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Abstract

We prove a formula expressing the motivic integral (Loeser and Sebag, 2003) [34] of a K3 surface
over C((t)) with semi-stable reduction in terms of the associated limit mixed Hodge structure. Secondly,
for every smooth variety over a complete discrete valuation field we define an analogue of the monodromy
pairing, constructed by Grothendieck in the case of abelian varieties, and prove that our monodromy pairing
is a birational invariant of the variety. Finally, we propose a conjectural formula for the motivic integral
of maximally degenerate K3 surfaces over an arbitrary complete discrete valuation field and prove this
conjecture for Kummer K3 surfaces.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Motivic integral of a Calabi–Yau variety

Let R be a complete discrete valuation ring with fraction field K and perfect residue field k.
By a Calabi–Yau variety X over K we mean a smooth projective scheme X over K , of pure
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dimension d , with trivial canonical bundle ωX := Ωd
X/K . In [34], Loeser and Sebag associated

with any Calabi–Yau variety X over K a canonical element∫
X

∈ K0(Vark)loc

of the ring K0(Vark)loc, where K0(Vark)loc is obtained from the Grothendieck ring K0(Vark) of
algebraic varieties over k by inverting the class [A1

k] of the affine line.
The motivic integral

∫
X

can be computed from a weak Néron model of X. Recall, that a
weak Néron model of a smooth proper scheme X over K is a smooth scheme V of finite type
over R together with an isomorphism V ⊗R K � X satisfying the following property: for every
finite unramified extension R′ ⊃ R with fraction field K ′, the canonical map V (R′) → X(K ′) is
bijective. According to [10, §3.5, Theorem 3], every smooth proper K-scheme X admits a weak
Néron model. We note that a weak Néron model is almost never unique: for example, if X is a
proper regular model of X over R, then the smooth locus Xsm of X is a weak Néron model of X

(see Lemma 2.10).
Given a Calabi–Yau variety X over K , a weak Néron model V of X, and a non-zero top

degree differential form ω ∈ Γ (X,ωX), we can view ω as a rational section of the canonical
bundle ωV /R on V . The divisor of ω is supported on the special fiber V ◦ of V . Thus, we can
write

divω =
∑

i

miV
◦
i , (1.1)

where V ◦
1 , . . . , V ◦

s are the irreducible components of the special fiber V ◦. The motivic integral
of X is defined by the formula1

∫
X

:=
∑

i

[
V ◦

i

](
mi − min

i
mi

)
. (1.2)

Here, given an element [Z] ∈ K0(Vark)loc and an integer n, we write [Z](n) for its Tate twist:

[Z](n) := [Z] · [A1]−n
.

A key result proven by Loeser and Sebag [34, Theorem 4.4.1] is that the right-hand side of
Eq. (1.2) is independent of the choice of V and ω.

If k = Fq , the image of the motivic integral under the homomorphism

K0(VarFq
)loc → Z(q), [Z] �

∣∣Z(Fq)
∣∣ (1.3)

is equal to the volume
∫
X(K)

|ω|, for an appropriately normalized ω ∈ Γ (X,ωX) [34, §4.6].

1 We note that our terminology and notation are different from those used by Loeser and Sebag. Notation for
∫
X in [34]

is [X]. The name “motivic integral” is reserved in [34] for a more general construction that associates with any smooth
proper K-scheme X and a top degree differential form ω ∈ Γ (X,ωX) an element

∫
X ω of a certain completion of the

motivic ring K0(Vark)loc.
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In this paper we express the motivic integral of K3 surfaces over C((t)) with strictly semi-
stable reduction in terms of the associated limit mixed Hodge structures. We also compute the
motivic integral of some K3 surfaces over an arbitrary complete discrete valuation field. To our
knowledge the only class of varieties, for which similar formulas were previously known, is
the class of abelian varieties (see, e.g. [49, Exposé IX], [48,23,22]), where the computation is
based on the theory of Néron models, and, in particular, for K = C((t)), on the Hodge theoretic
description of the special fiber of the Néron model. Unfortunately, K3 surfaces do not have a
Néron model, in general, which makes our problem substantially more difficult.

Let us describe the organization of the paper in more detail.

1.2. Limit mixed Hodge structure

In Section 2 we explain some preliminary material, the most important of which is the notion
of limit mixed Hodge structure associated with a variety over the field of formal Laurent series
C((t)). Schmid and Steenbrink associated with every smooth projective variety over the field Kmer
of meromorphic functions on an open neighborhood of zero in the complex plane a mixed Hodge
structure, called the limit mixed Hodge structure. In Section 2.2, using Log Geometry, we extend
the Steenbrink–Schmid construction to smooth projective varieties over C((t)).

1.3. Motivic integral of K3 surfaces over C((t))

In order to state our first main result we need to introduce a bit of notation. Let X be a
smooth projective K3 surface over K = C((t)) and let H 2(limX) = (H 2(limX,Z),W

Q
i , F i) be

the corresponding limit mixed Hodge structure (see Section 2.2). Assume that the monodromy
acts on H 2(limX,Z) by a unipotent operator. Then its logarithm N is known to be integral [19,
Proposition 1.2]:

N :H 2(limX,Z) → H 2(limX,Z). (1.4)

Set WZ
i = W

Q
i ∩ H 2(limX,Z). The morphisms

GrNi :WZ
i+2/WZ

i+1 → WZ
2−i/WZ

1−i , i = 1,2, (1.5)

are injective and have finite cokernels. Let ri(X,K) be their orders. In Section 3 we prove the
following result.

Theorem 1. Let X be a smooth projective K3 surface over K = C((t)). Assume that X has a
strictly semi-stable model over R = C�t � and that the operator N is not equal to 0. Let s be the
smallest integer such that Ns = 0. Then s is either 2 or 3 and for every finite extension Ke ⊃ K of
degree e the motivic integral of the K3 surface Xe = X ⊗K Ke over Ke is given by the following
formulas.

(a) If s = 2 then ∫
Xe

= 2Z(0) − (
e
√

r1(X,K) + 1
)[

E(X)
] + 20Z(−1)

+ (
e
√

r1(X,K) − 1
)[

E(X)
]
(−1) + 2Z(−2), (1.6)
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where E(X) is the elliptic curve defined by the weight 1 Hodge structure on WZ
1 = W

Q
1 ∩

H 2(limX,Z) and Z(n) := [A1]−n, n ∈ Z.
(b) If s = 3 then ∫

Xe

=
(

e2r2(X,K)

2
+ 2

)
Z(0) + (

20 − e2r2(X,K)
)
Z(−1)

+
(

e2r2(X,K)

2
+ 2

)
Z(−2). (1.7)

Note, that if N = 0 the K3 surface X has a smooth proper model over R whose special fiber Y

(and thus the motivic integral) is determined by the polarized pure Hodge structure H 2(limX,Z).
Let us explain the idea of our proof assuming that e = 1. First, using the theory of Hilbert

schemes and Artin’s approximation theorem, we reduce the proof to the case when X is obtained
by the restriction of a smooth family X of K3 surfaces over a smooth punctured complex curve
C = C−a to the formal punctured neighborhood of the point a ∈ C. The rest of the proof is based
on a result of Kulikov [32,41] asserting the existence of a (non-unique) strictly semi-stable model

X π−→ C such that the log canonical bundle ωX /C
(log) is trivial over an open neighborhood of

the special fiber Y . For any such model, we have∫
X

= [Ysm],

where Ysm ⊂ Y is the smooth locus of Y . It is shown in [32] that the special fiber Y of a Kulikov
model has a very special form. If s = 2 the Clemens polytope Cl(Y ) of Y (see Section 2.1) is
a partition of an interval and all but two irreducible components of Y are ruled surfaces fibered
over elliptic curves, all of which are isomorphic to a single elliptic curve E. The two components
corresponding to the boundary points of Cl(Y ) are rational surfaces. If s = 3 then all the irre-
ducible components of Y are rational surfaces and the Clemens polytope Cl(Y ) is a triangulation
of a sphere. Next, using results of Friedman and Scattone [19,18] we prove that the Steenbrink
weight spectral sequence for Kulikov’s model X π−→ C (and therefore by the Weak Factoriza-
tion Theorem [31, Theorem 9], for every strictly semi-stable model of X) degenerates integrally
at the second term. Of course, the degeneration of the weight spectral sequence with rational
coefficients is a corollary of Hodge Theory and holds in general, but the degeneration over Z
is a special non-trivial property of K3 surfaces. This, combined with the generalized Picard–
Lefschetz formula, implies that, for s = 2, the Hodge structure on H 1(E) is isomorphic to that
on WZ

1 and that the number of irreducible components of Y equals
√

r1(X,K) + 1. Similarly, as
proven in [19], for s = 3, the combinatorics of Y (i.e., the number of irreducible, components,
double curves and triple points) is completely determined by the monodromy action on the inte-
gral lattice H 2(limX,Z). This, together with a variant of A’Campo’s formula (Proposition 2.9),
completes the proof.

1.4. Monodromy pairing

In Section 4 we introduce a generalization of the invariant r2(X,K), that we defined in Sec-
tion 1.3 for K3 surfaces over C((t)), to the case of an arbitrary smooth variety over a complete
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discrete valuation field. Our construction is based on the theory of analytic spaces over non-
archimedean fields developed by Berkovich [5]. For a complete discrete valuation field K we
denote by K̂ the completion of an algebraic closure of K . One of the key features of Berkovich’s
theory is that the underlying topological space |Xan

K̂
| of the analytification of a scheme X over K

has interesting topological invariants (in contrast with the space X(K̂) equipped with the usual
topology, which is totally disconnected). In particular, if X is the generic fiber of a proper strictly
semi-stable scheme X over R the space |Xan

K̂
| is homotopy equivalent to the Clemens polytope of

the special fiber Y . We denote by Γ m
C (X) the singular cohomology of the space |Xan

K̂
| with coeffi-

cients in a ring C. In Theorem 3, we prove that, for every prime � different from the characteristic
of the residue field of K , and for every smooth scheme X, there is a canonical isomorphism of
Gal(K/K)-modules

γ :Γ m
Q�

(X)
∼−→ Im

(
Hm(XK,Q�)(m)

Nm−−→ Hm(XK,Q�)
)
, (1.8)

where N is the logarithm of the monodromy operator. In particular, the dimension of the vector
space on the right-hand side of (1.8) is independent of �. Let us note, that a different description
of the space Γ m

Q�
(X) in the case of finite residue field was obtained earlier by Berkovich [8].

If d is the dimension of X, we use (1.8) to define a non-degenerate pairing

Γ d
Q(X) ⊗ Γ d

Q(X) → Q. (1.9)

In the special case when X is proper, the pairing (1.8) is given by the formula

(x, y) = (−1)
d(d−1)

2
〈
γ (x), y′〉, (1.10)

where y′ ∈ Hd(XK,Q�) is an element such that Ndy′ = γ (y) and 〈,〉 is the Poincaré pairing on
Hd(XK,Q�). We prove in Theorem 4 that (1.10) is independent of � and positive. Moreover, the
groups Γ m

C (X) and the monodromy pairing (1.9) are birational invariants of X.
We define a numeric (birational) invariant rd(X,K) of X to be the discriminant of the dual

pairing

Γd(X) ⊗ Γd(X) → Q, (1.11)

where Γd(X) is Hom(Γ d
Z

(X),Z).
In Remark 4.5, we define for a polarized projective variety X and any integer m a more general

positive pairing Γ m
Q

(X)⊗Γ m
Q

(X) → Q which in the case of semi-stable abelian variety A and its
dual A′ boils down, after some identifications, to the monodromy pairing Γ1(A) ⊗ Γ1(A

′) → Z
defined by Grothendieck [49, Exp. IX]. In particular, the number rd(A,K) is non-zero if and
only if A is completely degenerate in which case rd(A,K) is equal to d!|π0(V (A) ⊗ k)|, where
V (A) is the Néron model of A.
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1.5. Motivic integral of maximally degenerate K3 surfaces

We say that a d-dimensional Calabi–Yau variety over a complete discrete valuation field K is
maximally degenerate if Γ d

Q
(X) �= 0. According to (1.8), X is maximally degenerate if and only

if for some (and, hence, for any) prime � �= chark the map

Hd(XK,Q�)(m)
Nd−−→ Hd(XK,Q�)

is not zero.2 We conjecture that for every maximally degenerate K3 surface over K there exists
a finite extension K ′ ⊃ K such that, for every finite extension L ⊃ K of ramification index e

containing K ′, we have∫
XL

=
(

e2r2(X,K)

2
+ 2

)
Q(0) + (

20 − e2r2(X,K)
)
Q(−1) +

(
e2r2(X,K)

2
+ 2

)
Q(−2).

