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Abstract

There are several notions of largeness in a semigroup S that originated in topological dynamics. Among these are thick, central,
syndetic and piecewise syndetic. Of these, central sets are especially interesting because they are partition regular and are guaranteed
to contain substantial combinatorial structure. It is known that in (N,+) any central set may be partitioned into infinitely many
pairwise disjoint central sets. We extend this result to a large class of semigroups (including (N,+)) by showing that if S is a
semigroup in this class which has cardinality κ then any central set can be partitioned into κ many pairwise disjoint central sets.
We also show that for this same class of semigroups, if there exists a collection of μ almost disjoint subsets of any member S, then
any central subset of S contains a collection of μ almost disjoint central sets. The same statement applies if “central” is replaced
by “thick”; and in the case that the semigroup is left cancellative, “central” may be replaced by “piecewise syndetic”. The situation
with respect to syndetic sets is much more restrictive. For example, there does not exist an uncountable collection of almost disjoint
syndetic subsets of N. We investigate the extent to which syndetic sets can be split into disjoint syndetic sets.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Central subsets of the set N of positive integers were introduced by Furstenberg in [5]. They were defined in terms
of notions from topological dynamics, shown to be partition regular (meaning that if a central set was divided into
finitely many parts, one of these parts must be central), and shown to contain an extensive amount of combinatorial
structure. For example, any central subset of N contains a sequence together with all of the finite sums of distinct
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terms and contains solutions to any partition regular system of homogeneous linear equations. See Chapters 14 and
15 of [7] for a detailed description of some of the structure which must exist in any central set.

The definition of “central” given by Furstenberg makes sense in an arbitrary semigroup S. In [3] and [11] that
notion was shown to have a simple equivalent characterization in terms of the algebraic structure of the Stone–Čech
compactification of the discrete semigroup S. (We shall present this characterization below as our definition of the
notion.) Based on this characterization, it is immediate that in any semigroup, if a central set is partitioned into finitely
many pieces, then one of these pieces is central. The question then arose whether an arbitrary central set could be
divided into two disjoint central sets. (There is more than idle curiosity behind this question. Each of the disjoint
central sets would have to contain all of the combinatorial structure guaranteed to any central set.) In the case of
(N,+), that question was answered in the affirmative in [6, Theorem 2.12]. Of course, since a central subset of N

can be again split into two central subsets, any central subset of N can be split into infinitely many pairwise disjoint
central sets. That is as much as one can expect in a countable semigroup. But one can ask how many almost disjoint
central sets a given central subset of N can contain.

Definition 1.1. Let X be an infinite set. A set A is a set of almost disjoint subsets of X if and only if A ⊆ P(X), for
each A ∈ A, |A| = |X|, and for A �= B in A, |A ∩ B| < |X|.

We denote by ω the first infinite cardinal, and recall that ω = N ∪ {0}. As is well known, there is a set A of c = 2ω

almost disjoint subsets of N. Probably the simplest example of a set of c almost disjoint subsets of a countably infinite
set can be obtained as follows: For each α ∈ R, choose an increasing sequence 〈xα,n〉∞n=0 in Q which converges to α.
Then {{xα,n: n ∈ ω}: α ∈ R} is a set of almost disjoint subsets of Q.

If |S| = κ > ω, there may not exist any set of 2κ almost disjoint subsets of S. (Baumgartner proved [2, Theorem 2.8]
that there is always a family of κ+ almost disjoint subsets of S, and also showed that it is consistent with ZFC that if
κ = ω1, there is no family of 2κ almost disjoint subsets of S.)

Definition 1.2. Let S be a semigroup. A subset A of S is a left solution set of S (respectively, a right solution set of S)
if and only if there exist w,z ∈ S such that A = {x ∈ S: w = zx} (respectively, A = {x ∈ S: w = xz}).
Definition 1.3. Let S be an infinite semigroup with cardinality κ . We shall say that S is very weakly left cancellative
if the union of fewer than κ left solution sets of S must have cardinality less than κ . We shall say that S is very weakly
right cancellative if the union of fewer than κ right solution sets of S must have cardinality less than κ . We shall say
that S is very weakly cancellative if it is both very weakly left and very weakly right cancellative.

We remark that if κ is regular, S is very weakly left cancellative if and only if every left solution set of S has
cardinality less than κ . If κ is singular, S is very weakly left cancellative if and only if there is a cardinal less than κ

which is an upper bound for the cardinalities of all left solution sets of S.
We remind the reader that S is said to be weakly left cancellative if all left solution sets of S are finite. Of course,

weak left cancellativity implies very weak left cancellativity. The two notions are equivalent if κ = ω.
The corresponding remarks are also valid for very weak right cancellativity.
Very weak left cancellativity has interesting algebraic implications. Theorem 1.7 is an example, which we shall

present after introducing the necessary terminology.
We show in Section 3 that if S is an infinite semigroup which is very weakly cancellative, then whenever there

exists a family of μ almost disjoint subsets of S, each central subset of S contains a family of μ almost disjoint
central subsets. We also extend the theorem cited above [6, Theorem 2.12], by showing that, in an infinite very weakly
cancellative semigroup with cardinality κ , every central set contains κ disjoint central sets.

There are several other notions of size in a semigroup besides “central”. We shall be concerned here with four
of them: thick, very thick, syndetic, and piecewise syndetic. Unlike, central sets, they each have simple elementary
definitions. Given a semigroup S, a set A ⊆ S, and x ∈ S we let x−1A = {y ∈ S: xy ∈ A}. We also write Pf (S) for
the set of finite nonempty subsets of S.

Definition 1.4. Let S be a semigroup and let A ⊆ S.

(a) A is thick if and only if (∀F ∈ Pf (S))(∃x ∈ S)(Fx ⊆ A).
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(b) A is very thick if and only if (∀F ∈ P(S))(|F | < |S| ⇒ (∃x ∈ S)(Fx ⊆ A)).
(c) A is syndetic if and only if (∃H ∈Pf (S))(S = ⋃

t∈H t−1A).
(d) A is piecewise syndetic if an only if (∃H ∈ Pf (S))(∀F ∈ Pf (S))(∃x ∈ S)(Fx ⊆ ⋃

t∈H t−1A).

