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a b s t r a c t

New oscillation criteria are obtained for second order forced mixed nonlinear impulsive
differential equations of the form

(r(t)Φα(x′))′ + q(t)Φα(x) +

n−
k=1

qk(t)Φβk (x) = e(t), t ≠ θi

x(θ+

i ) = aix(θi), x′(θ+

i ) = bix′(θi)

where Φγ (s) := |s|γ−1s and β1 > β2 > · · · > βm > α > βm+1 > · · · > βn > 0.
If α = 1 and the impulses are dropped, then the results obtained by Sun and Wong

[Y.G. Sun, J.S.W. Wong, Oscillation criteria for second order forced ordinary differential
equations with mixed nonlinearities, J. Math. Anal. Appl. 334 (2007) 549–560] are
recovered. Examples are given to illustrate the results.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Impulsive differential equations providing a natural description of the motion of several real world processes subject
to short time perturbations are more richer than the differential equations without impulse effect. Such models are often
encountered in various fields of science and technology such as physics, population dynamics, ecology, biological systems,
optimal control, etc.; see [1–6] and the references cited therein.

Compared to equations without impulses there is a little work done regarding the oscillation problem for impulsive
differential equations due to difficulties caused by impulsive perturbations [7–15]. In particular, there are only a few papers
concerning the interval oscillation of impulsive differential equations. In [16], Liu and Xu have given interval oscillation
criteria for equations of the form

(r(t)x′(t))′ + q(t)Φγ (x(t)) = e(t), t ≠ θi
x(θ+

i ) = aix(θi), x′(θ+

i ) = bix′(θi)

where γ > 1 is a constant and bi ≥ ai > 0. The present authors [13,14], making use of a Picone type identity, have studied
super-half-linear impulsive equations of the form

(r(t)Φα(x′))′ + p(t)Φα(x′) + q(t)Φβ(x) = e(t), t ≠ θi
∆(r(t)Φα(x′)) + qiΦβ(x) = ei, t = θi

where β > α. No sign restriction was imposed on the sequence {qi} and the forcing sequence {ei}.
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In this paper, motivated by the works in [16,17], we consider the oscillation problem for mixed nonlinear impulsive
differential equations of the form

(r(t)Φα(x′))′ + q(t)Φα(x) +

n−
k=1

qk(t)Φβk(x) = e(t), t ≠ θi

x(θ+

i ) = aix(θi), x′(θ+

i ) = bix′(θi)

(1.1)

where Φγ (s) := |s|γ−1s and z(t±) = limτ→t± z(τ );

(i) the nonlinearities satisfy

β1 > β2 > · · · > βm > α > βm+1 > · · · > βn > 0; (1.2)

(ii) {θi} is a strictly increasing unbounded sequence of real numbers; {ai} and {bi} are real sequences such that

bi/ai ≥ 1, i ∈ N; (1.3)

(iii) r, q, qk, e ∈ PLC[t0, ∞) :=

h : [t0, ∞) → R is continuous on each interval (θi, θi+1), h(θ±

i ) exist, h(θi) = h(θ−

i ) for
i ∈ N


, k = 1, 2, . . . , n; r(t) > 0 is a nondecreasing function.

By a solution of Eq. (1.1), we mean a function x ∈ PLC[t0, ∞) such that x′
∈ PLC[t0, ∞) and x(t) satisfies Eq. (1.1) for

t ≥ t0. As usual, a solution of Eq. (1.1) is called oscillatory if it is neither eventually positive nor eventually negative. The
equation is called oscillatory if and only if every solution is oscillatory.

Note that when the impulses are absent, Eq. (1.1) takes the form

(r(t)Φα(x′))′ + q(t)Φα(x) +

n−
k=1

qk(t)Φβk(x) = e(t). (1.4)

Eq. (1.4) was studied by Sun and Wong when α = 1 in [17], where the authors give some interval oscillation criteria. For
some works related to interval oscillation criteria, we refer in particular to [18–21].

The following lemmas are needed.

Lemma 1.1. Let {βj}, j = 1, . . . , n, be the n-tuple satisfying (1.2). Then there exists an n-tuple (η1, η2, . . . , ηn) satisfying
(a)

∑n
j=1 βjηj = α, and

(b)
∑n

j=1 ηj < 1, 0 < ηj < 1.