If chark = 0 our conjecture follows from part (b) of Theorem 1. In Section 5 we prove this
conjecture in the case of Kummer K3 surfaces over an arbitrary complete discrete valuation field
K with chark �= 2 by constructing explicitly a poly-stable formal model of the analytic space
Xan.

The groups Γ d
Z

(X) that we used to define the invariant rd(X,K) can be interpreted as the
weight 0 part of the limit motive of X (Remark 4.2). It would be interesting to define geometri-
cally the limit 1-motive attached to X and use it to compute the motivic integral for K3 surfaces
which are not maximally degenerate.

2. Preliminaries

2.1. Clemens polytope and nerve of a strictly semi-stable scheme

Let R be a complete discrete valuation ring with residue field k and fraction field K . Recall
that a scheme X of finite type over specR is strictly semi-stable if every point x ∈ X has a
Zariski neighborhood x ∈ U ⊂ X such that the morphism U → specR factors through an étale
morphism

U → specR[T0, . . . , Td ]/(T0 · · ·Tr − t), 0 � r � d,

for a uniformizer t of K . If k is perfect, X is a strictly semi-stable scheme if and only if it is
regular and flat over R, the generic fiber X = X ×R K is smooth over K and the special fiber
Y = X ×R k is a reduced strictly normal crossing divisor on X.

Let X be a strictly semi-stable scheme. Then the irreducible components V1, . . . , Vm of Y as
well as the schemes

Y (q) =
∐

i0<···<iq

Vi0 ∩ · · · ∩ Viq (2.1)

2 There is an extensive literature on maximally degenerate Calabi–Yau varieties over C((t)). See e.g. [35,33].
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are smooth. It is convenient to encode the combinatorial structure of Y by a certain topological
space. To do this we need to introduce some terminology.

By an abstract triangulated set we mean a contravariant functor �̃ → Sets, where �̃ is the
category whose objects are finite totally ordered sets [q] := {0, . . . , q}, q ∈ Z�0, and whose
morphisms are strictly increasing maps. Thus, giving an abstract triangulated set S• amounts to
giving a set Sq of “q-simplices” for each q ∈ Z�0 together with “boundary maps” δj :Sq →
Sq−1, j = 0, . . . , q , subject to certain conditions.3 We shall write |S•| for the realization of S•
[20, §1.1].

Given a strictly semi-stable scheme X consider the abstract triangulated set whose q-
dimensional simplices are indexed by the set π0(Y

(q)

k
). The boundary maps δj :π0(Y

(q)

k
) →

π0(Y
(q−1)

k
), j = 0, . . . , q , are given by the maps

π0(Vi0,k
∩ · · · ∩ Viq ,k) → π0(Vi0,k

∩ · · · ∩ Vij−1,k
∩ Vij+1,k

∩ · · · ∩ Viq,k)

induced by the injections

Vi0 ∩ · · · ∩ Viq ↪→ Vi0 ∩ · · · ∩ Vij−1 ∩ Vij+1 ∩ · · · ∩ Viq .

The realization of this triangulated set is a topological space which we call (following [31])
the Clemens polytope of Y and denote by Cl(Y ). Although the abstract triangulated set we
constructed depends upon the choice of ordering on the set of irreducible components Vi , the
homeomorphism type of the topological space Cl(Y ) does not.

Proposition 2.1. Let X be a strictly semi-stable model of X over specR with special fiber Y ;
then for every abelian group C,

H ∗
sing

(
Cl(Y ),C

) ∼= H ∗
Zar(Yk,C).

Proof. To simplify our notation we assume that k = k. Consider the complex

i0∗C
∂0−→ i1∗C

∂1−→ · · · ,

where iq :Y (q) ↪→ Y . The differentials ∂i are characterized by the property that the induced map
on global sections Γ (iq∗C) = C[π0(Y

(q))] → C[π0(Y
(q+1))] = Γ (iq+1∗C) equals

∑
j (−1)j δ∗

j .

This complex is a resolution of C. Since each Y (q) is a disjoint union of smooth irreducibles and
constant sheaves on irreducibles are flabby it follows that the sheaves iq∗C are flabby. Thus the
complex of global sections

Γ (i0∗C)
∂0−→ Γ (i1∗C)

∂1−→ · · ·

3 The category of abstract triangulated sets can be viewed as a full subcategory of the category of simplicial sets: if S′•
is a simplicial set such that the boundary of each non-degenerate simplex of S′• is non-degenerate then non-degenerate
simplices of S′• together with the boundary maps form an abstract triangulated set. This yields an equivalence between the
full subcategory of the category of simplicial sets whose objects satisfy the above property and the category of abstract
triangulated sets [20, §1.6].
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computes the Zariski cohomology H ∗
Zar(Y,C). On the other hand, this complex is the simplicial

complex of Cl(Y ). �
Assume that X is a proper semi-stable scheme over R. Then, by the Proper Base Change the-

orem (e.g., [15]), for every torsion abelian group C we have canonical morphisms of Gal(K/K)-
modules

H ∗
Zar(Yk,C) → H ∗

et (Yk,C) ∼= H ∗
et (XRsh,C) → H ∗

et (XK,C), (2.2)

where Rsh denotes a strict henselization of R. Applying (2.2) to C = Z/�nZ and passing to the
limit, we obtain a canonical morphism

H ∗
sing

(
Cl(Y ),Z�

) → H ∗(XK,Z�). (2.3)

We will see in Section 4 that the groups H ∗
sing(Cl(Y ),C) and the morphism (2.3) depend only on

the generic fiber X and not on the choice of proper strictly semi-stable model X.

Remark 2.2. Let us explain the relation of the notion of Clemens polytope to a more general
notion of nerve of a scheme, introduced in [7]. For a reduced scheme Y over k, let Nor(Y ) ⊂ Y be
the normal locus of Y , which is an open subset of Y , and let Y [0] = Y , Y [i+1] = Y [i]\Nor(Y [i]),
i � 0. The irreducible components of Y [i]\Y [i+1] are called strata of Y . The set, Str(Y ), of all
strata has a natural partial order: for strata x, y ∈ Str(Y ), we say that x � y if y is contained
in the closure of x. We denote by N(Y) the nerve of the partially ordered set Str(Y ). If X is a
strictly semi-stable scheme over R, the triangulated space |N(Y ⊗ k)| is obtained from Cl(Y ) by
subdivision. In particular, the spaces |N(Y ⊗ k)| are Cl(Y ) homeomorphic.

2.2. The limit mixed Hodge structure associated with a variety over C((t))

In [45], Steenbrink associated with every smooth projective variety over the field Kmer of
meromorphic functions on an open neighborhood of zero in the complex plane a mixed Hodge
structure, called the limit mixed Hodge structure. Another construction of the same mixed Hodge
structure had been given earlier by Schmid [44]. In this section, we explain how to extend the
Steenbrink–Schmid construction to smooth projective varieties over the field of formal Laurent
series K = C((t)). A rough idea: generalizing a construction by Steenbrink [47] we attach a mixed
Hodge structure to every projective normal crossing (not necessarily reduced) log scheme over
the log point. Applying this construction to the special fiber Y of a normal crossing model X of
X over R = C�t � we get our Hm(limX). We then prove independence of the choice of a model
and functoriality.

We shall summarize the properties of our construction in the following theorem.

Theorem 2. For every non-negative integer m, there exists a contravariant functor

SmPrK → M̃HS,

X � Hm(limX) = (
Hm(limX,Z),W

Q
,Fi, T

)
(2.4)
i
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from the category of smooth projective varieties over K = C((t)) to the category of mixed Hodge
structures equipped with an endomorphism T of the underlying abelian group with the following
properties.

(a) If we write TQ = SU for the factorization of the endomorphism TQ ∈ End(Hm(limX,Q))

into the product of semi-simple and unipotent endomorphisms, S and U respectively, such
that STQ = TQS and UTQ = TQU , then N = logU is a morphism of rational mixed Hodge
structures

N :Hm(limX) ⊗ Q → Hm(limX) ⊗ Q(−1)

and S is a finite order automorphism of Hm(limX) ⊗ Q.

(b) The functor (2.4) is compatible with base change. That is, if Ke = C((t
1
e )) ⊃ K is a finite

extension and X � XKe is the base change functor, we have a functorial isomorphism

(
Hm(limX,Z),W

Q
i , F i, T e

) � (
Hm(limXKe,Z),W

Q
i , F i, T

)
.

(c) If X is a strictly semi-stable scheme over R = C�t �, X and Y are the generic and special
fibers of X respectively, and Y (q) ↪→ Y is the closed subscheme defined in (2.1), one has the
weight spectral sequence E

pq
r (X) which converges to H ∗(limX) in the category of mixed

Z-Hodge structures with the first term given by the formula:

E
pq

1 (X) =
⊕

i,i−p�0

Hq+2p−2i
(
Y (2i−p)

)
(p − i).

The sequence E
pq
r (X) ⊗ Q degenerates at E2 terms.

(d) If X is a smooth projective variety over Kmer the limit mixed Hodge structure
Hm(lim(X ⊗Kmer K)) is canonically isomorphic to the one constructed by Schmid and
Steenbrink [44–46].

Proof. Let

(X,MX) → (specR,MR = R − 0)

be a proper smooth morphism of fine and saturated (fs for short) log schemes [25, §1]. Assume
that the log structure on (X,MX) is vertical, i.e., the induced log structure on j :X = X⊗R K ↪→
X is trivial. A basic example of this situation is a regular proper R-scheme X such that its reduced
special fiber Yred is a normal crossing divisor on X endowed with the log structure

MX = j∗O∗
X ∩ OX. (2.5)

The special fiber Y = X ⊗R C with the induced log structure is a proper smooth log scheme
over the log point

π : (Y,MY ) → (spec C)log.
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Following [28, §1] we consider the associated map of topological spaces

π :Y log → (specC)log = S1,

where S1 ⊂ C is the unit circle. The map π is a locally trivial fibration over S1 [39, Theorem 5.1].
Let exp(2πiτ) : R1 → S1 be the universal cover, and let Ỹ log be the fiber product Y log ×S1 R1.
The topological space Ỹ log carries a canonical automorphism that takes a point (y, a) ∈ Y log ×S1

R1 to (y, a + 2πi). We will write TY for the induced automorphism of the cohomology group
Hm(Ỹ log,Z). The following lemma implies that the cohomology of Ỹ log depends only on the
generic fiber of X.

Lemma 2.3. Let f : (X,MX) → (X
′
,M

X
′) be a log morphism of smooth proper vertical fs log

schemes over (specR,MR). Assume that the induced morphism of the generic fibers fK :X ⊗
K → X

′ ⊗ K is an isomorphism. Then, for every non-negative integer m, the morphism

f ∗ :Hm
(
Ỹ ′ log,Z

) → Hm
(
Ỹ log,Z

)
is an isomorphism.

Proof. Let n be a positive integer. The comparison theorems of Kato and Nakayama (see, e.g.
[25, Theorem 5.9, Corollary 8.4]) imply the existence of the commutative diagram below:

Hm(Ỹ ′ log,Z/nZ)
∼

f ∗

Hm
et (X

′ ⊗ K,Z/nZ)

f ∗
K

Hm(Ỹ log,Z/nZ)
∼

Hm
et (X ⊗ K,Z/nZ)

(2.6)

Since the groups Hm(Ỹ ′ log,Z), Hm(Ỹ log,Z) are finitely generated the lemma follows. �
Let us explain how the formation (TY ,Hm(Ỹ log,Z)) is compatible with base change. For

a positive integer e, the fs log scheme (specRe = spec C�t
1
e �,MRe = Re − 0) is smooth over

(specR,MR). Let (Xe,MXe
) be the fiber product

(X,MX) ⊗(specR,MR) (specRe,MRe)

in the category of fs log schemes.4 As the functor (Y,MY ) � Y log commutes with fiber products
we have a Cartesian diagram of topological spaces

Y
log
e Y log

S1 S1

(2.7)

4 Warning: the functor that takes a fs log scheme to the underlying scheme does not commute with the fiber products.



2698 A.J. Stewart, V. Vologodsky / Advances in Mathematics 228 (2011) 2688–2730
where the lower horizontal map is an e-fold cover. We get from (2.7) a canonical isomorphism

Hm
(
Ỹ log,Z

) ∼−→ Hm
(
Ỹ

log
e ,Z

)
(2.8)

that carries TYe to T e
Y .