Notice that in (N,+) a set A is thick if and only if it contains arbitrarily long blocks; it is syndetic if and only if it
has bounded gaps; and it is piecewise syndetic if and only if there is a fixed bound b and arbitrarily long blocks of N

in which the gaps of A are bounded by b.
Also notice that a subset A of a semigroup S is syndetic in just the case that its complement is not thick.
In Section 2 we will show that the results mentioned above about central sets remain valid if “central” is replaced

by “thick”.
Like central sets, piecewise syndetic sets are partition regular. Also, any piecewise syndetic set has a substantial

amount of combinatorial structure guaranteed to it (though significantly less than central sets). For example, any
piecewise syndetic subset of (N,+) must contain arbitrarily long arithmetic progressions. We shall also show in
Section 3 that the results mentioned above about central sets remain valid if “central” is replaced by “piecewise
syndetic” and “very weakly cancellative” is replaced by “left cancellative and very weakly right cancellative”.

The situation with respect to syndetic sets is quite different, and we investigate that situation in Section 4. For
example, in any countable left cancellative semigroup, there does not exist an uncountable collection of almost disjoint
syndetic subsets. In that section we determine several cancellation conditions that guarantee the ability to at least split
a syndetic set into two syndetic sets.

We use throughout the algebraic structure of the Stone–Čech compactification of a discrete semigroup S. We
present a brief overview here. Please refer to [7] for details of any unfamiliar assertions about this algebraic structure.
We take the points of βS to be the ultrafilters on S, the principal ultrafilters being identified with the points of S. Given
a set A ⊆ S, A = {p ∈ βS: A ∈ p}. The set {A: A ⊆ S} is a basis for the open sets (as well as a basis for the closed
sets) of βS.

There is a natural extension of the operation · of S to βS. This natural extension makes (βS, ·) a compact right
topological semigroup with S contained in its topological center. This says that for each p ∈ βS the function ρp :
βS → βS is continuous and for each x ∈ S, the function λx : βS → βS is continuous, where ρp(q) = q · p and
λx(q) = x · q . Given p,q ∈ βS and A ⊆ S one has that A ∈ p · q if and only if {x ∈ S: x−1A ∈ q} ∈ p.

A subset U of a semigroup S is called a left ideal if it is nonempty and S · U ⊆ U . It is called a right ideal if it is
nonempty and U · S ⊆ U . It is called a two-sided ideal, or simply an ideal, if it is both a left ideal and a right ideal.
Any compact Hausdorff right topological semigroup T has a smallest two sided ideal K(T ) which is the union of all
of the minimal left ideals of T and is also the union of all of the minimal right ideals of T . The intersection of any
minimal left ideal and any minimal right ideal is a group. In particular there are idempotents in the smallest ideal. An
idempotent p in T is “minimal” if and only if p ∈ K(T ).

Definition 1.5. Let S be a semigroup and let A ⊆ S. Then A is central if and only if there is some minimal idempotent
p ∈ βS such that A ∈ p.

There are simple characterizations of three of the other notions of largeness in terms of the algebra of βS.

Lemma 1.6. Let S be a semigroup and let A ⊆ S.

(a) A is thick if and only if there is a left ideal of βS contained in A.
(b) A is syndetic if and only if for every left ideal L of βS, L ∩ A �= ∅.
(c) A is piecewise syndetic if and only if A ∩ K(βS) �= ∅.

Proof. (a) [4, Theorem 2.9(c)].
(b) [4, Theorem 2.9(d)].
(c) [7, Theorem 4.40]. �
Notice that each of the notions of size that we are considering is one sided in its definition (if S is not commutative).

This fact is obvious for “thick”, “syndetic”, and “piecewise syndetic”. For central sets the definition can be seen to
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depend on the choice of continuity for βS making it a right topological rather than a left topological semigroup. Each
of these notions can be prefaced by “right” (and are in [4]) and there are corresponding “left” notions.

The following theorem will not be needed in the remainder of the paper, but it provides significant information
about the structure of βS when S is very weakly left cancellative. We remind the reader that any ultrafilter p on a set
of cardinality κ is uniform if and only if every member of p has cardinality κ .

Theorem 1.7. Let S be an infinite very weakly left cancellative semigroup with cardinality κ . There is a collection of
22κ

pairwise disjoint left ideals of βS. In particular, βS has 22κ
minimal idempotents.

Proof. Enumerate the elements of S as 〈sι〉ι<κ . Inductively construct an injective κ-sequence 〈tι〉ι<κ so that for all
λ < μ < κ , sλtμ /∈ {sιtγ : ι < γ < μ}. (This is possible because S is very weakly left cancellative.)

There are 22κ
uniform ultrafilters on T = {tι: ι < κ}. (See [7, Theorem 3.58].) So it suffices to show that if p and

q are distinct uniform ultrafilters on T , then βSp ∩ βSq = ∅. So let p and q be distinct uniform ultrafilters on S and
pick P ∈ p and Q ∈ q . Let D = {sιtγ : tγ ∈ P and ι < γ } and let E = {sιtγ : tγ ∈ Q and ι < γ }. Then D ∩ E = ∅,
βSp = Sp ⊆ D, and βSq = Sq ⊆ E. �

We thank the referee for providing us with several relevant references, as well as the statement and proof of
Theorem 2.4.

2. Almost disjoint thick sets

In this section, we establish the existence of large almost disjoint families of thick subsets of a given thick subset
for all infinite very weakly cancellative semigroups.

Lemma 2.1. Let κ be an infinite cardinal.

(i) If there is a family 〈Bι〉ι<μ of almost disjoint subsets of κ , then there is a family 〈Bι〉ι<μ of almost disjoint subsets
of Pf (κ) such that (∀F ∈ Pf (κ))(∀ι < μ)(∃G ∈ Bι)(F ⊆ G).