Lemma 1.2. Let {βj}, j = 1, . . . , n, be the n-tuple satisfying (1.2). Then there exists an n-tuple (η1, η2, . . . , ηn) satisfying
(a)

∑n
j=1 βjηj = α, and

(b)
∑n

j=1 ηj = 1, 0 < ηj < 1.

The proofs of Lemmas 1.1 and 1.2 can be obtained easily from that of [17, Lemma 1] by taking αi = βi/α.
Note that if n = 2, we have β1 > α > β2 > 0. Then, in the case of Lemma 1.1 we may take

η1 =
α − β2(1 − ϵ)

β1 − β2
, η2 =

β1(1 − ϵ) − α

β1 − β2

where ϵ is any number satisfying 0 < ϵ < 1 − α/β1. In the second case, solving the system of equations in (a) and (b) of
Lemma 1.2, one easily gets

η1 =
α − β2

β1 − β2
, η2 =

β1 − α

β1 − β2
.

We also need the Young inequality

x1p

p
+

x2q

q
− x1x2 ≥ 0, x1, x2 ≥ 0 (1.5)

where p and q are positive real numbers such that 1/p + 1/q = 1.
Let z1, z2 be nonnegative real numbers and γ > 0 a constant. Applying (1.5) with p = γ + 1, q = 1 + 1/γ , x1 = z1 and

x2 = zγ

2 , we obtain a simple inequality

zγ+1
1 + γ zγ+1

2 − (γ + 1)z1z
γ

2 ≥ 0. (1.6)

The following lemma can be proved by using (1.6); also see [22].

Lemma 1.3. Let z, A, B, C and D be nonnegative real numbers. Then
(i) Azλ

+ B ≥ λ(λ − 1)1/λ−1A1/λB1−1/λz for λ > 1,
(ii) Cz − Dzλ

≥ (λ − 1)λλ/(1−λ)Cλ/(λ−1)D1/(1−λ) for 0 < λ < 1.
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2. Main results

For convenience, we introduce the notation

is = max{i : t0 < θi < s}.

For s, t ∉ {θi} with s < t , we define an operator Hn : C([s, t], R) → R as

Hn[h] :=


0, isn = itn

F
[n]
isn+1(θisn+1, sn)[h] +

itn−
i=isn+2

F
[n]
i (θi, θi−1)[h], isn < itn

where

F
[n]
j (c1, c2)[φ] = {1 − Φα(bj/aj)}(c1 − c2)−αr(c1)|φ(c1)|α+1. (2.1)

Denote by D the set of admissible functions

D(a, b) = {u ∈ C1
[a, b] : u(t) ≢ 0, u(a) = u(b) = 0}.

Our first result is as follows.

Theorem 2.1. Suppose that for any given T ≥ t0, there exist intervals I1 = [s1, t1], I2 = [s2, t2] ⊂ [T , ∞), such that sj, tj ∉ {θi},
j = 1, 2 and
(a) q(t), qk(t) ≥ 0 ∀t ∈


I1 ∪ I2


\ {θi}, (k = 1, 2, . . . , n);

(b) e(t)


≤ 0, t ∈ I1 \ {θi}
≥ 0, t ∈ I2 \ {θi}

; ∀i ∈ N.

If there exists u ∈ D(sj, tj) such that∫ tj

sj


q(t) + ζn|e(t)|η0

n∏
k=1

qηk
k (t)


|u(t)|α+1

− r(t)|u′(t)|α+1


dt + Hj[u] > 0 (2.2)

for j = 1, 2, where ζn =
∏n

k=0 η
−ηk
k with η0 = 1 −

∑n
k=1 ηk, and η1, . . . , ηn are positive constants satisfying conditions

of Lemma 1.1, then Eq. (1.1) is oscillatory.

Proof. Suppose that there exists a nonoscillatory solution x(t) of (1.1) so that x(t) ≠ 0 for all t ≥ t∗ for some t∗ ≥ t0, where
t0 may depend on the solution x(t). Let

ν(t) := −
r(t)Φα(x′(t))

Φα(x(t))
, t ≥ t∗. (2.3)

It follows that for t ≥ t∗ and t ≠ θi,

ν ′(t) = q(t) +

n−
k=1

qk(t)Φβk−α(x(t)) −
e(t)

Φα(x(t))
+ α

|ν(t)|1+1/α

r1/α(t)
(2.4)

and for θi ≥ t∗

∆ν(θi) = −ξiν(θi), ξi = 1 − Φα(bi/ai). (2.5)

By the arithmetic–geometric mean inequality, see [23],

n−
k=0

ηkµk ≥

n∏
k=0

µ
ηk
k , µk ≥ 0, (k = 0, 1, . . . , n) (2.6)

where ηk > 0, k = 1, 2, . . . , n, are chosen to satisfy conditions of Lemma 1.1 with η0 = 1 −
∑n

k=1 ηk > 0 for the given
α, β1, β2, . . . , βn−1 and βn.