Assume, in addition, that the log scheme π : (Y,MY ) → (spec C)log satisfies the following
condition:

(U): for every closed point y ∈ Y , the cokernel of the morphism π∗ : Z = K∗/R∗ →
(M

gr
Y /O∗

Y )y is torsion free.

In [26, Theorems 6.3 and 7.1], Illusie, Kato and Nakayama proved that under the above as-
sumption the relative log de Rham cohomology Hm(X,Ω∗

X/R
(log)) is a free R-module, the

residue of the logarithmic Gauss–Manin connection on Hm(X,Ω∗
X/R

(log)) is nilpotent, the

Hodge spectral sequence, defined by the “stupid” filtration σ�• on Ω∗
X/R

(log), degenerates at

the E1 term and the Hodge filtration

Hm
(
X,σ�jΩ

∗
X/R

(log)
)
↪→ Hm

(
X,Ω∗

X/R
(log)

)
splits (i.e. the associated graded R-module is free). Moreover, there is a canonical isomorphism5

Hm
(
Ỹ log,C

) � Hm
(
Y,Ω∗

Y/C(log)
)

(2.9)

compatible with the base change Y � Ye. Set

FjHm
(
Y,Ω∗

Y/C(log)
) := Hm

(
Y,σ�jΩ

∗
Y/C(log)

)
↪→ Hm

(
Y,Ω∗

Y/C(log)
)
.

As an immediate corollary of the Illusie–Kato–Nakayama results we get the following statement.

Lemma 2.4.

(a) Let f : (X,MX) → (X
′
,M

X
′) be a log morphism of smooth proper vertical fs log schemes

over (specR,MR) satisfying the condition (U). Assume that the induced morphism of
generic fibers fK :X ⊗ K → X

′ ⊗ K is an isomorphism. Then, for every non-negative inte-
ger m, the morphism

f ∗ :F •Hm
(
Y ′,Ω∗

Y ′/C(log)
) → F •Hm

(
Y,Ω∗

Y/C(log)
)

is a filtered isomorphism.
(b) For a smooth proper vertical fs log scheme (X,MX) satisfying the condition (U) and a

positive integer e the canonical morphism

F •Hm
(
Y,Ω∗

Y/C(log)
) → F •Hm

(
Ye,Ω

∗
Ye/C(log)

)
is a filtered isomorphism.

5 The isomorphism (2.9) depends on the choice of a uniformizer of R. Our choice is t .
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Assume, in addition, that X is projective. Let

W• = W•Hm
(
Ỹ log,Q

) ⊂ Hm
(
Ỹ log,Q

)
be the monodromy filtration defined by the nilpotent endomorphism NY = logTY of
Hm(Ỹ log,Q):

NY Wi ⊂ Wi−2,

GrNi
Y :WQ

i+m/W
Q
i+m−1

∼−→ W
Q
m−i/W

Q
m−i−1.

Lemma 2.5. For every smooth projective vertical fs log scheme (X,MX) satisfying the condi-
tion (U) the triple (Hm(Ỹ log,Z),WiH

m(Ỹ log,Q),F jHm(Yan,Ω
∗
Yan/C

(log))) together with the
isomorphism (2.9) constitutes a mixed Hodge structure.

Proof. By the semi-stable reduction theorem [30, p. 198] we can find an integer e, a projective
strictly semi-stable scheme X

′
over Re and log morphism

f :
(
X

′
,M

X
′
) → (Xe,MXe

),

where M
X

′ is given by (2.5) and f is an isomorphism over the generic point of Re . Lemmas 2.3

and 2.4 reduce the proof to the case when X = X
′
. In this case our assertion is proven in [29,

pp. 405–406] and [47, §5.6]. �
To construct the functor (2.4) we define an auxiliary subcategory SSR of the category of

schemes over R whose objects are regular projective R-schemes X such that the reduced special
Yred is a strict normal crossing divisor on X. Let S ⊂ Mor(SSR) be the subset that consists of
morphisms f :X → X

′
such that fK :X ⊗ K � X

′ ⊗ K .

Lemma 2.6. The set S is a left multiplicative system in Mor(SSR) [27, §7]. Moreover, the functor

SSR → SmPrK

that takes X to X ⊗ K exhibits the category SmPrK as the localization of SSR by S .

Proof. The lemma follows from the Hironaka theorem on resolution of singularieties immedi-
ately. �

Thus, by the universal property of the localization giving a functor from the category SmPrK

to another category is equivalent to giving a functor from SSR that takes every morphism in S
to an isomorphism. We define a functor Ψ : SSR → M̃HS as follows. Let X be an object of SSR ,
and let MX be the canonical log structure given by the formula (2.5). For sufficiently divisible
integer e the log scheme (Ye,MYe) satisfies the property (U). We set

Ψ (X) = (
Hm

(
Ỹ log,Z

)
� Hm

(
Ỹ

log
e ,Z

)
,WiH

m
(
Ỹ

log
e ,Q

)
,F jHm

(
Ye,Ω

∗ (log)
)
, TY

)
. (2.10)
Ye/C
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The right-hand side of (2.10) is independent of e and is naturally promoted to a contravariant
functor Ψ : SSR → M̃HS. By Lemma 2.3 Ψ takes every morphism in S to an isomorphism. The
functor (2.4) is constructed. Let us check the required properties of (2.4).

(a) The only non-trivial statement is that S preserves the Hodge filtration on
Hm(Ye,Ω

∗
Ye/C

(log)). Consider the action of the group Z/eZ on the log scheme (Xe,MXe
)

induced by the Galois action on Re. The restriction of this action to (Ye,MXe
) yields an ac-

tion on Hm(Ye,Ω
∗
Ye/C

(log)). One easily checks that the action of the generator 1 ∈ Z/eZ on
Hm(Ye,Ω

∗
Ye/C

(log)) equals S. The compatibility with the Hodge filtration follows immediately.
(b) This follows from (2.8) and Lemma 2.4.
(c) Denote by Yan = Y(C) the analytic space associated with Y . Let p̃ : Ỹ log = Y log ×S1

R1 → Yan be the composition of the projection to the first factor and the canonical map
p :Y log → Yan. The complex Rp̃∗Z ∈ Db(Sh(Yan)) has a canonical automorphism TY induced
by the automorphism of the space Ỹ log. In [29, pp. 405–406], Kawamata and Namikawa put a
weight filtration on the complex Rp̃∗Q and proved that this filtration yields the required spectral
sequence with rational coefficients. Thus, we just need to lift the Kawamata–Namikawa filtration
to Rp̃∗Z. The required canonical lifting is provided by the following result.

Lemma 2.7. (Cf. [43, Proposition 2.7].) Assume that X is a strictly semi-stable scheme over R

of relative dimension d .

(a) The complex Rp̃∗Z is a (−d)-shifted perverse sheaf on Y (i.e., Rp̃∗Z[d] is a perverse sheaf).
Moreover, the canonical filtration τ�iRp̃∗Z is a filtration by (−d)-shifted perverse sub-
sheaves and it coincides with the filtration on Rp̃∗Z by kernels of (T − 1)i+1 (computed in
the abelian category of (−d)-shifted perverse sheaves):

τ�iRp̃∗Z = Ker
(
(T − 1)i+1 :Rp̃∗Z → Rp̃∗Z

)
.

In particular, (T − 1)d+1 is 0 on Rp̃∗Z.
(b) Let 0 ⊂ W−dRp̃∗Z ⊂ · · · ⊂ WiRp̃∗Z ⊂ WdRp̃∗Z = Rp̃∗Z be the monodromy filtration on

Rp̃∗Z viewed as an object of the abelian category of (−d)-shifted perverse sheaves equipped
with the nilpotent endomorphism T − 1. Then, for every integer r , we have an isomorphism

GrW
r Rp̃∗Z �

⊕
i−j=r
i,j�0

i+j+1∧ (
M

gr
Yan

/O∗
Yan

) �
⊕

i−j=r

ai+j∗Z[−i − j ],

where aq denotes the embedding Y (q) ↪→ Y . The first isomorphism is canonical, the second
one depends on the order of the set of irreducible components of Y .

(c) The Verdier dual complex DY (Rp̃∗Z) is quasi-isomorphic to Rp̃∗Z[2 dimX].

Proof. For the first statement it suffices to prove that, for every prime number �, the complex
Z� ⊗ Rp̃∗Z = Rp̃∗Z� has the corresponding properties. According to the comparison results
of Kato and Nakayama (see, e.g. [25, Theorem 5.9, Corollary 8.4]) the complex Rp̃∗Z� is
quasi-isomorphic to the complex of nearby cycles RΨ Z� computed using the étale topology.
The results for RΨ Z� are proven in [43, Lemma 2.5 and Corollary 2.6]. The proof of the sec-
ond statement is parallel to the proof of the analogous result for RΨ Z� [43, Proposition 2.7].



A.J. Stewart, V. Vologodsky / Advances in Mathematics 228 (2011) 2688–2730 2701
For the last statement of the lemma observe that Rp̃∗Z is quasi-isomorphic to Rp1∗Z, where
p1 :Y log

1 → Yan is the restriction of the map Y log → Yan × S1 to the fiber over Yan × {1}. As the
map p1 is proper, we have

DY (Rp1∗Z) � Rp1∗D
Y

log
1

Z.

Finally, a simple local computation shows that D
Y

log
1

Z � Z[2 dimX]. �
(d) The last assertion of Theorem 2 is proven in [26, Theorem 8.3], [46, Appendix]. The proof

of Theorem 2 is now completed. �
Remark 2.8. We expect that the functor (2.4) extends to the category of smooth quasi-compact
rigid analytic varieties over C((t)) (cf. [3]).

We finish this subsection by recalling a variant of the Picard–Lefschetz formula for semi-
stable degenerations. Let X be a projective strictly semi-stable scheme over R of relative dimen-
sion d , and let Y be its special fiber. The simplicial complex that computes the homology of the
Clemens polytope Cl(Y ) coincides with the complex

E
−d,2d
1 (X)(d) → E

−d+1,2d
1 (X)(d) → ·· · → E

0,2d
1 (X)(d),

where E
pq
r (X) is the weight spectral sequence from Theorem 2. From this we get a canonical

morphism

Hm(limX,Z) → E
−d+m,2d
2 (X)(d) � Hm

(
Cl(Y )

)
. (2.11)

As the weight spectral sequence degenerates rationally in E2 terms (2.11) yields an isomorphism

Hm

(
Cl(Y )

) ⊗ Q
γ� GrWQ

2d Hm(limX)(d). (2.12)

We apply this to m = d . If

〈,〉 :WQ
0 Hd(limX) ⊗ GrWQ

2d Hd(limX)(d) → Q

denotes the pairing induced by Poincaré duality (Lemma 2.7(c)) then, for every

x =
∑

v∈π0(Y
(d))

avv, y =
∑

v∈π0(Y
(d))

bvv ∈ Hd

(
Cl(Y )

) ⊗ Q,

we have

(−1)
d(d−1)

2
〈
GrNdγ (x), γ (y)

〉 = ∑
v

avbv. (2.13)

This follows from compatibility of the weight spectral sequence with Poincaré duality and the
monodromy action [43, Corollary 2.6 and Proposition 2.15].
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2.3. Motivic Serre invariant

Let R be a complete discrete valuation ring with perfect residue field k and fraction field K .
The motivic Serre invariant of a smooth proper variety X over K is the class of the special fiber
V 0 of a weak Néron model V of X in the quotient ring

K0(Vark)loc → K0(Vark)loc/
(
Z(1) − Z

)
.

It is shown in [34, Theorem 4.5.1] that the motivic Serre invariant S(X) is well defined, i.e.,
independent of the choice of V . If X is a Calabi–Yau variety S(X) equals the image of the
motivic integral

∫
X

in the quotient ring.
Let K = C((t)). In the following proposition, which is a refinement of A’Campo’s formula for

the Euler characteristic of the motivic integral,6 we denote by SH (X) the image of S(X) under
the ring homomorphim

K0(VarC)loc/
(
Z(1) − Z

) → K0(MHS)/
(
Z(1) − Z

)
(2.14)

that takes the class of a variety Z to the virtual mixed Hodge structure
∑

(−1)i[Hi
c (Z,Z)].

Proposition 2.9. Let X be a smooth projective variety over C((t)). Assume that X has a projective
strictly semi-stable model X over C�t �. Then SH (X) is equal to the class of

∑
(−1)i[Hi(limX)].

Proof. We start with the following general (and well known) observation.