(ii) There is a family 〈Cι〉ι<κ of pairwise disjoint subsets of Pf (κ), each with cardinality κ , such that (∀F ∈
Pf (κ))(∀ι < κ)(∃G ∈ Cι)(F ⊆ G).

Proof. (i) Enumerate Pf (κ) as 〈Fσ 〉σ<κ . For each ι < μ inductively define an injective function fι :Pf (κ) → Bι so
that for all σ < κ , fι(Fσ ) > max(Fσ ). (Since |{τ ∈ Bι: τ > max(Fσ )}| = κ , such a choice is always possible.)

For ι < μ let Bι = {F ∪ {fι(F )}: F ∈Pf (κ)}. Then |Bι| = κ .
The function max takes each Bι injectively to Bι and thus, if ι < δ < μ, then |Bι ∩Bδ| � |Bι ∩ Bδ| < κ .
(ii) This proof is essentially the same, using the fact that there is a family 〈Cι〉ι<κ of pairwise disjoint subsets of κ

such that |Cι| = κ for every ι < κ . �
Lemma 2.2. Let S be an infinite semigroup which is very weakly right cancellative, and let κ = |S|. If A is a thick
subset of S then |A| = κ .

Proof. Notice that for x ∈ S, A ∩ xA is nonempty (since there exists y such that {x, xx}y ⊆ A). We will see that this
condition is enough to guarantee that A has size κ .

Argue by contradiction and assume that |A| < κ . For each (w, z) ∈ A × A, let Tw,z = {y ∈ S: yw = z}. Since each
Tw,z is a right solution set of S,∣∣∣⋃{

Tw,z: (w, z) ∈ A × A
}∣∣∣ < κ.

Pick x ∈ S \ ⋃{Tw,z: (w, z) ∈ A × A}. Then A ∩ xA = ∅, a contradiction. �
For groups, Theorem 2.3(ii) follows from (the left–right switch of) [8, Theorem 1] and if S is countable, the same

result follows from [1, Theorem 11.5]. For countable groups Theorem 2.3(i) is in [10, p. 105].
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Theorem 2.3. Let S be an infinite semigroup which is very weakly cancellative, let κ = |S|, and let A be a thick subset
of S.

(i) If there is a family of μ almost disjoint subsets of κ , then there is a family of μ almost disjoint thick subsets of A.
(ii) There is a family of κ pairwise disjoint thick subsets of A.

Proof. (i) Enumerate Pf (S) as 〈Fσ 〉σ<κ and pick by Lemma 2.1(i) a family 〈Bι〉ι<μ of almost disjoint subsets of
Pf (S) such that (∀F ∈ Pf (S))(∀ι < μ)(∃G ∈ Bι)(F ⊆ G).

We inductively choose a κ-sequence 〈xσ 〉σ<κ in S such that for all σ < κ , Fσ · xσ ⊆ A, and for all δ < σ < κ ,
Fσ · xσ ∩ Fδ · xδ = ∅. To see that we can do this, let σ < κ and assume that 〈xδ〉δ<σ has been chosen. Let H =⋃

δ<σ Fδ · xδ . Observe that |H | � max{ω, |σ |} < κ .
Given any w ∈ H and z ∈ Fσ , {x ∈ S: w = zx} is a left solution set of S. So since |H × Fσ | < κ , we have

|{x ∈ S: Fσ · x ∩ H �= ∅}| < κ .
For any finite subset G of S, there is some y such that Fσ Gy ⊆ A implying that Gy ⊆ {x ∈ S: Fσ · x ⊆ A}.

Therefore, {x ∈ S: Fσ · x ⊆ A} is thick. By Lemma 2.2, |{x ∈ S: Fσ · x ⊆ A}| = κ . Pick

xσ ∈ {x ∈ S: Fσ · x ⊆ A} \ {x ∈ S: Fσ · x ∩ H �= ∅}.

For ι < μ, let Dι = ⋃{Fσ · xσ : σ < κ and Fσ ∈ Bι}. Then |Dι| = κ .
If ι < γ < μ, then Dι ∩Dγ = ⋃{Fσ · xσ : σ < κ and Fσ ∈ Bι ∩Bγ } so |Dι ∩Dγ | < κ . To see that each Dι is thick,

let G ∈Pf (S) and pick Fσ ∈ Bι such that G ⊆ Fσ . Then G · xσ ⊆ Dι.
(ii) The proof is essentially the same, using Lemma 2.1(ii) instead of Lemma 2.1(i). �
The following theorem is due to the referee. Its proof combines elements of the proofs of Lemma 2.1 and The-

orem 2.3. Notice that one cannot necessarily begin by enumerating the subsets of S with cardinality less than κ as
a κ-sequence. For example, if κ = ω1, then there are 2ω subsets of S that are smaller than κ and one might have
ω1 < 2ω.

Theorem 2.4. Let S be an infinite semigroup which is very weakly cancellative, let κ = |S|, assume that κ is regular,
and let A be a very thick subset of S.

(i) If there is a family of μ almost disjoint subsets of κ , then there is a family of μ almost disjoint very thick subsets
of A.

(ii) There is a family of κ pairwise disjoint very thick subsets of A.

Proof. We do both proofs at once. For (i) let 〈Bι〉ι<μ be a family of almost disjoint subsets of κ . For (ii), let μ = κ

and let 〈Bι〉ι<μ be a family of pairwise disjoint subsets of κ with each |Bι| = κ .
Enumerate S as 〈sσ 〉σ<κ . For σ < κ , let Iσ = {sδ: δ < σ }.
We now claim that we can choose 〈xσ 〉σ<κ in S such that for each σ , Iσ · xσ ⊆ A and for all δ < σ < κ , Iσ · xσ ∩

Iδ · xδ = ∅. So let σ < κ and assume that 〈xδ〉δ<σ has been chosen. Let H = ⋃
δ<σ Iδ · xδ . Since κ is regular, |H | < κ .

Given any w ∈ H and z ∈ Iσ , {x ∈ S: w = zx} is a left solution set of S so is smaller than κ . So since |H × Iσ | < κ ,
we have |{x ∈ S: Iσ · x ∩ H �= ∅}| < κ .

