of algebras of formal sums (8.4) defined by conditions on the 
supports of elements other than well-ordering are discussed in [4, 
Sections 4, lo]. 
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