Lemma 2.10. Let R be a complete discrete valuation ring with perfect residue field k and fraction
field K , and let X be a proper flat scheme over R. Assume that X is regular and that the generic
fiber X = X ⊗R K is smooth over K . Then the smooth locus Xsm of the morphism X → specR

is a weak Néron model of X.

Proof. Since X is smooth we have that Xsm ⊗R K = X. Let R′ ⊃ R be a finite unramified
extension with fraction field K ′. We need to show that every morphism x : specK ′ → X extends
to an R-morphism x : specR′ → Xsm. As X is proper over R, x extends to an R-morphism
x : specR′ → X. We claim that x takes the closed point of specR′ to a smooth point, y, of the
special fiber Y = X ⊗R k. Since k is perfect, it suffices to check that y is a regular point of Y

[21, II, Corolalry 5.3]. Indeed, let OX,y (resp. OY,y ) be the local ring of X (resp. Y ) at y and let
mX,y ⊂ OX,y (resp. mY,y ⊂ OY,y ) be the maximal ideal. We have a surjective morphism

mX,y/m2
X,y

� mY,y/m2
Y,y (2.15)

of finite-dimensional vector spaces over OX,y/mX,y . Let us show that the image in mX,y/m2
X,y

of a uniformizer t ∈ R is not equal to 0. Indeed, we have a morphism OX,y
x∗−→ R′ induced by

x such that the composition R → OX,y
x∗−→ R′ is the identity morphism. Since K ′ is unramified

over K , t is also a uniformizer for R′. Therefore, t does not belong to m2
X,y

. We proved that

6 Related results were obtained by Nicaise [40].
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the image of t in mX,y/m2
X,y

is not 0. On the other hand, its image in mY,y/m2
Y,y is 0. Hence,

morphism (2.15) is not injective and, therefore,

dimmX,y/m2
X,y

> dimmY,y/m2
Y,y .

On the other hand, since X is regular, we have that dimmX,y/m2
X,y

equals the Krull dimension

of OX,y . Thus, dimmY,y/m2
Y,y � dim OX,y − 1 = dim OY,y . Hence, Y is regular and, therefore,

smooth at point y. It follows that the map x : specR′ → X factors through Xsm ⊂ X. �
We now come back to the proof of Proposition 2.9. According to the above lemma the smooth

locus V of X is a weak Néron model of X. Using notation of (2.1) and the inclusion–exclusion
formula we find

[
V 0] =

dimX∑
j=0

(
(−1)j (j + 1)

[
Y (j)

])
.

On the other hand, by part (c) of Theorem 2 the class
∑

(−1)i[Hi(limX)] is equal to the image
under (2.14) of the class

[ limX] =
dimX∑
j=0

(
(−1)j

[
Y (j)

] j∑
a=0

Z(−a)

)
.

Comparing the two formulas we complete the proof of Proposition 2.9. �
Let χ :K0(VarC) → Z be the ring homomorphism defined by

χ
([Z]) =

∑
(−1)i dimHi

c (Z,C).

Notice that since χ(Z(1) − Z) = 0, χ factors uniquely through K0(VarC)loc/(Z(1) − Z). We
have the following corollary of Proposition 2.9.

Corollary 2.11. (Cf. A’Campo [1].) Let X be a smooth projective variety over K = C((t)). As-
sume that X has a projective strictly semi-stable model X over C�t �. Then

χ
(
S(X)

) =
∑

(−1)i dimHi(limX,C).

In the rest of this subsection, we explain an analogue of the above proposition for the finite
residue field case. Let K be a local field with residue field k = Fq , and let

K0(VarFq
)loc/

(
Z(1) − Z

) → Z/(q − 1)

be the homomorphism induced by (1.3). The image of S(X) in Z/(q − 1) is the classical Serre
invariant which we denote by Sq(X).
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Proposition 2.12. Let X be a smooth proper variety over K . Assume that X has a proper strictly
semi-stable model over the ring of integers R. Then the Serre invariant of X is given by the
formula ∑

j

Tr
(
F−1,Hj (XK,Q�)

)
(2.16)

where F ∈ Gal(K/K) is a lifting of the Frobenius automorphism Fr ∈ Gal(k/k) and � is a prime
number different from the characteristic of k.

Proof. This can be proved as its Hodge analogue above using the �-adic weight spectral se-
quence. We give a different proof. Let X be a strictly semi-stable model of X. Then the Serre
invariant of X equals |Ysm(k)| modulo (q − 1). On the other hand, if Ψ (Q�) is the complex of
nearby cycles (viewed as a complex of �-adic sheaves on Y ), by the Grothendieck–Lefschetz
formula we have ∑

j

(−1)j Tr
(
F−1,Hj (XK,Q�)

)
=

∑
j

(−1)j Tr
(
F−1,Hj

(
Yk,Ψ (Q�)

))
=

∑
y∈Y(k)

∑
i

(−1)i Tr
(
F−1, Hi

(
Ψ (Q�)

)
y

)
. (2.17)

If y ∈ Ysm(k), the corresponding internal sum equals 1. If y ∈ Ysing(k) then Hi (Ψ (Q�))y �∧i
T (−i), where T is a vector space with the trivial action of Gal(K/K) [49, Exposé I, Theo-

rem 3.3]. Thus, for y ∈ Ysing(k), we have

∑
i

(−1)i Tr
(
F−1, Hi

(
Ψ (Q�)

)
y

) ≡
∑

i

(−1)i dim
i∧

T ≡ 0 mod (q − 1).

It follows that the right-hand side of (2.17) is equal to |Ysm(k)| modulo (q −1) which is the Serre
invariant of X. �
3. Motivic integral of K3 surfaces over CCC((t))

In this section we will prove Theorem 1 stated in the introduction. Without loss of generality
we may assume that the ramification index e is equal to 1. Indeed, by Theorem 2 part (b), the
formulas (1.6) and (1.7) for the pair (X/K,e) are equivalent to those for the pair (XKe/Ke,1).
If X admits a strictly semi-stable model over R then XKe admits a strictly semi-stable model
over Re [43, Lemma 1.11]. We will write ri for ri(X,K).

3.1. Approximation of varieties over the formal disk

We will need the following version of Artin’s Approximation Theorem.
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Proposition 3.1. Let k be a field of characteristic 0, and let X be a projective strictly semi-stable
scheme over R = k�t �. For every positive integer n there exist

(1) a smooth curve C over k with a point a ∈ C(k),
(2) an étale morphism h :C → A1

k = speck[t] that carries a to 0,
(3) a flat projective scheme X over C,
(4) an isomorphism of schemes over Rn = speck[t]/tn+1:

X ×specR specRn � X ×C specRn.

Here specRn is viewed as a scheme over C via the unique morphism ĩn : specRn → C that
carries the point 0 to a and makes the following diagram commutative

C

h

specRn
in

ĩn

speck[t]

If C,a,h, X are as above, the scheme X is regular in an open neighborhood of its special
fiber Y ′ and Y ′ is a reduced divisor on X with strict normal crossings. In addition, if X is a d-
dimensional Calabi–Yau variety the collection C, a, h, X can be chosen so that the line bundle
Ωd

X /C
is trivial and

∫
X

=
∫

X ×CspecK ′
. (3.1)

Here we set C = C − a, X = X ×C C, and K ′ denotes the fraction field of the completed local

ring R′ = ÔC,a .

Proof. Choose an embedding X ↪→ Pn
R and let ν : specR → Hilb(Pn

R) be the corresponding
morphism to the Hilbert scheme. Using Artin’s Formal Approximation Theorem (see e.g., [10,
§3.6]) on the morphism ν we obtain (1)–(4). Next, we claim that the scheme X′ = X ×C specR′
is regular. As X′ is proper over R′ and the set of its regular points is open [16, IV, 6.12.5] it
suffices to show that the local ring of any point of the special fiber Y ′ is regular which in turn
follows from property (4) and the regularity of X. Moreover, Y ′ being isomorphic to the special
fiber of a strictly semi-stable scheme X is a strict normal crossing divisor on X

′
and on X . Note

that under our assumption that chark = 0 this implies strict semi-stability of X
′
.

Suppose that X is a Calabi–Yau variety. Then the divisor of any non-zero relative log form
ω ∈ H 0(X,Ωd

X/R
(log)) is supported on the special fiber Y of X. Write div(ω) = ∑

i ni[Vi],
where Vi are the irreducible components of Y . Assume that the quadruple C,a,h, X satisfies
properties (1)–(4) with n �

∑
ni . To prove the last assertion of the proposition, formula (3.1),
i
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we will show that there exists a section ω′ ∈ H 0(X
′
,Ωd

X
′
/R′(log)) whose divisor is supported on

the special fiber Y ′ of X
′

and such that via the isomorphism Y � Y ′ from (4)

div(ω) = div
(
ω′). (3.2)

Indeed, by Lemma 4.1 from [29], for every proper strictly semi-stable scheme X over R the
R-module H 0(X,Ωd

X/R
(log)) is free and, in addition, we have

H 0(X,Ωd

X/R
(log)

) ⊗R Rn
∼−→ H 0(X ⊗ Rn,Ω

d

X⊗Rn/Rn
(log)

)
.

Applying this result to X and X
′

we find that H 0(X,Ωd

X/R
(log)) and H 0(X

′
,Ωd

X
′
/R′(log)) are

free modules of rank 1 over R and R′ respectively and that (4) induces an isomorphism

θ :H 0(X,Ωd

X/R
(log)

) ⊗R Rn
∼−→ H 0(X′

,Ωd

X
′
/R′(log)

) ⊗R Rn.

(The R-action on H 0(X
′
,Ωd

X
′
/R′(log)) comes via the isomorphism R

∼−→ R′ induced by h.)

We claim that a section ω′ ∈ H 0(X
′
,Ωd

X
′
/R′(log)) such that θ(ω ⊗ 1) = ω′ ⊗ 1 does the job.

Our claim is local: it suffices to show that, for a closed point b ∈ X and local regular functions
f,g ∈ OX,b such that div(f ) is supported on Y ,

∑
i ordVi

f � n, and f − g ∈ (tn+1), one has
div(f ) = div(g). Let xi be a system of local parameters at b such that t = x1 · · ·xm. Then, locally
around b, we have f = x

n1
1 · · ·xnm

m u, where u is invertible and
∑

i ni � n. If n1 > 0, g ∈ f +
(tn+1) is divisible by x1 and f

x1
− g

x1
∈ (tn). Arguing by induction we see that g is divisible by

x
n1
1 · · ·xnm

m and

f

x
n1
1 · · ·xnm

m

− g

x
n1
1 · · ·xnm

m

∈ (t).

In particular, g = x
n1
1 · · ·xnm

m u′ for some invertible u′.
To complete the proof of the proposition let us explain how (3.2) implies (3.1). Suppose that

the pair X , ω′ ∈ H 0(X
′
,Ωd

X
′
/R′(log)) is chosen such that Eq. (3.2) holds. Then, in particular, ω′

restricts to a non-vanishing differential form on X′. Thus, X′ is a Calabi–Yau variety. Secondly,
by Lemma 2.10 the schemes Xsm and X

′
sm are weak Néron models of X and X′ respectively.

Moreover, by property (4) and (3.2) there exists an isomorphism between the special fibers of
Xsm and X

′
sm that carries div(ω) to div(ω′). Using (1.2) formula (3.1) follows. �

3.2. Kulikov model

It is enough to prove Theorem 1 in the case where X is the restriction of a strictly semi-stable
family over a complex curve. Indeed, apply Proposition 3.1 to a strictly semi-stable model X

of X. As the limit mixed Hodge structure of a strictly semi-stable scheme depends only on its
special fiber together with its log structure which, in turn, is determined by its first infinitesimal
neighborhood X ⊗R R/t2, the formulas (1.6), (1.7) for X are equivalent to those for X ×C

specK ′.
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Let X be a K3 surface over K , which is the restriction of a strictly semi-stable family over a
complex curve. In [32, Theorem 2], Kulikov demonstrated that X has a projective strictly semi-
stable model X over R such that the log canonical bundle Ω2

X/R
(log) is trivial and the special

fiber Y is of one of the following types (depending on the number s defined in Theorem 1):

(I) (s = 1) Y is a smooth K3 surface.
(II) (s = 2) Y is a chain of smooth surfaces V0, . . . , Vm ruled by elliptic curves, with smooth

rational surfaces on either end and each double curve Vi ∩ Vi+1 is a smooth elliptic curve.
(III) (s = 3) Y is a union of smooth rational surfaces whose pairwise intersections are smooth

rational curves and the Clemens polytope of Y is a triangulation of S2.