For any subset G of S with |G| < κ , there is some y such that Iσ Gy ⊆ A so that Gy ⊆ {x ∈ S: Iσ · x ⊆ A}.
Therefore, {x ∈ S: Iσ · x ⊆ A} is very thick (and in particular, thick). By Lemma 2.2, |{x ∈ S: Iσ · x ⊆ A}| = κ . Pick
xσ ∈ {x ∈ S: Iσ · x ⊆ A} \ {x ∈ S: Iσ · x ∩ H �= ∅}.

For ι < μ, let Dι = ⋃
τ∈Bι

Iτ · xτ . By the regularity of κ , every subset of κ of size less than κ is bounded in κ

implying it is a subset of Iτ for any sufficiently large τ . This clearly implies that Dι is very thick.
Since the sets Iτ · xτ are pairwise disjoint, we see that Dι ∩Dγ = ⋃

τ∈Bι∩Bγ
Iτ · xτ . Therefore if Bι ∩Bγ = ∅, then

Dι ∩ Dγ = ∅. Moreover if Bι ∩ Bγ has size less than κ then so does Dι ∩ Dγ . �
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3. Almost disjoint central and piecewise syndetic sets

We shall show that, if S is an infinite very weakly cancellative semigroup of cardinality κ and if κ contains μ

almost disjoint sets, then every central set in S contains μ almost disjoint central subsets. The same statement holds
for piecewise syndetic subsets of S if S is left cancellative and very weakly right cancellative.

Lemma 3.1. Let S be an infinite semigroup with cardinality κ and let U denote the set of uniform ultrafilters on S. If
S is very weakly left cancellative, U is a left ideal of βS. If S is very weakly cancellative, U is an ideal of βS.

Proof. Assume first that S is very weakly left cancellative. Let p ∈ U . To show that βSp ⊆ U it is sufficient to
show that sp ∈ U for every s ∈ S, because U is closed and βSp = clβS(Sp). Since {sP : P ∈ p} is a base for sp,
it is sufficient to show that |sP | = κ if P ∈ p. Now, for every t ∈ sP , λ−1

s [{t}] is a left solution set of S. Since
P ⊆ ⋃

t∈sP λ−1
s [{t}], it follows that |sP | = κ .

Now suppose that S is very weakly cancellative. To show that U is a right ideal, let p ∈ U and q ∈ βS. We
claim that pq ∈ U . To see this we assume that, on the contrary, pq /∈ U . Then, since U is a left ideal, q /∈ U and
so there exists Q ∈ q for which |Q| < κ . Since pq /∈ U , there also exists X ∈ pq such that |X| < κ . We may pick
P ∈ p and Qa ∈ q for each a ∈ P such that

⋃
a∈P aQa ⊆ X by [7, Theorem 4.15]. Now, for each b ∈ Q and x ∈ X,

Tb,x = {s ∈ S: sb = x} is a right solution set of S. However, P ⊆ ⋃
(b,x)∈Q×X Tb,x . (Given a ∈ P , pick b ∈ Q ∩ Qa .

Then a ∈ Tb,ab .) This is a contradiction because |Q × X| < κ . �
Definition 3.2. Let S be a semigroup, let p be an idempotent in βS and let C ∈ p. We put C = {s ∈ C: sp ∈ C}.

We note that C ∈ p and that, for every s ∈ C, s−1C ∈ p [7, Lemma 4.14].

Theorem 3.3. Let κ be an infinite cardinal and let S be a very weakly left cancellative semigroup with cardinality κ ,
let p be a minimal idempotent of βS which is uniform, and let C ∈ p.

(i) If there is a family of μ almost disjoint subsets of κ , then C contains μ almost disjoint sets each of which is a
member of a uniform minimal idempotent in βS.

(ii) C contains κ disjoint sets each of which is a member of a uniform minimal idempotent in βS.

Proof. (i) For each F ∈Pf (C), let

SF = {t ∈ C: F t ⊆ C} = C ∩
⋂
s∈F

s−1C.

We note that SF ∈ p.
We claim that, for each F ∈ Pf (C) and each s ∈ SF , if H = {s} ∪ Fs, then sSH ⊆ SF . To see this, let t ∈ SH .

Since s ∈ H , st ∈ C. Also for every r ∈ F , rs ∈ H and so rst ∈ C. Thus st ∈ SH . This shows that sSH ⊆ SF , as
claimed. Let V = ⋂

F∈Pf (C) SF . Then p ∈ V and by [7, Theorem 4.20], V is a subsemigroup of βS.
Well order Pf (C) as a κ-sequence and inductively choose xF ∈ SF for every F ∈ Pf (C) so that FxF ∩HxH = ∅

and xF �= xH if F and H are distinct members of Pf (C). (Having chosen 〈xF 〉F<H , one sees as in the proof of
Theorem 2.3 that |{y ∈ S: Hy ∩ ⋃

F<H FxF �= ∅}| < κ , while SH ∈ p and so |SH | = κ .) Since xF ∈ SF , FxF ⊆ C

implying FxF ⊆ C.
By Lemma 2.1(i), there is an almost disjoint family 〈Bσ 〉σ<μ of subsets of Pf (C) such that, for every F ∈Pf (C)

and every σ < μ, there exists H ∈ Bσ for which F ⊆ H . For each σ < μ, put Dσ = ⋃
F∈Bσ

FxF . Then 〈Dσ 〉σ<μ

is almost disjoint and each Dσ is a subset of C. We shall show that, for each σ < μ, Dσ is a member of a uniform
minimal idempotent of βS so that the family 〈Dσ 〉σ<μ is a family with the required properties.