Without loss of generality, wemay assume that x(t) > 0 for all t ≥ t∗. When x(t) is eventually negative, the proof follows
the same argument using the interval I2 instead of I1. By assumption, we can choose s1, t1 ≥ t∗ such that q(t), qk(t) ≥ 0 and
e(t) ≤ 0 for all t ∈ I1 \ {θi} and for all k = 1, 2, . . . , n, i ∈ N. It follows that Eq. (2.4) becomes

ν ′(t) = q(t) +


n−

k=1

qk(t)xβk(t) + |e(t)|


x−α(t) + α

|ν(t)|1+1/α

r1/α(t)
, t ≠ θi. (2.7)

Now, using inequality (2.6) with

µ0 = η−1
0 |e(t)| and µk = η−1

k qk(t)xβk(t), k = 1, 2, . . . , n,
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we obtain

ν ′(t) ≥ q(t) + η
−η0
0 |e(t)|η0

n∏
k=1

η
−ηk
k qηk

k (t) + α
|ν(t)|1+1/α

r1/α(t)

= q(t) + α
|ν(t)|1+1/α

r1/α(t)
, t ≠ θi (2.8)

where

q(t) = q(t) + ζn|e(t)|η0
n∏

k=1

qηk
k (t).

If is1 < it1 , then there are impulse moments in [s1, t1]: θis1+1, θis1+2, . . . , θit1 . Multiplying both sides of (2.8) by |u(t)|α+1 and
integrating over I1 gives∫ t1

s1

q(t)|u(t)|α+1dt ≤ −α

∫ t1

s1

|ν(t)|1+1/α

r1/α(t)
|u(t)|α+1dt +

∫ t1

s1
|u(t)|α+1ν ′(t)dt.

Employing the integration by parts formula in the last integral and using u(s1) = u(t1) = 0, we have∫ t1

s1

q(t)|u(t)|α+1dt ≤ −α

∫ t1

s1

|ν(t)|1+1/α

r1/α(t)
|u(t)|α+1dt

− (α + 1)
∫ t1

s1
Φα(u(t))u′(t)ν(t)dt −

it1−
i=is1+1

|u(θi)|α+1∆ν(θi). (2.9)

In view of (2.5), we obtain∫ t1

s1
{q(t)|u(t)|α+1

− r(t)|u′(t)|α+1
}dt

≤

it1−
i=is1+1

ξiν(θi)|u(θi)|α+1
−

∫ t1

s1

[
r(t)|u′(t)|α+1

+ α
|ν(t)|1+1/α

r1/α(t)
|u(t)|α+1

− (α + 1)|u(t)|α|u′(t)||ν(t)|
]
dt. (2.10)

Note that the terms in brackets in (2.10) are nonnegative due to (1.6) with

γ = 1/α, z1 = αα/(α+1) |u(t)|α

r1/(α+1)(t)
|ν(t)|, z2 = {αr(t)}α/(α+1)

|u′(t)|α.

It follows that∫ t1

s1
{q(t)|u(t)|α+1

− r(t)|u′(t)|α+1
}dt ≤

it1−
i=is1+1

ξiν(θi)|u(θi)|α+1. (2.11)

On the other hand, for t ∈ (s1, θis1+1],

(r(t)Φα(x′(t)))′ = e(t) − q(t)Φα(x(t)) −

n−
k=1

qk(t)Φβk(x(t))

= e(t) − q(t)xα(t) −

n−
k=1

qk(t)xβk(t) ≤ 0

which means that r(t)Φα(x′(t)) is nonincreasing on (s1, θis1+1]. Now, for any t ∈ (s1, θis1+1], we have

x(t) − x(s1) = x′(ε)(t − s1), ε ∈ (s1, t).

Since x(s1) > 0 and the function Φα(.) is an increasing function,

Φα(x(t)) > Φα(x′(ε))Φα(t − s1) ≥
r(t)Φα(x′(t))

r(ε)
(t − s1)α, ε ∈ (s1, t).