In addition, for s = 2, Friedman showed in [18, Theorem 2.2] that a Kulikov model can be chosen
so that all the ruled elliptic surfaces in Y are minimal, i.e., P1-fibrations over an elliptic curve.
We shall call such model special.

If X is a Kulikov model, we have ∫
X

= [Ysm]. (3.3)

Indeed, by Lemma 2.10 the smooth locus Xsm of X is a weak Néron model of X. Moreover,
since the log canonical bundle Ω2

X/R
(log) is trivial, the bundle Ω2

Xsm/R
(which is isomorphic

to the restriction of Ω2
X/R

(log) to Xsm) is also trivial. If ω ∈ Γ (Xsm,Ω2
Xsm/R

) is a trivializing

section, the numbers mi appearing in formula (1.1) are all equal to 0. Thus, by formula (1.2) the
motivic integral

∫
X

is equal to the sum of classes of the irreducible components of Ysm. Since
Ysm is smooth its irreducible components are pairwise disjoint and, hence, the sum of its classes
is equal to [Ysm].
3.3. Type II degeneration

Suppose that X is a type II special Kulikov model. Let V0, . . . , Vm be the irreducible com-
ponents of Y such that V0 and Vm are rational surfaces, and let Ci = Vi ∩ Vi+1 be the double
curves.

Lemma 3.2.

(1) Let E1, . . . ,Em−1 be ruling elliptic curves for V1, . . . , Vm−1. Then Ci
∼= Ei

∼= Ej
∼= Cj for

all i and j .
(2) At least one of the rational components, V0 or Vm, is not minimal.

Proof. (1) We will first prove that E1 ∼= E2. Let C1 and C2 be elliptic curves given by the
intersection V1 ∩ V2 and V2 ∩ V3 respectively. We have the following diagram

C1

f1

V2

h

C2

f2

E2
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Notice that the maps f1 and f2 cannot be constant since this would imply the existence of injec-
tions of C1 and C2 into rational curves. Thus f1 and f2 must be finite. The triviality of the log
canonical bundle Ω2

Y (log) implies that for the canonical class KV2 we have KV2 = −[C1]− [C2].
On the other hand, the restriction of KV2 to a smooth fiber, h−1(a), of the map h :V2 → E2 is
isomorphic to Kh−1(a). As h−1(a) is a smooth rational curve, we have that deg(KV2 |h−1(a)) = −2
which implies the degree of the divisor −[C1] − [C2] intersected with the fiber h−1(a) is −2.
Hence the images of C1 and C2 in V2 have only one intersection point with a generic fiber which
implies f1 and f2 are one-to-one and C1 ∼= E2 ∼= C2. We then apply the same method of proof
to show that C2 ∼= E3 ∼= C3 and so on.

(2) We claim that for a minimal ruled elliptic surface Vi and two disjoint sections
Ci−1,Ci ⊂ Vi , we have

([Ci−1]
)2
Vi

= −([Ci]
)2
Vi

.

Indeed, the Néron–Severi group of Vi is generated by the class [Ci] of Ci and the class [P1] of a
smooth fiber of the map Vi → Ei . If [Ci−1] = [Ci] + c[P1], we have

0 = (
c
[
P1])2

Vi
= ([Ci−1] − [Ci]

)2
Vi

= ([Ci−1]
)2
Vi

+ ([Ci]
)2
Vi

.

On the other hand, since Y is the special fiber of a semi-stable degeneration, we have for every i

([Ci]
)2
Vi

= −([Ci]
)2
Vi+1

.

Combining the two formulas we see that ([C0])2
V0

= −([Cm−1])2
Vm

. In particular, at least for one
of the rational components, say V0, the self-intersection of the double curve lying on it is non-
positive. Thus, (KV0)

2
V0

= (−[C0])2
V0

� 0. Using Noether’s formula [4, I.14] it follows that V0 is
not minimal. �

Let E be an elliptic curve such that E ∼= Ci for all i. Then we get from (3.3)

∫
X

=
m∑

i=0

[Vi] − 2
m−1∑
i=0

[Ci] =
m∑

i=0

[Vi] − 2m[E].

Since V0 and Vm are both rational surfaces we have [V0] = Z + a0Z(−1) + Z(−2) and [Vm] =
Z + amZ(−1) + Z(−2). Each Vi for 1 � i � m − 1 is birationally equivalent to P1 × E. Thus,
by [4, II.11], [Vi] = [E × P1] + aiZ(−1) for 1 � i � m − 1. Letting a = ∑m

i=0 ai we have

∫
X

= 2Z + aZ(−1) + (m − 1)[E] · [P1] + 2Z(−2) − 2m[E]

= 2Z + aZ(−1) + (m − 1)[E] + (m − 1)[E](−1) + 2Z(−2) − 2m[E]
= 2Z + aZ(−1) − (m + 1)[E] + (m − 1)[E](−1) + 2Z(−2).
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Using Corollary 2.11 and the fact that the Euler characteristic of a K3 surface is 24 it follows that
a = 20. Thus we have the formula∫

X

= 2Z − (m + 1)[E] + 20Z(−1) + (m − 1)[E](−1) + 2Z(−2).

Now we want to express the number of double curves m and the class of the elliptic curve [E]
in terms of the limit mixed Hodge structure H 2(limX). First, we show that the integral weight
spectral sequence E

pq
r from Theorem 2 degenerates at the second term. Since it degenerates

rationally it will suffice to show that the E2 terms are torsion free. The non-trivial portion of the
first term of the spectral sequence is

m−1⊕
i=0

H 2(Ci)(−1)
δ4−→

m⊕
i=0

H 4(Vi),

m−1⊕
i=0

H 1(Ci)(−1)
δ3−→

m−1⊕
i=1

H 3(Vi),

m−1⊕
i=0

H 0(Ci)(−1)
δ2−→

m⊕
i=0

H 2(Vi)
δ′

2−→
m−1⊕
i=0

H 2(Ci),

m−1⊕
i=1

H 1(Vi)
δ1−→

m−1⊕
i=0

H 1(Ci),

m⊕
i=0

H 0(Vi)
δ0−→

m−1⊕
i=0

H 0(Ci). (3.4)

The first and the last complexes compute (co)homology of the Clemens polytope of Y and, hence,
are quasi-isomorphic to Z. Consider the middle complex. The map δ2 is injective since δ2 ⊗ Q
is. Let us prove that δ′

2 is surjective. For every (u0, . . . , um) ∈ ⊕m
i=0 H 2(Vi), we have

δ′
2(u0, . . . , um) = (

(u0)|C0 − (u1)|C0 , . . . , (um−1)|Cm−1 − (um)|Cm−1

)
.

For every 1 � i � m − 1 the restriction morphisms H 2(Vi) → H 2(Ci), H 2(Vi) → H 2(Ci−1)

are surjective because Vi is ruled over Ci and over Ci−1. By part (2) of Lemma 3.2 one of the
rational surfaces, say V0, is not minimal. If D is a smooth rational −1-curve on V0, we have

−1 = (KV0 · D)V0 = (−C0 · D)V0 .

In particular, the restriction morphism H 2(V0) → H 2(C0) is surjective. Surjectivity of δ′
2 fol-

lows. Thus, the third complex in (3.4) has non-trivial cohomology only in the middle degree. As
the complex is self-dual, the middle cohomology group must be torsion free. Consider the fourth
complex. Identifying H 1(Ci) with H 1(E) =: H , we find that the fourth complex is isomorphic
to

H⊕m−1 δ1−→ H⊕m



2710 A.J. Stewart, V. Vologodsky / Advances in Mathematics 228 (2011) 2688–2730
with the differential given by the formula

δ1(u1, . . . , um−1) = (u1, u2 − u1, . . . , um−1 − um−2,−um−1).

In particular, it has non-trivial cohomology group only in a single degree and this group is iso-
morphic to H . The second complex in (3.4) is dual to the fourth one. This completes the proof
of degeneration.

Since the spectral sequence degenerates at E2 and the E2 terms are torsion free it follows that
WZ

1 = Coker(δ1) ∼= H = H 1(E,Z). Thus WZ
1 determines the elliptic curve E.

It remains to prove that m2 = r1.7 Indeed, we have the following commutative diagram of
abelian groups

WZ
3 = E

−1,3
2 � H

�

N

H⊕m
δ3

Id

H⊕m−1

H⊕m−1
δ1

H⊕m
Σ

H � E
1,0
2 = WZ

1

where � is the diagonal map, Σ is the summation map, and δ3 is given by the formula

δ3(u0, . . . , um−1) = (u1 − u0, . . . , um−1 − um−2).

It follows that

N = Σ ◦ � = m Id,

and thus we have

r1 := ∣∣Coker
(
WZ

3
N−→ WZ

1

)∣∣ = ∣∣Coker(H m−→ H)
∣∣ = m2.

This completes this proof of the theorem for type II degenerations.

3.4. Type III degeneration

Suppose that X is a type III Kulikov degeneration. In [19, Proposition 7.1], Friedman and
Scattone proved that the number of triple points of Y is equal to r2. Then since the Clemens
polytope of Y is a triangulation of S2 it follows that the number of double curves in Y is equal
to 3

2 r2 and using Euler’s formula for triangulations of a sphere we have that the number of
irreducible components of Y equals r2

2 + 2. We know that each irreducible component Vi of Y

is a smooth rational surface and each Cj is a smooth rational curve. Thus for each Cj we have
[Cj ] = Z + Z(−1) and since every non-singular rational surface can be obtained by blowing up

7 This fact is stated without proof in [19].
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either the projective plane or a Hirzebruch surface it follows that [Vi] = Z + aiZ(−1) + Z(−2)

for some ai ∈ Z�0. Let a = ∑
i ai . Then, we have∫

X

=
∑

i∈π0(Y
(0))

[Vi] − 2
∑

j∈π0(Y
(1))

[Cj ] + 3r2Z

=
(

r2

2
+ 2

)
Z + aZ(−1) +

(
r2

2
+ 2

)
Z(−2) − 3r2

(
Z + Z(−1)

) + 3r2Z

=
(

r2

2
+ 2

)
Z(−2) + (a − 3r2)Z(−1) +

(
r2

2
+ 2

)
Z.

Finally, using Proposition 2.9 it follows that

a − 3r2 = 20 − r2.

Remark 3.3. We claim that in notation of Section 3.4 the canonical map (2.11)

WZ
4 /WZ

3
γ−→ H2

(
Cl(Y )

)
(3.5)

is an isomorphism. Indeed, let x be a generator of WZ
4 /WZ

3 , and let

γ (x) =
∑

i∈π0(Y
(2))

biδi,

where δi are 2-simplices of Cl(Y ). Then, since γ (x) ∈ H2(Cl(Y )), the boundary of the 2-
dimensional chain

∑
i∈π0(Y

(2)) biδi is 0. As the δi form a triangulation of a compact connected

manifold it follows that all the numbers |bi | are equal one to the other.8 If b denotes their common
value, we have by the Picard–Lefschetz formula (2.13)

−〈
GrN2γ (x), γ (x)

〉 = ∑
i∈π0(Y

(2))

b2
i = ∣∣π0

(
Y (2)

)∣∣b2.

The number at the left-hand side of the above formula equals r2. Thus by Friedman–Scattone’s
result b = 1 and therefore γ (x) is a generator of H2(Cl(Y )).

It follows from a general result of Berkovich explained in the next section that the group
H2(Cl(Y )) and morphism (3.5) are independent of the choice of a strictly semi-stable model X.
Thus, it is an isomorphism for every such model.

4. The monodromy pairing

Let K be a complete discrete valuation field, and let K̂ be the completion of an algebraic
closure K of K . In [5], Berkovich developed a theory of analytic spaces over K . The underlying
topological space |Xan

K̂
| of the analytification of a scheme X over K has interesting topological

8 Indeed, every 1-simplex ε of the triangulation has precisely two 2-simplices, say δi and δj , adjacent to it. Thus, in
order to have the coefficient at ε of the boundary of γ (x) vanish |bi | must be equal to |bj |.
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invariants (in contrast with the space X(K̂) equipped with the usual topology, which is totally dis-
connected). In particular, if X is the generic fiber of a proper strictly semi-stable scheme X over
R the space |Xan

K̂
| is homotopy equivalent to the Clemens polytope of the special fiber Y [7, §5].

In this section we construct a positive pairing on the singular cohomology group Hm(|Xan
K̂

|,Q)

that generalizes Grothendieck’s monodromy pairing in the case of abelian varieties. Applications
to motivic integrals are discussed in the last section.