To this end, let σ < μ be given. Notice that for F ∈ Pf (C), {H : H ∈ Bσ and F ⊆ H} has cardinality κ , being a
collection of finite sets whose union is κ . Therefore, {xH : H ∈ Bσ and F ⊆ H } has cardinality κ . Since {{xH : H ∈ Bσ

and F ⊆ H }: F ∈ Pf (C)} has the κ-uniform finite intersection property [7, Theorem 3.62], we may pick a uniform
ultrafilter q ∈ βS such that{{xH : H ∈ Bσ and F ⊆ H }: F ∈Pf (C)

} ⊆ q.
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Given F ∈ Pf (C) and H ∈ Bσ such that F ⊆ H , one has xH ∈ SH ⊆ SF so q ∈ V .
We claim now that V q ⊆ Dσ . We show in fact that Cq ⊆ Dσ . So let s ∈ C. To see that s−1(Dσ ) ∈ q it suffices

to show that {xH : s ∈ H ∈ Bσ } ⊆ s−1Dσ . So let s ∈ H ∈ Bσ . Then sxH ∈ HxH ⊆ Dσ .
We can choose a minimal idempotent r of V in the left ideal V q of V . Since V meets K(βS), K(V ) ⊆ K(βS) so

r is also minimal in βS. Since q is uniform and since, by Lemma 3.1, the collection of uniform ultrafilters form a left
ideal of βS, r is uniform.

(ii) This proof is essentially the same, using Lemma 2.1(ii), instead of Lemma 2.1(i). �
Corollary 3.4. Let κ be an infinite cardinal and let S be a very weakly cancellative semigroup with cardinality κ .
Suppose that κ contains μ almost disjoint sets. Then every central set in S contains μ almost disjoint central sets.
Furthermore, every central set in S contains κ disjoint central subsets.

Proof. Let C be a central set and pick a minimal idempotent p of βS such that C ∈ p. By Lemma 3.1 p is uniform,
so Theorem 3.3 applies. �

We observe that any result about almost disjoint central subsets of an arbitrary central set in a left cancellative
semigroup yields a corresponding result about piecewise syndetic sets.

Theorem 3.5. Let S be a left cancellative semigroup, let μ be a cardinal, and assume that every central subset of
S contains a family of μ almost disjoint (respectively, disjoint) central subsets of S. Then every piecewise syndetic
subset of S contains a family of μ almost disjoint (respectively, disjoint) piecewise syndetic subsets of S.

Proof. According to [7, Theorem 4.43], a subset C of S is piecewise syndetic if and only if there is some x ∈ S such
that x−1C is central. Let C be a piecewise syndetic subset of S. Pick some x ∈ S such that x−1C is central and pick
an indexed family 〈Dι〉ι<μ of almost disjoint (respectively, disjoint) central subsets of x−1C. Then for each ι < μ,
Dι ⊆ x−1(xDι) so xDι is piecewise syndetic. Also Dι ⊆ x−1C so xDι ⊆ C. And, by left cancellativity, if ι < δ < μ,
then |xDι ∩ xDδ| = |Dι ∩ Dδ|. �
4. Disjoint syndetic sets

The situation with respect to syndetic subsets of a semigroup is significantly different from that with respect to
central, thick, and piecewise syndetic sets. We begin by showing that for an infinite semigroup S of cardinality κ ,
there cannot be a family of more than κ almost disjoint syndetic subsets of S unless there is a syndetic set of size less
than κ . In the latter case there are such families of size μ whenever there is an almost disjoint family of subsets of S

of size μ. To see this notice that if B is an almost disjoint family of subsets of S and A is a subset of S of size less
than κ then the collection of sets B ∪ A for B ∈ B form an almost disjoint family.

Theorem 4.1. Let S be an infinite semigroup with |S| = κ . Either there is a syndetic subset of S of size less than κ or
there does not exist a family of κ+ almost disjoint syndetic subsets of S.

Proof. Argue by contradiction.
Say that a subset X of S is small if there is some t ∈ S such that |tX| < κ . The assumption that there is no syndetic

set of size less than κ implies that S is not the union of finitely many small sets (in fact, the two conditions are
equivalent).

Let B be a collection of κ+ almost disjoint syndetic subsets of S. For each B ∈ B, pick FB ∈ Pf (S) such that
S = ⋃

t∈FB
t−1B . Note first that we may choose F ∈ Pf (S) such that |{B ∈ B: FB = F }| > κ . (Otherwise |B| �∑

F∈Pf (S) |{B ∈ B: FB = F }| � κ · κ = κ .)
Pick D ⊆ {B ∈ B: FB = F } such that |D| = |F | + 1. For B ∈D and s ∈ S, pick ts,B ∈ F such that (ts,B)s ∈ B . For

each s ∈ S pick by the pigeon hole principle Bs �= Cs in D such that ts,Bs = ts,Cs . Pick B �= C in D, t ∈ F , and T ⊆ S

such that T is not small and for all s ∈ T , (Bs,Cs) = (B,C) and ts,B = ts,C = t . Let D = tT . Then D ⊆ B ∩ C so
|D| < κ . On the other hand, since T is not small, D must have size κ , a contradiction. �
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Corollary 4.2. Let S be an infinite semigroup with |S| = κ . If S is very weakly left cancellative, there does not exist a
family of κ+ almost disjoint syndetic subsets of S.

Proof. Let A be a syndetic subset of S and pick t ∈ S such that |t−1A| = κ . Then t−1A = ⋃
s∈A{y ∈ S: ty = s} so

|A| = κ . �
Notice that some sort of left cancellation assumption is needed in Corollary 4.2. Indeed, in a left zero semigroup

(that is a semigroup in which ab = a for all a and b), every nonempty subset is syndetic. More generally, if there exist
a, b ∈ S such that aS = {b}, then any set with b as a member is syndetic.

We show now that syndetic subsets of free semigroups on infinite alphabets contain as large as possible collections
of pairwise disjoint syndetic sets.

Theorem 4.3. Let |A| = κ � ω, let S be the free semigroup on A, and let B be a syndetic subset of S. There is a
collection of κ pairwise disjoint syndetic subsets of B .