From the fact that r(t) is nondecreasing, we have

−
r(t)Φα(x′(t))

Φα(x(t))
≥ −r(ε)(t − s1)−α

≥ −r(θis1+1)(t − s1)−α.
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Letting t → θ−

is1+1, we obtain

ν(θis1+1) ≥ −r(θis1+1)(θis1+1 − s1)−α. (2.12)

In a similar way, we proceed on (θi−1, θi] to get

ν(θi) = −
r(θi)Φα(x′(θi))

Φα(x(θi))
≥ −r(θi)(θi − θi−1)

−α (2.13)

for i = is1+2, . . . , it1 . Using (1.3), (2.12) and (2.13), we have

it1−
i=is1+1

ξiν(θi)|u(θi)|α+1
= ξis1+1ν(θis1+1)|u(θis1+1)|

α+1
+

it1−
i=is1+2

ξiν(θi)|u(θi)|α+1

≤ −

F
[1]
is1+1(θis1+1, s1)[u] +

it1−
i=is1+2

F
[1]
i (θi, θi−1)[u]


= −H1[u].

It follows from (2.11) that∫ t1

s1
{q(t)|u(t)|α+1

− r(t)|u′(t)|α+1
}dt ≤ −H1[u]. (2.14)

If is1 = it1 , then there is no impulse moment in [s1, t1], and that (2.11) yields∫ t1

s1
{q(t)|u(t)|α+1

− r(t)|u′(t)|α+1
}dt ≤ 0 = −H1[u]. (2.15)

Both inequalities (2.14) and (2.15) contradict with our assumption (2.2). This completes the proof. �

The next theorem is for the case e(t) ≡ 0.

Theorem 2.2. Suppose that for any given T ≥ t0, there exist intervals I1 = [s1, t1] ⊂ [T , ∞), such that s1, t1 ∉ {θi}, and q(t),
qk(t) ≥ 0 for all t ∈ I1 \ {θi}, k = 1, 2, . . . , n, i ∈ N.

If there exists u ∈ D(s1, t1) such that∫ t1

s1


q(t) + σn

n∏
k=1

qηk
k (t)


|u(t)|α+1

− r(t)|u′(t)|α+1


dt + H1[u] > 0, (2.16)

whereσn =
∏n

k=1 η
−ηk
k , andη1, η2, . . . , ηn are positive constants satisfying conditions of Lemma1.2, then Eq. (1.1)with e(t) ≡ 0

is oscillatory.

Proof. The proof is based on applying Lemma 1.2 with e(t) ≡ 0, and similar to that of Theorem 2.1. �

In our last theorem, we allow the functions qk(t) to be negative for k = m + 1,m + 2, . . . , n.

Theorem 2.3. Suppose that for any given T ≥ t0, there exist intervals I1 = [s1, t1], I2 = [s2, t2] ⊂ [T , ∞), such that sp, tp ∉ {θi},
p = 1, 2 and

(a) q(t), qk(t) ≥ 0 ∀t ∈

I1 ∪ I2


\ {θi}, (k = 1, 2, . . . ,m);

(b) e(t)


< 0, t ∈ I1 \ {θi}
> 0, t ∈ I2 \ {θi}

; ∀i ∈ N.

If there exist u ∈ D(sp, tp) and positive numbers γk, k = 1, . . . ,m, and τj, j = m + 1, . . . , n, such that∫ tp

sp

q(t)|u(t)|α+1
− r(t)|u′(t)|α+1


dt + Hp[u] > 0, (p = 1, 2) (2.17)

where

q(t) = q(t) +

m−
k=1

βk(βk − α)α/βk−1α−α/βkqα/βk
k (t){γk|e(t)|}1−α/βk

−

n−
j=m+1

βj(α − βj)
α/βj−1α−α/βj q̆

α/βj
j (t){τj|e(t)|}1−α/βj ,
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with
m−

k=1

γk +

n−
j=m+1

τj = 1

and q̆j(t) = max{−qj(t), 0}, j = m + 1, . . . , n, then Eq. (1.1) is oscillatory.
Proof. Suppose that there exists a nonoscillatory solution x(t) of (1.1) so that x(t) ≠ 0 for all t ≥ t∗ for some t∗ ≥ t0. We
define ν(t) as in (2.3) and obtain (2.4), and (2.5). As in the proof of Theorem 2.1, we may assume that x(t) > 0 for all t ≥ t0.
By assumption, we can choose s1, t1 ≥ t∗ such that q(t), qk(t) ≥ 0 and e(t) < 0 for all t ∈ I1\{θi} and for all k = 1, 2, . . . ,m,
i ∈ N. It follows from rearranging (2.7) that