4.1. Cohomology of the analytic space associated with a smooth scheme

Let R be a complete discrete valuation domain, K its fraction field, k the residue field, and
let I ⊂ G = Gal(K/K) be the inertia subgroup. We denote by s and η the closed and generic
points of specR respectively. For a prime number � different from chark, we have a canonical
surjection [49, I, §0.3]

χ : I → Z�(1)(k).

If ρ :G → Aut(V ) is a finite rank Z�-representation of G there is a canonical G-homomorphism:

N :V ⊗ Q�(1) → V ⊗ Q�,

defined as follows. The composition Log◦ρ with the �-adic logarithm Aut(V ) → End(V ⊗ Q�)

restricted to the inertia subgroup I factors through χ . The map Z�(1) → End(V ⊗Q�) yields N .
Denote by K̂ the completion of the algebraic closure K with respect to the unique valuation

K∗ → Q extending the valuation on K . For a smooth scheme X of finite type over K , let Xan
K̂

be the K̂-analytic space associated with X ⊗K K̂ [5, §3.4], and let |Xan
K̂

| be the underlying
topological space. According to [24, Theorem 9.1], [7, Theorem 13.1.7] |Xan

K̂
| is a paracompact

locally contractible topological space homotopy equivalent to a finite CW complex. In particular,
the singular cohomology groups

Γ m
C (X) = Hm

(∣∣Xan
K̂

∣∣,C)
with coefficients in a ring C are finitely generated C-modules. The action of the Galois group G

on |Xan
K̂

| induces one on Γ m
C (X). In [24, Theorem 13.1.8], Hrushovski and Loeser proved that

there exists a finite normal extension K ′ ⊃ K such that the morphism

Hm
(∣∣Xan

K ′
∣∣,C) → Hm

(∣∣Xan
K̂

∣∣,C) = Γ m
C (X)

is an isomorphism.9 It follows, that the action of G on Γ m
C (X) factors through a finite quotient

G = Gal(K/K) � Gal(K ′/K).

9 This result was announced in [7, Theorem 10.1], however the proof in [7] is not correct: the assertion on p. 82 that
a proper hyper-covering of a scheme X induces a hyper-covering of the topological space |Xan| is false. Example: take
the hyper-covering associated with the r-fold étale cover Gm → Gm . If the associated simplicial topological space over
|Gan

m | were a hyper-covering one would get an isomorphism between the cohomology of the contractible space |Gan
m | and

the group cohomology H∗(Z/rZ,A). In fact, Γ ∗
A

(X) is an interesting example of cohomology theory that does not have
the étale descent property.
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Theorem 3. For every smooth variety X and every prime number � �= chark, the canonical
morphism [6, Theorem 7.5.4]; [7, Theorem 3.2]

γ :Γ m
Z�

(X) → Hm
(
Xan

K̂
,Z�

) � Hm(XK,Z�) (4.1)

induces an isomorphism of G-modules

Γ m
Q�

(X)
∼−→ Im

(
Hm(XK,Q�)(m)

Nm−−→ Hm(XK,Q�)
)
. (4.2)

We will write NmHm(XK,Q�) for the right-hand side of (4.2).

Proof. Without loss of generality we may assume that k is separably closed and that X is irre-
ducible. We first prove the theorem assuming that X is projective and has a strictly semi-stable
model X over R. In this case, according to a key result of Berkovich [7, §5], Γ m

C (X) is iso-
morphic to the singular cohomology of the Clemens polytope of the special fiber of X. On the
other hand, we consider the weight filtration Wi on Hm(XK,Q�) [42,43]. Interpreting the co-
homology of the Clemens polytope as the weight zero part of Hm(XK,Q�) we find that (4.2)
is equivalent to a special case of Deligne’s monodromy conjecture which asserts that, for every
integer 0 � i � m, the morphism

Ni : Grm+i
W Hm(XK,Q�)(i) → Grm−i

W Hm(XK,Q�)

is an isomorphism. We prove Deligne’s conjecture for i = m using the method of Steenbrink
(who proved it for all i and k = C). To prove the theorem for arbitrary smooth X we show that
the functors Γ m

Q�
and NmHm, first, admit transfers for finite morphisms and, second, take every

dominant open embedding U ↪→ X to an isomorphism. Finally, we use de Jong’s alteration result
to complete the proof.

Step 1. Assuming that X has a projective strictly semi-stable model X over R, X � X ⊗R K .
Denote by Di , i = 1,2, . . . , s, the irreducible components of the special fiber Y = X ⊗ k;

Y (q) =
⊔

I⊂{1,...,s}, |I |=q+1

⋂
i∈I

Di,

and by π0(Y
(q)) the set of connected components of Y (q). We have a commutative diagram

Γ m
Q�

(X)

�
γ

Hm(XK,Q�)

Hm
sing(Cl(Y ),Q�) � E

m,0
2 (X)

ρ (4.3)

where E
m,0
2 (X) is the weight zero term of the weight spectral sequence converging to

Hm(XK,Q�) [43]. According to [38] the weight spectral sequence degenerates at E2; in par-
ticular the morphism ρ is injective. Since the range of the weight filtration on Hm(XK,Q�) is at
most 2m and N shifts the filtration by 2, we have

NmHm(X ,Q�) ⊂ Im(ρ). (4.4)
K
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Consider the commutative diagram

E
−m,2m
2 (X)(m)

Nm

Hm(XK,Q�)(m)

Nm

E
m,0
2 (X) Hm(XK,Q�)

(4.5)

The upper horizontal arrow in this diagram is the projection to the weight 2m quotient. We will
prove, following the method of [45, §5], that, for every m, one has

Nm :E−m,2m
2 (X)(m)

∼−→ E
m,0
2 (X). (4.6)

This trivially holds for d := dimX < m because in this case both sides of (4.6) equal 0. Let us
prove (4.6) for m = d . Consider the following commutative diagram [43]

E
d−1,0
1 H 0(Y (d),Q�) = E

d,0
1 E

d,0
2 → 0

0 → E
−d,2d
2 (d) H 0(Y (d),Q�) = E

−d,2d
1 (d) E−d+1,2d(d)

where

E
d−1,0
1 = H 0(Y (d−1),Q�

)
, E−d+1,2d(d) = H 2(Y (d−1),Q�

)
(1),

the diagonal morphism is Nd , and the vertical arrow is the identity morphism. The rows of the
above diagram are exact and dual to one another. In particular, we have a non-degenerate paring

〈,〉 :Ed,0
2 ⊗ E

−d,2d
2 (d) → Q�

that identifies E
−d,2d
2 (d) with Hd(Cl(Y )) ⊗ Q�. Next, consider the symmetric form

E
−d,2d
2 (d) ⊗ E

−d,2d
2 (d) → Q�, x ⊗ y �→ 〈

Ndx,y
〉
. (4.7)

We claim that (4.7) is non-degenerate. In fact, if

x =
∑

v∈π0(Y
(d))

avv, y =
∑

v∈π0(Y
(d))

bvv ∈ E
−d,2d
2 (X)(d) ⊂ Q�

[
π0

(
Y (d)

)]
,

we have 〈
Ndx,y

〉 = ∑
avbv.

Thus (4.7) comes by extension of scalars from a positive form

Hd

(
Cl(Y ),Q

) ⊗ Hd

(
Cl(Y ),Q

) → Q. (4.8)
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This proves that the morphism (4.6) is injective; since dimE
−d,2d
2 = dimE

d,0
2 , it must be an

isomorphism.
Assume that 0 < m < d . Choose an embedding X ↪→ PN

R and a generic hyperplane section
Z = X ∩ PN−d+m

R of dimension m; Z = X ∩ PN−d+m
K . Then Z is again strictly semi-stable

and the embedding i :Z ↪→ X induces a morphism of spectral sequences E
p,q
r (X) → E

p,q
r (Z).

By the Hard Lefschetz Theorem the composition of the restriction morphism and the Poincaré
pairing

Hm(XK,Q�) ⊗ Hm(XK,Q�) → Hm(ZK,Q�) ⊗ Hm(ZK,Q�) → Q�(−m)

is non-degenerate. The induced isomorphism Hm(XK,Q�) → (Hm(XK,Q�))
∗(−m) takes

E
m,0
2 (X) ⊂ Hm(XK,Q�) to (E

−m,2m
2 (X))∗ ⊂ (Hm(XK,Q�))

∗. Thus

dimE
m,0
2 (X) � dimE

−m,2m
2 (X).

Let us show that (4.6) is injective. It is enough to check that in the commutative diagram

E
−m,2m
2 (X)(m)

Nm

i∗

E
m,0
2 (X)

i∗

E
−m,2m
2 (Z)(m)

Nm∼
E

m,0
2 (Z)

(4.9)

the left downward arrow is an injection. We have

E
−m,2m
2 (X)(m)

i∗

E
−m,2m
1 (X)(m) = H 0(Y (m),Q�)

i∗

E
−m,2m
2 (Z)(m) E

−m,2m
1 (Z)(m) = H 0(Y (m) ∩ PN−d+m

k ,Q�)

(4.10)

In this commutative diagram the upper horizontal arrow is an injection because the incoming

differential 0 = E
−m−1,2m
1 (X)

d1−→ E
−m,2m
1 (X) is trivial. The right downward arrow is an injec-

tion because PN−n+m
k intersects every connected component of Y (m). This completes the proof

of (4.6) and that of (4.2).
Step 2. Hrushovski and Loeser proved in [24, Theorem 13.1.8] that for every smooth variety

X and an open dense subset U ⊂ X the restriction morphism

Γ m
C (X) → Γ m

C (U) (4.11)

is an isomorphism. Let us show that the functor at the right-hand side of (4.2) has the same
property:

NmHm(XK,Q�)
∼−→ NmHm(UK,Q�). (4.12)

We first prove (4.12) in the case when X is the generic fiber of a projective strictly semi-stable
pair (X,Z = Zf ∪ Y) over R [13, §6.3] and j :U ↪→ X is the complement to Z = Z ⊗ K in X.
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Denote by T the special fiber Zf ⊗ k of the flat part of Z and by j :Y − T ↪→ Y the embedding.
The idea of the following argument (that goes back to Nakayama [38]) is the following. When the
residue field k is finite (4.12) can be derived form the Weil conjectures, proven by Deligne, and
the formula (4.6) proven in Step 1 (cf. [8, p. 672]). In general, the works of Fujiwara, Kato and
Nakayama on logarithmic étale cohomology [25] imply that �-adic cohomology groups of X

and U depend only on the special fibers, Y and Y − T , endowed with their natural log structures
(that, in turn, are determined by the first infinitesimal neighborhood of Y (resp. Y − T ) in X

(resp. X − Zf )). Then, a specialization argument enables one to reduce to the finite field case.
Let us explain the details.

For a scheme Slog over the log point (speck)log we denote by Rε̃∗ the functor from the derived
category of �-adic sheaves on the Kummer étale site, Sket

log, to the derived category of �-adic
sheaves on S equipped with an endomorphism of weight 2, i.e., a morphism N : F → F (−1)

[25, §8, p. 308]. Consider the log structure on the scheme X associated with the divisor Y , and
let Ylog = (Y,MY ) be the special fiber with the induced log structure. According to [25, §8,
Corollary 8.4.3] the action of the wild inertia P ⊂ Gal(K/K) on the complexes of nearby cycles
Ψ Q�, Ψ Rj∗Q� is trivial. Therefore we can and we will view the nearby cycles as objects of the
derived category of �-adic sheaves on Y endowed with an endomorphism N of weight 2. Then,
we have

Ψ Q� � Rε̃∗(Q�),

Ψ Rj∗Q� � Rε̃∗(Rj∗Q�).

We have to prove that the morphism

NmHm
(
Yk,Rε̃∗(Q�)

) → NmHm
(
Yk,Rε̃∗(Rj∗Q�)

)
is an isomorphism. This will follow from a more general fact about log schemes over (speck)log.

Let Ylog = (Y,MY ) be a fs log scheme over (speck)log, and let T ↪→ Y be closed sub-
scheme. We will say that (Ylog, T ) is a standard log strictly semi-stable pair if, for some integers
0 � a � b � d , there is an isomorphism between Ylog and the special fiber the log scheme
specR[x0, . . . , xd ]/(x0 · · ·xa −π) (with the log structure defined by the divisor π = 0) that takes
T to the subscheme given by the equation xa+1 · · ·xb = 0. We will say that (Ylog, T ) is a log
strictly semi-stable pair if every point of Y has a Zariski neighborhood U such that (Ulog, T ∩U)

admits a strict étale morphism to a standard log strictly semi-stable pair. If this is the case, ev-
ery irreducible component Ti of T = T1 ∪ · · · ∪ Tn with the log structure induced from Y and
Ti ∩ (T1 ∪ · · · ∪ Ti−1) ⊂ Ti is again a log strictly semi-stable pair.