Proof. For t ∈ S let α(t) be the set of letters occurring in t . Pick F ∈ Pf (S) such that S = ⋃
t∈F t−1B and let

D = ⋃
t∈F α(t). For each a ∈ A \ D let Ca = {wav: w,v ∈ S and α(w) ⊆ D} ∩ B . If s ∈ Ca then a is the first letter

from A \ D occurring in s. Consequently, if a and b are distinct members of A \ D, then Ca ∩ Cb = ∅.
Let a ∈ A \ D. We show that S = ⋃

t∈Fa t−1Ca . So let s ∈ S and pick t ∈ F such that as ∈ t−1B . Then tas ∈ Ca

so s ∈ (ta)−1Ca . �
Notice that a subset of N with the operation a ∨b = max{a, b} is syndetic if and only if it is cofinite. Consequently,

(N,∨) is a weakly left and weakly right cancellative semigroup which does not contain disjoint syndetic subsets. We
characterize now those syndetic sets which can be split into disjoint syndetic subsets.

The following lemma strengthens [7, Lemma 3.33].

Lemma 4.4. Let A be a set and let g :A → A be a function which has no fixed points. Then A can be partitioned into
three disjoint sets A0,A1,A2 with the property that g[A0] ⊆ A1, g[A1] ⊆ A0 ∪ A2 and g[A2] ⊆ A0.

Proof. Let

A =
{
f : f is a function, range(f ) ⊆ {0,1,2},domain(f ) ⊆ A, and

(∀x ∈ domain(f )
)

(
g(x) ∈ domain(f ),

(
f (x) = 0 ⇒ f (g(x)) = 1

)
,(

f (x) = 1 ⇒ f (g(x)) ∈ {0,2}), and
(
f (x) = 2 ⇒ f (g(x)) = 0

))}
.

Let g0 be the identity function. We claim that for all x ∈ A, there is some f ∈ A such that domain(f ) =
{gn(x): n ∈ ω}. If for all k �= n in ω, gk(x) �= gn(x), then one can define f ∈A with domain(f ) = {gn(x): n ∈ ω} by

f
(
gn(x)

) =
{

0 if n is even,

1 if n is odd.

So assume that we have some k < m such that gk(x) = gm(x) and pick the least such m (in which case k is
uniquely determined). Note that m � k + 2. Note also that {gn(x): n ∈ ω} = {gn(x): n ∈ {0,1, . . . ,m − 1}}. For
i ∈ {0,1, . . . ,m − 2},

if k is even let f
(
gi(x)

) =
{

0 if i is even,

1 if i is odd,

and

if k is odd let f
(
gi(x)

) =
{

0 if i is odd,

1 if i is even.

If f (gm−2(x)) = 0, let f (gm−1(x)) = 1. If f (gm−2(x)) = 1, let f (gm−1(x)) = 2. The claim is established.
In particular A �= ∅ and trivially the union of a chain in A is in A so pick by Zorn’s Lemma a maximal member

f of A. We claim that domain(f ) = A. Suppose instead we have some x ∈ A \ domain(f ). If {gn(x): n ∈ ω} ∩
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domain(f ) = ∅ pick h ∈A such that domain(h) = {gn(x): n ∈ ω}. Then f ∪h ∈ A, a contradiction. Thus {gn(x): n ∈
ω} ∩ domain(f ) �= ∅ so pick the least n such that gn(x) ∈ domain(f ). If k, r ∈ {0,1, . . . , n} and gk(x) = gr(x), then
k = r . (If k < r , then {gm(x): m ∈ {0,1, . . . , n}} = {gm(x): m ∈ {0,1, . . . , r − 1}}.)

If f (gn(x)) ∈ {0,2} let for i ∈ {1,2, . . . , n}

h
(
gn−i (x)

) =
{

0 if i is even,

1 if i is odd,

and if f (gn(x)) = 1 let for i ∈ {1,2, . . . , n}

h
(
gn−i (x)

) =
{

1 if i is even,

0 if i is odd.

Then f ∪ h ∈A, a contradiction.
Our claim now follows by putting Ai = f −1[{i}] for each i ∈ {0,1,2}. �
According to the referee, some special cases of the following theorem with the same approach are in [1].

Theorem 4.5. Let S be a semigroup and let A ⊆ S. The following statements are equivalent.

(a) A contains disjoint syndetic subsets.
(b) (∃F ∈Pf (S))(∀x ∈ S)(∃t ∈ F)(tx ∈ A \ {x}).
(c) A is syndetic and (∃F ∈Pf (S))(∀x ∈ A)(∃t ∈ F)(tx ∈ A \ {x}).

Proof. (a) implies (b). Pick disjoint syndetic subsets B and C of A. Pick G,H ∈Pf (S) such that S = ⋃
t∈G t−1B =⋃

t∈H t−1C. Let F = G ∪ H . Let x ∈ S. If x ∈ B then there is t ∈ H such that tx ∈ C in which case tx ∈ A and
tx �= x. If x /∈ B there is t ∈ G such that tx ∈ B in which case tx ∈ A and tx �= x.

(b) implies (c). This is trivial.
(c) implies (a). Pick F as guaranteed and for each x ∈ A pick tx ∈ F such that txx ∈ A \ {x} and let g(x) = txx.

Let A0,A1,A2 be the subsets of A guaranteed by Lemma 4.4.
Pick G ∈ Pf (S) such that S = ⋃

t∈G t−1A and let H = G ∪ FG ∪ FFG. We claim that S = ⋃
t∈H t−1A0 =⋃

t∈H t−1A1. To see this, let x ∈ S. Pick y ∈ G such that yx ∈ A. If yx ∈ A0, then tyxyx = g(yx) ∈ A1. If yx ∈ A1

and g(yx) ∈ A0, then tyxyx ∈ A0. If yx ∈ A1 and g(yx) ∈ A2, then g2(yx) ∈ A0 so tg(yx)tyxyx ∈ A0. If yx ∈ A2,
then g(yx) ∈ A0 and g2(yx) ∈ A1 so tyxyx ∈ A0 and tg(yx)tyxyx ∈ A1. �
Corollary 4.6. Let S be a semigroup. The following statements are equivalent.

(a) S does not contain disjoint syndetic subsets.
(b) (∀F ∈ Pf (S))(∃x ∈ S)(∀t ∈ F)(tx = x).
(c) There exists p ∈ βS such that βSp = {p}.
(d) All minimal left ideals of βS are singletons.