ν ′(t) = q(t) + α
|ν(t)|1+1/α

r1/α(t)
+


m−

k=1


qk(t)xβk(t) + γk|e(t)|


+

n−
j=m+1


qj(t)xβj(t) + τj|e(t)|


x−α(t), t ≠ θi. (2.18)

Applying Lemma 1.3(i) to the first summation in (2.18) with λ = βk/α > 1, z = xα(t), A = qk(t) and B = γk|e(t)|, we
obtain

qk(t)xβk(t) + γk|e(t)| ≥ βk(βk − α)α/βk−1α−α/βkqα/βk
k (t){γk|e(t)|}1−α/βkxα(t). (2.19)

The second summation in (2.18) can be made smaller by applying Lemma 1.3(ii) with λ = βj/α ∈ (0, 1), D = q̆j(t),
C = λ(1 − λ)1/λ−1(q̆j(t))1/λ(τj|e(t)|)1−1/λ and z = xα(t). We see that

qj(t)xβj(t) + τj|e(t)| ≥ τj|e(t)| − q̆j(t)xβj(t)

≥ −βj(α − βj)
α/βj−1α−α/βj q̆

α/βj
j (t){τj|e(t)|}1−α/βjxα(t). (2.20)

Using (2.5), (2.18), (2.19) and (2.20), we obtain

ν ′(t) ≥q(t) + α
|ν(t)|1+1/α

r1/α(t)
, t ≠ θi

∆ν(t) = −ξiν(t), t = θi.

(2.21)

The remainder of the proof is the same as that of Theorem 2.1. The proof is complete. �

Remark 1. If the function r is not nondecreasing, then Theorem 2.1 is still valid if the term r(c1) is replaced by r∗

j in (2.1)
where

r∗

j = max{r(t) : t ∈ Ij = [sj, tj]}, j = 1, 2.

In this case, if we take q(t) ≡ 0, n = 1 and α = 1, then we recover [16, Theorem 2.1]. We also note that the condition
bi ≥ ai > 0 given in [16] is not necessary; the condition (1.3) suffices.

Remark 2. If the impulses are dropped in (1.1) i.e. ai ≡ bi ≡ 1, and α = 1, then our results reduce to Theorems 1, 2 and 3
given by Sun and Wong in [17].

Example 2.4. Consider the impulsive equation

x′′
+ σ0x + σ1|x|x + σ2|x|−1/2x = sin(π t), t ≠ θi

x(θ+

i ) = (−1)iσ3x(θi), x′(θ+

i ) = (−1)iσ4x′(θi)
(2.22)

where θi = (2i − 1)/8, i ∈ N, and that σk, k = 0, 1, 2, are nonnegative constants and σ4/σ3 ≥ 1. We can take η1 = 4/9 and
η2 = 2/9 to see that Lemma 1.1 holds.

Let u(t) = sin(π t), and choose s1 = 2m− 1, t1 = s2 = 2m and t2 = 2m+ 1. For any given t∗ ≥ 0 wemay choosem ∈ N
sufficiently large so that 2m ≥ t∗. Then conditions (a) and (b) of Theorem 2.1 are satisfied. Moreover∫ tj

sj


σ0 + ζ2| sin(π t)|1/3σ 4/9

1 σ
2/9
2


sin2(π t) − π2 cos2(π t)


dt

=
σ0

2
+ 35/328/9 Γ (2/3)

7
√

πΓ (7/6)
σ

4/9
1 σ

2/9
2 −

π2

2
, (j = 1, 2) (2.23)

where Γ is the ‘‘Gamma function’’, and that

H1[sin(π t)] = F
[1]
8m−3(2m − 7/8, 2m − 1)[sin(π t)] +

8m−
i=8m−2

F
[1]
i ((2i − 1)/8, (2i − 3)/8)[sin(π t)]

= (10 −
√
2)(1 − σ4/σ3). (2.24)
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One can also calculate that H2[sin(π t)] = (10 −
√
2)(1 − σ4/σ3). Thus (2.2) holds if

σ0 + c0σ
4/9
1 σ

2/9
2 > c1

σ4

σ3
+ c2

where c0 ≈ 2.71882, c1 ≈ 17.1716 and c2 ≈ −7.30197, which by Theorem 2.1 is sufficient for oscillation of (2.22).