Let (Ylog, T ) be a proper log strictly semi-stable pair. In [38, §1], Nakayama constructed the
weight spectral sequence E

pq
r converging to Hm(Y ⊗k,Rε̃∗(Q�)) and proved that it degenerates

in the E2 terms. In particular, for every integer m, the canonical morphism

Hm
sing

(
Cl(Y )

) ⊗ Q� � E
m,0
2 → Hm

(
Y ⊗ k,Rε̃∗(Q�)

)
is an embedding.

Lemma 4.1. For every proper log strictly semi-stable pair (Ylog, T ) the composition

Hm
sing

(
Cl(Yk),Q�

)
↪→ Hm

(
Yk,Rε̃∗(Q�)

) → Hm
(
Yk,Rε̃∗(Rj∗Q�)

)
(4.13)

is a monomorphism whose image contains NmHm(Y ,Rε̃∗(Rj∗Q�)).
k
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Proof. The specialization argument of Nakayama [38] reduces the statement to the case when k

is a finite field; in the rest of the proof we will be assuming that this is the case. The vector spaces
appearing in (4.13) carry an action of the Galois group Gal(k/k). Let us look at the action of the
Frobenius element Fr ∈ Gal(k/k). For a finite-dimensional �-adic representation V of Gal(k/k)

we denote by V0 the largest invariant subspace of V such that all the eigenvalues of Fr on V0 are
roots of unity. Looking at the weight spectral sequence we see that

E
m,0
2 = (

Hm
(
Yk,Rε̃∗(Q�)

))
0.

Thus, to prove the lemma it suffices to show the following:

(a)
(
Hm

(
Yk,Rε̃∗(Q�)

))
0

∼−→ (
Hm

(
Yk,Rε̃∗(Rj∗Q�)

))
0. (4.14)

(b) The eigenvalues of Fr acting on Hm(Yk,Rε̃∗(Rj∗Q�)) are Weil numbers of weights from 0
to 2m.

Arguing by induction on d = dimY we assume that the above assertions hold for log strictly
semi-stable pairs of dimension less then d . Let T1, . . . , Tn be irreducible components of T , let
Yj be the complement to

⋃
i�j Ti in Y . Consider the Gysin exact sequence

· · · → Hm−2((Tj+1 ∩ Yj ) ⊗ k,Rε̃∗(Q�)
)
(−1) → Hm

(
Yj ⊗ k,Rε̃∗(Q�)

)
→ Hm

(
Yj+1 ⊗ k,Rε̃∗(Q�)

) → Hm−1((Tj+1 ∩ Yj ) ⊗ k,Rε̃∗(Q�)
)
(−1) → ·· · .

By our induction assumption the boundary terms of the sequence have weights between 2 and
2m. Induction on j proves the first claim (4.14). The second claim also follows from the above
and from the fact that Hm(Y ⊗ k,Rε̃∗(Q�)) has weights between 0 and 2m. �

As we know from Step 1, for a projective strictly semi-stable scheme X over R, we have

NmHm(XK,Q�)
∼−→ E

m,0
2 .

This together with Lemma 4.1 completes the proof of (4.12) for strictly semi-stable pairs.
Before going further, recall that, for every generically finite surjective morphism f :X′ → X

of smooth connected varieties, the induced map

f ∗ :Hm(XK,Q�) → Hm
(
X′

K
,Q�

)
is injective. In fact, the canonical isomorphism Q�

∼−→ Rf !Q� defines by adjunction a morphism

Rf∗Q�
∼−→ Rf!Q� → Q�.

In turn, the latter yields the transfer morphism

f∗ :Hm
(
X′

K
,Q�

) → Hm(XK,Q�)

such that the composition f∗f ∗ equals multiplication by the degree of f over the generic point.
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Let us return to the proof of (4.12). Without loss of generality we may assume that X is
connected. Then, by de Jong’s result [13, §6.3] we can find a proper generically finite surjective
morphism f :X′ → X such that X′ is an open subscheme of a connected projective strictly semi-
stable scheme X

′
over a finite extension R′ ⊃ R and such that (X

′
,X

′ − X′) is a strictly semi-
stable pair. Applying de Jong’s result once again, we find a proper generically finite surjective
morphism g :X

′′ → X
′
, with connected X

′′
, such that (X

′′
,X

′′ − (fg)−1(U)) is a projective
strictly semi-stable pair over some R′′ ⊃ R′. Diagram:

(fg)−1(U) X′′
X

′′

g

f −1(U) X′

f

X
′

U X

(4.15)

We know that (4.12) is true for the embeddings X′ ↪→ X
′ ⊗ K and g−1f −1(U) ↪→ X

′′ ⊗ K .10

Define a morphism u :NmHm(UK,Q�) → NmHm(XK,Q�) to be the composition

NmHm(UK,Q�)
(fg)∗−−−→ NmHm

(
(fg)−1(U)K,Q�

) � NmHm
(
X

′′ ⊗ K,Q�

)
g∗−→ NmHm

(
X

′ ⊗ K,Q�

) Res−−→ NmHm
(
X′ ⊗ K,Q�

)
f∗−→ NmHm(X ⊗ K,Q�).

An easy diagram chase shows that u divided by the degree of the morphism fg over the generic
point is the two-sided inverse to the restriction morphism (4.12).

Step 3. Let f :U ′ → U be a finite surjective morphism of connected smooth varieties. Assume
that the corresponding extension Rat(X) ⊂ Rat(X′) of the field of rational functions is normal
and let G be its Galois group. Then, the pullback morphism f ∗ induces an isomorphism

NmHm(UK,Q�)
∼−→ (

NmHm
(
U ′

K
,Q�

))G
.

Let us show the functor Γ m
Q

has the same property:

Γ m
Q (U)

∼−→ (
Γ m

Q

(
U ′))G

. (4.16)

Indeed, by [6, Proposition 4.2.4], the cohomology of the topological space |U an
K̂

| with rational
coefficients coincides with the étale cohomology of the analytic space U an

K̂
with coefficients in Q.

Next, since the functor of G-invariants is exact in any Q-linear abelian category, we have(
Hm

et

(
U ′an

K̂
,Q

))G � Hm
et

(
U an

K̂
, (f∗Q)G

)
.

10 Indeed, (X
′
,X

′ − X′) is a strictly semi-stable pair over R′ . Therefore, we have NmHm(X
′ ×R′ K,Q�)

∼−→
NmHm(X′ ×R′ K,Q�). This implies that the morphism NmHm(X

′ ×R K,Q�) → NmHm(X′ ×R K,Q�) is an iso-
morphism as well.
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We complete the proof of (4.16) by showing that the canonical morphism Q → (f∗Q)G is an
isomorphism. In fact, the weak base change theorem [6, Theorem 5.3.1] reduces the statement
to the case when UK̂ is a single point. In this case G acts transitively on points of U ′̂

K
and our

assertion follows.
Step 4. Now we can complete the proof of Theorem 3. We may assume that X is connected.

Then, by [14, Theorem 5.9], there exists a proper generically finite surjective morphism f :X′ →
X such that the field extension Rat(X) ⊂ Rat(X′) is normal, X′ is an open subscheme of a
connected projective strictly semi-stable scheme X

′
over a finite extension R′ ⊃ R. Let U be an

open dense subset of X over which f is finite. By the result of Step 1 the theorem is true for X
′
.11

Then, by Step 2 it is true for f −1(U) and thus, by Step 3, for U . Applying the result of Step 2
once again we complete the proof of Theorem 3. �
Remark 4.2. The groups Γ ∗

Z
(X) are related to the weight zero part of motivic vanishing cycles

Ψ (X) ∈ DMeff
gm(k) of X [2,3]. Namely, if chark = 0, one has

Γ m
Z (X) � HomDMeff

gm(k)

(
Ψ (X),Z[m]).

Remark 4.3. Assume that K = C((t)). For every smooth projective X/K there is a canonical
morphism (cf. [9, Theorem 5.1])

Γ m
Z (X) → W

Q
0 ∩ Hm(limX,Z) (4.17)

that induces an isomorphism modulo torsion

Γ m
Q (X) � W

Q
0 Hm(limX). (4.18)

Morphism (4.17) can be constructed as follows. Pick a finite extension K ′ ⊃ K and strictly
semi-stable model XR′ of XK ′ = X ⊗K K ′ over the integral closure R′ of R in K ′. Then (4.17)
is defined to be the composition

Γ m
Z (X) � Γ m

Z (XK ′) ∼−→ Hm
(
Cl(Y )

) → W
Q
0 ∩ Hm(limXK ′ ,Z) � W

Q
0 ∩ Hm(limX,Z),

(4.19)

where Y is the special fiber of XR′ and the map Hm(Cl(Y )) → W
Q
0 ∩ Hm(limXK ′ ,Z) comes

from the weight spectral sequence (see Section 2.2). As the weight spectral sequence with ra-
tional coefficients degenerates at E2 terms the above composition is an isomorphism up to
torsion. The composition of (4.19) with the embedding W

Q
0 ∩ Hm(limX,Z) ↪→ Hm(XK,Z�)

equals the canonical morphism Γ m
Z

(X) → Hm(XK,Z�) from Theorem 3. Thus, the morphism

Γ m
Z

(X) → W
Q
0 ∩ Hm(limX,Z) induced by (4.19) is independent of the choice of K ′ and XR′ .

In general, morphism (4.17) is not bijective.

11 Indeed, the result of Step 1 implies that the morphism Hm(|X′an ×K ′ K̂|,Q�) → NmHm(X′ ×K ′ K,Q�) is an
isomorphism. This implies that Hm(|X′an ×K K̂|,Q�) → NmHm(X′ ×K K,Q�) is also an isomorphism.
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We conjecture that for every smooth proper variety X over K , one has

dimQ Γ m
Q (X) � dimK Hm(X, OX). (4.20)

Conjecture (4.20) is motivated by the following result.

Proposition 4.4. The inequality (4.20) is true if either of the following conditions holds.

(a) chark = 0.

(b) K is a finite extension of Qp .

Proof. When proving the first part of the proposition, we may assume that R = C�t � and X is
the generic fiber of a strictly semi-stable scheme X over R [24, Theorem 13.1.8]. In this case,
we have

Γ m
Q (X) � Hm

Zar(Y,Q) � W
Q
0 Hm(limX),

where Y is the special fiber of X. The first part of the proposition now follows from the inequal-
ity dimQ W

Q
0 � dimC F 0/F 1 = dimK Hm(X, OX). For the second part, recall from [6, Theo-

rem 1.1] that Γ m
K (X) is isomorphic to the subspace of the p-adic cohomology Hm(XK,Qp)⊗Qp

K that consists of smooth vectors, i.e., vectors whose stabilizer in G is open. Thus,

dimK Γ m
K (X) � dimK

(
Hm(XK,Qp) ⊗Qp

Cp

)G = dimK Hm(X, OX).

The last equality follows from the Hodge–Tate decomposition proven by Faltings [17]. �
4.2. The monodromy pairing

Let X be a smooth variety over a complete discrete valuation field K and d = dimX. In this
subsection we define a canonical positive symmetric form (that we shall call the monodromy
pairing)

(·,·) :Γ d
Q(X) ⊗ Γ d

Q(X) → Q. (4.21)

The group Γ d
Z

(X) as well as the monodromy pairing depends only on the class of X modulo
birational equivalence.

First, we define a pairing

(·,·)� :NdHd(XK,Q�) ⊗ NdHd(XK,Q�) → Q�.

By [13, Theorem 4.1, Remark 4.2], there exists a proper generically finite surjective morphism
f :X′ → X such that X′ is an open subscheme of a smooth projective variety X̃′ over a finite
extension K ′ ⊃ K . Let r be the degree of f over the generic point. Consider the morphism
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f
∗

:NdHd(XK,Q�)
f ∗−→ NdHd

(
X′

K
,Q�

) ∼←− NdHd
(
X̃′

K
,Q�

)
.12

The left arrow is an isomorphism by (4.12). Given x, y ∈ NdHd(XK,Q�) we set

(x, y)� = (−1)
d(d−1)

2

r

〈
f

∗
(x), f

∗(
y′)〉, (4.22)

where y′ ∈ Hd(XK,Q�)(d) is an element such that Ndy′ = y and

〈,〉 :Hd
(
X̃′

K
,Q�

) ⊗ Hd
(
X̃′

K
,Q�

)
(d) → Q�

is the Poincaré pairing. Let us check that (·,·)� is well defined. Indeed, if y′′ is another element
such that Ndy′′ = y, then

〈
f

∗
(x), f

∗(
y′ − y′′)〉 = 〈

Ndf
∗(

x′), f ∗(
y′ − y′′)〉

= (−1)d
〈
f

∗(
x′),Ndf

∗(
y′ − y′′)〉 = 0.