Proof. (a) implies (b). Theorem 4.5.
(b) implies (c). For each t ∈ S, let Xt = {x ∈ S: tx = x}. Then {Xt : t ∈ S} has the finite intersection property by

(b) so pick p ∈ βS such that {Xt : t ∈ S} ⊆ p. Then for each t ∈ S, λt is equal to the identity on a member of p so
λt (p) = p. Therefore Sp = {p} and thus βSp = {p}.

(c) implies (d). By [7, Lemma 1.62] all minimal left ideals of S are isomorphic.
(d) implies (a). Pick a minimal left ideal L = {p} of βS. Then for any syndetic subset B of S, p ∈ B by

Lemma 1.6. �
If S is an infinite right zero semigroup no proper subset is syndetic. We see that for left cancellative semigroups,

that is the only way to avoid proper syndetic subsets.



442 T.J. Carlson et al. / Topology and its Applications 155 (2008) 433–444
Theorem 4.7. Let S be a left cancellative semigroup. The following statements are equivalent.

(a) S contains no proper syndetic subsets.
(b) All elements of S are idempotents.
(c) S is a right zero semigroup.

Proof. (a) implies (b). Let a ∈ S. Then S \ {a} is not syndetic so for all F ∈ Pf (S) there exists x ∈ S such that
Fx = {a}. Pick x ∈ S such that ax = a and pick y ∈ S such that {a, x}y = {a}. Then ay = ax so y = x. Therefore
ax = a so axx = ax and thus xx = x. Also xx = xy = a so a = x and therefore aa = a.

(b) implies (c). Any idempotent in a left cancellative semigroup is a left identity. (If xx = x, then for any a,
xxa = xa so xa = a.) If all elements of S are left identities, then S is a right zero semigroup.

(c) implies (a). If A ⊆ S and a ∈ S \ A, then Sa ∩ A = ∅. �
For the remainder of this section we turn our attention to finding conditions guaranteeing that any syndetic set may

be split into two disjoint syndetic subsets.

Lemma 4.8. Let S be an infinite semigroup, let A be a syndetic subset of S, and let H ⊆ S. If |H | < |S| and S is very
weakly left cancellative, then there exists F ∈Pf (S \ H) such that S ⊆ ⋃

t∈F t−1A.

Proof. Pick F ∈ Pf (S) such that S = ⋃
t∈F t−1A. Since S is very weakly left cancellative, there is some g ∈ S such

that Fg ∩ H = ∅. Then S = ⋃
t∈Fg t−1A. �

Theorem 4.9. Let S be an infinite semigroup which is left cancellative and weakly right cancellative. Then any syndetic
subset of S contains disjoint syndetic subsets.

Proof. Let T = {t ∈ S: for all s ∈ S, ts �= s}. and let V = S \ T . Let E = {t ∈ S: t2 = t}. For s ∈ S, let Us = {u ∈ S:
us = s}. If Us �= ∅, then since S is weakly right cancellative, Us is a finite subsemigroup of S. Since V = ⋃

s∈S Us we
have that every element of V has finite order.

Since S is left cancellative, any idempotent in S is a left identity for S so, since S is weakly right cancellative, E is
finite.

Let A be a syndetic subset of S and pick by Lemma 4.8 some F ∈ Pf (S \ E) such that S = ⋃
t∈F t−1A. Suppose

that A does not contain disjoint syndetic subsets and pick by Theorem 4.5 some s ∈ S such that for all u ∈ F ,
us /∈ A \ {s}. Pick u ∈ F such that us ∈ A so that us = s and thus u ∈ V \ E.

Let X = {t ∈ S: ut = t}. We claim that X ⊆ T . To see this, suppose instead that we have t ∈ X ∩ V . Now X

is a right ideal of S, so in particular is a subsemigroup. Since t ∈ V , t has finite order so {tn: n ∈ N} is a finite
subsemigroup of X. Thus there is an idempotent e ∈ X. Then e is a left identity for S so eu = u. But e ∈ X so ue = e

and thus uu = ueu = eu = u, a contradiction.
Since X is a right ideal of S, we have by [7, Corollary 4.18] that X is a right ideal of βS so we may pick an

idempotent q ∈ X ⊆ T . We claim that for all p ∈ βS, Sqp has no points that are isolated in βSqp. Suppose instead
that we have p ∈ βS and s ∈ S such that sqp is isolated in βSqp and pick B ∈ sqp such that B ∩ βSqp = {sqp}.
Then s−1B ∈ qp = qqp. Let Q = {t ∈ T : t−1(s−1B) ∈ qp}. Then Q ∈ q . Pick t ∈ Q. Then B ∈ stqp so stqp = sqp

and thus by [7, Lemma 8.1] tqp = qp. Since t ∈ T , λt has no fixed points in S and so by [7, Theorem 3.34] it has no
fixed points in βS, a contradiction.

Now let p ∈ βS be given. Then A ∩ βSqp �= ∅ by Lemma 1.6(b) so A ∩ Sqp �= ∅ and we may thus pick ap and bp

in S such that apqp and bpqp are distinct members of A. Pick Bp ∈ bpqp \ apqp. Then {t ∈ S: t−1(bp
−1(A ∩ Bp) ∩

ap
−1(A \ Bp)) ∈ p} ∈ q , so pick tp ∈ S such that Pp = tp

−1(bp
−1(A ∩ Bp) ∩ ap

−1(A \ Bp)) ∈ p.
Then {Pp: p ∈ βS} covers βS so pick finite D ⊆ βS such that βS = ⋃

p∈D Pp and in particular S = ⋃
p∈D Pp .

Let G = {bptp: p ∈ D}∪ {aptp: p ∈ D}. By Theorem 4.5 pick s ∈ S such that for all x ∈ G, xs /∈ A \ {s}. Pick p ∈
D such that s ∈ Pp . Then bptps ∈ A so s = bptps ∈ Bp . But also aptps ∈ A so s = aptps /∈ Bp , a contradiction. �

We see that one cannot replace “weakly right cancellative” by “very weakly right cancellative” in Theorem 4.9.
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Theorem 4.10. Let κ > ω. There is a left cancellative semigroup S of cardinality κ which does not contain disjoint
syndetic subsets and has the property that any right solution set has cardinality less than κ . In particular, if κ is
regular, then S is very weakly right cancellative.