Example 2.5. Consider the impulsive equation

((k0 + | sin 2t|)Φ3(x′(t)))′ + k1| sin 2t|Φ3(x(t)) + k2 sin2(t/2)Φ4(x(t)) + k3 cos2(t/2)Φ2(x(t)) = 0, t ≠ θi
x(θ+

i ) = (−1)ik4x(θi), x′(θ+

i ) = (−1)ik5x′(θi)
(2.25)

where θi = (2i − 1)π/8, i ∈ N, and that k0 is positive, k1, k2, k3 are nonnegative constants and k5/k4 ≥ 1. It is enough to
take η1 = η2 = 1/2 so that Lemma 1.2 holds.

Let u(t) = sin t , and choose s1 = nπ and t1 = (n+ 1)π . For any given t∗ ≥ 0, we may choose n ∈ N sufficiently large so
that n ≥ t∗. Then∫ (n+1)π

nπ


k1| sin 2t| + σ2


k2k3| sin(t/2) cos(t/2)|


sin4 t − {k0 + | sin 2t|} cos4 t


dt

=
2
3
(k1 − 1) +

16
15


k2k3 −

3π
8

k0, (2.26)

and

H1[sin t] = F
[1]
4n+1((8n + 1)π/8, nπ)[sin t] +

4n+4−
i=4n+2

F
[1]
i ((2i − 1)π/8, (2i − 3)π/8)[sin t]

= ξ4n+1(π/8)−3r((n + 1/8)π) sin4((n + 1/8)π) + (π/4)−3
4n+4−

i=4n+2

ξir((2i − 1)π/8) sin4((2i − 1)π/8)

=
4
π3

(33 − 14
√
2)(2k0 +

√
2)(1 − (k5/k4)3). (2.27)

Thus (2.16) holds if

2
3
k1 +

16
15


k2k3 −

3π
8

k0 >
4
π3

(33 − 14
√
2)(2k0 +

√
2)


k5
k4

3

− 1


+

2
3

which by Theorem 2.2 is sufficient for oscillation of (2.25).

Example 2.6. Consider the impulsive equation

x′′
+ σ0x + σ1|x|x − σ2|x|−1/2x = sin(π t), t ≠ θi

x(θ+

i ) = (−1)iσ3x(θi), x′(θ+

i ) = (−1)iσ4x′(θi)
(2.28)

where θi = (2i − 1)/32, i ∈ N, and that σk, k = 0, 1, 2, are nonnegative constants and σ4/σ3 ≥ 1.
Let u(t) = sin(π t), and choose s1 = 4/3 + 2j, t1 = 5/3 + 2j, s2 = 7/3 + 2j and t2 = 8/3 + 2j. For any given t∗ ≥ 0,

we may choose j ∈ N sufficiently large so that 2j ≥ t∗. Then conditions (a) and (b) of Theorem 2.3 are satisfied. Moreover,
taking γ1 = τ2 = 1/2, we obtain∫ tp

sp


σ0 +

√
2σ 1/2

1 | sin(π t)|5/2 − π2 cos2(π t)

dt

=
π

3
σ0 +

√
2

π
σ

1/2
1

∫ 2π/3

π/3
sin5/2 t dt +

√
3
4

−
π

6


π, (p = 1, 2), (2.29)

H1[sin(π t)] = F
[1]
32j+22(2j + 43/32, 2j + 4/3)[sin(π t)] +

32j+27−
i=32j+23

F
[1]
i ((2i − 1)/32, (2i − 3)/32)[sin(π t)]

= (1 − σ4/σ3)[32 cos2(π/32) + 32 cos2(3π/32) + 97 cos2(5π/32)] (2.30)

and

H2[sin(π t)] = F
[2]
32j+38(2j + 75/32, 2j + 7/3)[sin(π t)] +

32j+43−
i=32j+39

F
[2]
i ((2i − 1)/32, (2i − 3)/32)[sin(π t)]

= (1 − σ4/σ3)[32 cos2(π/32) + 32 cos2(3π/32) + 16 cos2(5π/32) + 96 cos2(7π/32)]. (2.31)
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Using (2.29)–(2.31) we can deduce that (2.17) holds if

σ0 + c0
√

σ1 > c1
σ4

σ3
+ c2

where c0 ≈ 0.402456, c1 ≈ 124.909573 and c2 ≈ −124.637816, which by Theorem 2.3 is sufficient for oscillation of (2.28).
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