Proof. The semigroup consisting of the ordinal κ with ordinal addition provides an example. For those unfamiliar
with ordinal arithmetic, we describe an isomorphic semigroup for which the necessary properties can be verified
directly.

Let S be the set of nonempty words over the alphabet κ with letters in nonincreasing order and for x ∈ S let
α(x) be the set of letters occurring in x. Define an operation · on S as follows. Let a1a2 · · ·an and b1b2 · · ·bm be
in S where n,m ∈ N and for each i ∈ {1,2, . . . , n}, ai ∈ κ and for each j ∈ {1,2, . . . ,m}, bj ∈ κ . If a1 < b1, then
(a1a2 · · ·an) · (b1b2 · · ·bm) = b1b2 · · ·bm. If a1 � b1, let t = max{i ∈ {1,2, . . . , n}: ai � b1} and let (a1a2 · · ·an) ·
(b1b2 · · ·bm) = a1a2 · · ·atb1b2 · · ·bm.

It is routine (though tedious) to verify that this operation is associative. To see that S is left cancellative, let
a1a2 · · ·an, b1b2 · · ·bm, and c1c2 · · · ck be members of S (where each ai , bi , and ci is a letter) and assume that
(a1a2 · · ·an) · (b1b2 · · ·bm) = (a1a2 · · ·an) · (c1c2 · · · ck). We may assume without loss of generality that m � k. If
m = k we have that the rightmost m letters agree and so b1b2 · · ·bm = c1c2 · · · ck . So suppose m > k. Then the length
of (a1a2 · · ·an) · (c1c2 · · · ck) is at least m so a1 � c1. Pick the largest t such that at � c1 and let s = t + 1 + k − m.
Then b1b2 · · ·bm = asas+1 · · ·anc2c2 · · · ck so that as = b1 and consequently the length of (a1a2 · · ·an) · (b1b2 · · ·bm)

is at least s + m while the length of (a1a2 · · ·an) · (c1c2 · · · ck) is exactly t + k so that t + k � s + m = t + k + 1, a
contradiction.

To see that all right solution sets have cardinality less than κ , let a1a2 · · ·an and b1b2 · · ·bm be members of S and
let T = {x ∈ S: x · a1a2 · · ·an = b1b2 · · ·bm}. If m < n, then T = ∅. If m = n, then T = {x ∈ S: α(x) ⊆ b1}. (Recall
that b1 is an ordinal, so is the set of its predecessors.) If m > n, then T = {xb1b2 · · ·bm−n: x ∈ S and α(x) ⊆ b1}.
Consequently in any case |T | � max{ω, |b1|} < κ .

Finally, suppose one has disjoint syndetic subsets B and C of S and pick finite subsets F and G of S such that
S = ⋃

t∈F t−1B = ⋃
t∈G t−1C. Pick a < κ such that a > max{α(x): x ∈ F ∪ G}. Then for any t ∈ F ∪ G, ta = a so

a ∈ B ∩ C. �
As mentioned in the proof above, the example is isomorphic to the semigroup (κ,+) (the sequence a1a2 . . . an

corresponds to ωa1 + ωa2 · · · + ωan ). The ordering of the ordinal κ corresponds to the lexicographic ordering in our
example. A slight elaboration of the proof shows that a set is thick iff it is unbounded. Therefore, a set is syndetic iff
it has bounded compliment. Hence, the syndetic sets form a filter.

Since every nonempty subset of a left zero semigroup is syndetic, right cancellation is not sufficient to guarantee
the ability to split any syndetic subset into disjoint syndetic subsets. But it almost is.

Theorem 4.11. Let S be a right cancellative semigroup and let A be a syndetic subset of S with at least two points.
Then A contains disjoint syndetic subsets.

Proof. Suppose the conclusion fails. Let U = {e ∈ S: e is a right identity for S}. (Then U = {e ∈ S: ee = e}, but we
shall not need that fact.) Let F = {F ∈ Pf (S): S = ⋃

t∈F t−1A}.
We claim that for all F ∈F , F ∩ U �= ∅. So let F ∈F . By Theorem 4.5 we may pick x ∈ A such that for all t ∈ F ,

tx /∈ A \ {x} and we may pick t ∈ F such that tx ∈ A so that tx = x. Then for all y ∈ S, ytx = yx and so yt = y.
Since A is syndetic, pick F ∈ F and note that for all s ∈ S, Fs ∈ F . Thus, for all s ∈ S we may pick xs ∈ F

such that xss ∈ U . This implies that every singleton, hence every nonempty set, is syndetic (to see this, fix y ∈ S and
let G = yF . For any s ∈ S, y = yxss ∈ yFs = Gs). Therefore, A contains disjoint syndetic sets contradicting our
assumption. �
Corollary 4.12. Let S be an infinite semigroup which is right cancellative and has the property that S is not the union
of any finite family of left solution sets of S. Then any syndetic subset of S contains disjoint syndetic subsets.
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Proof. By Theorem 4.11 it suffices to show that no singleton in S is syndetic. If a ∈ S and if {a} is syndetic, there is a
finite subset F of S such that S = ⋃

t∈F t−1{a}, contradicting our hypothesis that S is not the union of a finite family
of left solution sets. �

We have already noted that our definitions of the various notions of largeness are one-sided. Of course all of the
left–right switches of our results are valid. But we do not know the answers to various questions about sets which are
simultaneously left-large and right-large. For example, it is shown in [1, Chapter 3] that every infinite group can be
partitioned into infinitely many sets that are both left and right syndetic. We do not know whether the corresponding
statement is true for any cancellative or weakly cancellative semigroup. Several results about the relations between
left-large and right-large sets are in [4] and several other questions of this type are in [9].
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