The independence of the choice of X′, f and X̃′ follows from the fact that given another such
triple X′′, g and X̃′′ we can find a smooth projective scheme over some finite extension of K that
admits proper generically finite surjective morphisms to both X̃′ and X̃′′.

Let us also remark that the pairing (·,·)� is symmetric.

Theorem 4. For every smooth connected variety X of dimension d , the restriction (4.21) of the
pairing (·,·)� to the subspace

Γ d
Q(X) ↪→ NmHm(XK,Q�)

takes values in Q and is independent of � �= chark. Moreover, the pairing (4.21) is positively
defined (and, in particular, non-degenerate).

Proof. Thanks to the birational invariance property of Γ d(X) (4.11) and de Jong’s semi-stable
reduction theorem [13, §6.3] it is enough to prove the theorem in the case when X is the generic
fiber of a strictly semi-stable projective scheme X over R. In this case, using (4.3) we have a
canonical isomorphism Γ d

Q
(X) � Hd(Cl(Y ),Q) that identifies, by the Picard–Lefschetz formula

(cf. (2.13)), the pairing (·,·)� restricted to Γ d
Q

(X) with the dual of the pairing (4.8). �
Remark 4.5. The construction of the monodromy pairing can be generalized as follows. For a
pair (X,μ), where X is a smooth projective variety over K and μ ∈ H 2(X,Q�(1)) is the class
of an ample line bundle over X, and an integer m � d , we define a positive symmetric form

(·,·)μ :Γ m
Q (X) ⊗ Γ m

Q (X) → Q (4.23)

12 We write X′ for the fiber product of X′ and specK over specK .

K
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to be the composition

Γ m
Q (X) ⊗ Γ m

Q (X) → NmHm(XK,Q�) ⊗ NmHm(XK,Q�)
(·,·)�,μ−−−−→ Q�,

where (x,Nmy′)�,μ = (−1)
d(d−1)

2 〈x, y′μd−m〉. Let us prove that (4.23) is independent of � and
positive. Without loss of generality, we may assume that μ is the class of very ample line bundle

L. Let X ↪→ PN
K be the corresponding embedding, and let Z = X ∩ PN−d+m

K

i
↪→ X be a generic

hyperplane section of dimension m. Then, (·,·)μ equals the composition

Γ m
Q (X) ⊗ Γ m

Q (X)
i∗⊗i∗−−−→ Γ m

Q (Z) ⊗ Γ m
Q (Z)

(·,·)−−→ Q.

By Theorem 3 and the Hard Lefschetz Theorem the restriction morphism i∗ :Γ m
Q

(X) → Γ m
Q

(Z)

is injective. Our claim follows from Theorem 4.

Remark 4.6. Assume that K = C((t)). For a smooth projective d-dimensional scheme X over K

the isomorphism

Γ d
Q(X) � W

Q
0 Hd(limX)

from Remark 4.3 carries the monodromy pairing on Γ d
Q

(X) to the pairing

(·,·) :WQ
0 Hd(limX) ⊗ W

Q
0 Hd(limX) → Q

defined by the formula (cf. (4.22))

(x, y) = (−1)
d(d−1)

2
〈
x, y′〉,

where x ∈ W
Q
0 , y′ ∈ W

Q
2d/W

Q
2d−1 is such that GrNd(y′) = y, and 〈·,·〉 :WQ

0 ⊗ W
Q
2d/W

Q
2d−1 → Q

denotes the Poincaré pairing.

Example 4.7. Let A be a d-dimensional abelian variety over K with semi-stable reduction.
According to [5, §6.5], after replacing K by a finite unramified extension, we can represent
the analytic space Aan as the quotient of Gan by Λ, where Gan is the analytic group associated

with a semi-abelian variety 0 → T → G → B → 0 over R and Λ
u

↪→ G(K) a lattice. Moreover,
the map |Gan

K̂
| → |Aan

K̂
| exhibits |Gan

K̂
| as a universal cover of |Aan

K̂
|. In particular, Γm(A) :=

Hm(|Aan
K̂

|) � ∧m
Λ. A polarization, μ, of A defines an isogeny μ∗ :Λ → Ξ , where Ξ is the

group of characters of G. Using [12, Theorem 2.1], we see that the pairing

Γ1(A) ⊗ Γ1(A) → Q

derived from (4.23) equals the pullback of Grothendieck’s monodromy pairing

Λ ⊗ Ξ
u⊗Id−−−→ G(K)/G(R) ⊗ Ξ → Ξ∗ ⊗ Ξ → Z

via Id⊗μ∗ :Λ ⊗ Λ → Λ ⊗ Ξ , divided by the degree μd ∈ Z of the polarization.
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4.3. A birational invariant

Let X be a smooth connected variety over a complete discrete valuation field K and d =
dimX. Assume that Γ d(X)Q �= 0. Let Disc(·,·) ∈ Q∗ be the discriminant of the monodromy
pairing (4.21) relative to the lattice Γ d

Z
(X)/Γ d

Z
(X)tor ⊂ Γ d

Q
(X), and let

rd(X,K) = 1

Disc(·,·) . (4.24)

Since the group Γ d
Z

(X) and the monodromy pairing (4.21) are birational invariants of X so is the
number rd(X,K). If K ⊂ K ′ is a finite extension of ramification index e, we have

rd
(
X ⊗ K ′,K ′) = e

d dimΓ d
Q

(X)
rd(X,K).

In the remaining part of this section we shall relate the invariant rd(X,K) defined here to the
one introduced in Section 1.3 for K3 surfaces over C((t)).

Proposition 4.8. Let X be a smooth projective K3 surface over K = C((t)) and let H 2(limX)

be the corresponding limit mixed Hodge structure (see Section 2.2). Set WZ
i := W

Q
i ∩

H 2(limX,Z). Assume that the monodromy acts on H 2(limX,Z) by a unipotent operator and let
N :H 2(limX,Z) → H 2(limX,Z) be its logarithm (which is integral by [19, Proposition 1.2]).
Then:

(a) The topological space |Xan
K̂

| is contractible unless N2 �= 0. If N2 �= 0 the space |Xan
K̂

| is
homotopy equivalent to a 2-dimensional sphere and the canonical map (see Remark 4.3)

Γ 2
Z (X) → WZ

0 (4.25)

is an isomorphism.
(b) Assume that N2 �= 0. Then the number r2(X,C((t))) defined by (4.24) is equal to the order of

the following group

Coker
(
WZ

4 /WZ
3

GrN2−−−→ WZ
0

)
. (4.26)

Proof. It is enough to prove the proposition in the case where X is the restriction of a strictly
semi-stable family over a smooth curve. Indeed, at the expense of a finite extension of K we
may choose a strictly semi-stable model X for X. The space |Xan

K̂
| is homotopy equivalent to the

Clemens polytope of the special fiber Y of X [7, §5]. Applying Proposition 3.1 to X we find a
proper strictly semi-stable family X over a smooth pointed curve a ∈ C, whose fiber over the
first infinitesimal neighborhood of point a is isomorphic to X ⊗R R/t2 and whose generic fiber
is a K3 surface. As the limit mixed Hodge structure of a strictly semi-stable scheme depends
only on the first infinitesimal neighborhood of special fiber the validity of the proposition does
not change if we replace X by X ×C specK ′.

Thus, we may assume that X has a Kulikov model over R = C�t � (see Section 3.2). If X is a
Kulikov model, then the Clemens polytope Cl(Y ) of the special fiber of X is homeomorphic to
a point or to an interval for type I or II degenerations and it is homeomorphic to a 2-dimensional
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sphere for type III degenerations. This proves the first part of the proposition except for the claim
that morphism (4.25) is an isomorphism. Using Berkovich’s result [7, §5], the latter is equivalent
the following assertion: the canonical morphism

H 2(Cl(Y )
) → WZ

0

coming from the weight spectral sequence (see Theorem 2) is an isomorphism. In fact, the (equiv-
alent) dual statement,

WZ
4 /WZ

3
∼−→ H2

(
Cl(Y )

)
is proven (using a deep result of Friedman and Scattone [19]) in Remark 3.3. This completes the
proof of the first part of the proposition.

Part (b) of the proposition follows from the fact that (4.25) is an isomorphism and Re-
mark 4.6. �
5. Motivic integral of maximally degenerate K3 surfaces over non-archimedean fields

5.1. The formula

Throughout this section R denotes a complete discrete valuation ring with fraction field K and
perfect residue field k. We shall say that a smooth projective d-dimensional Calabi–Yau variety
X over K is maximally degenerate if Γ d

Q
(X) �= 0. According to Theorem 3, X is maximally

degenerate if and only if for some (and, therefore, for every) prime � �= chark the map

Hd(XK,Q�)(m)
Nd−−→ Hd(XK,Q�)

is not zero.

Conjecture 1. Let X be a smooth projective maximally degenerate K3 surface over K . Then:

(a) The topological space |Xan
K̂

| is homotopy equivalent to a 2-dimensional sphere. In particular,
the group Γ m

Z
(X) is trivial for m �= 0,2 and isomorphic to Z otherwise.

(b) For every � �= chark the lattice

Z� � Γ 2
Z�

(X)
(4.1)
↪→ H 2(XK,Z�)

is saturated, i.e.,

Γ 2
Z�

(X) = (
Γ 2

Q�
(X)

) ∩ H 2(XK,Z�).

(c) There exists a finite extension K ′ ⊃ K such that for every finite extension L ⊃ K ′ of ramifi-
cation index e∫
XL

=
(

e2r2(X,K)

2
+ 2

)
Q(0) + (

20 − e2r2(X,K)
)
Q(−1) +

(
e2r2(X,K)

2
+ 2

)
Q(−2).

(5.1)
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Remark 5.1. According to the first part of the conjecture, for every prime � �= chark, the �-
primary factor of r2(X,K) has the following cohomological interpretation. If r2(X,K) = �a�r ′
and (r ′, �) = 1, then

a� = −v�

(
Disc(·,·)�

)
where Disc(·,·)� is the discriminant of the �-adic monodromy pairing (4.3) restricted to Im(N2)∩
H 2

et (XK,Z�) and v� : Q∗
�/Z∗

� → Z is the valuation morphism.

Remark 5.2. According to Theorem 1 and Proposition 4.8, Conjecture 1 is true for K = C((t)).
Thus, it true for every K of equicharacteristic 0 [24, Theorem 13.1.8].

5.2. Kummer K3 surfaces

Throughout this subsection charK �= 2. Let A be a 2-dimensional abelian variety over K .

Then the group subscheme A2 := Ker(A
[2]−→ A) ⊂ A of 2-torsion points is reduced of order 16.

The quotient A/σ modulo the involution A
σ−→ A, σ(x) = −x, is a projective surface, whose

singular locus is precisely the image of A2. A Kummer K3 surface X is the blow-up of A/σ at
A2 ↪→ A/σ which is smooth. Any translation invariant differential 2-form on A descends to a
non-vanishing regular form ω on X. Equivalently, X can be viewed as the quotient of the variety
Z obtained from A by blowing up at A2.

Theorem 5. Conjecture 1 is true if X is a Kummer K3 surface and chark �= 2.

Proof. Fix a prime number � �= chark. By Theorem 3 since X is maximally degenerate and,
for some finite extension K ′ ⊃ K , the Gal(K/K ′)-module H 2(XK,Q�) is isomorphic to
H 2(AK,Q�) ⊕ Q�(−1)⊕16 the abelian variety A is maximally degenerate. Thus, after replac-
ing K by its finite extension we may assume that the analytic space, Aan, is the quotient of a
split 2-dimensional torus T an by a split lattice Λ ⊂ T (K). We also assume that all the 2-torsion
points of A are defined over K . Under these assumptions we will prove that the formula (5.1)
is true for L = K and therefore for all its finite extensions. To do this we shall construct a for-
mal poly-stable model X for the analytic space Xan. By a general result of Berkovich [7, §5]
the topological space |Xan

K̂
| is homotopy equivalent to the realization of the nerve of the special

fiber13 X × k, denoted by |N(X × k)|. On the other hand, the smooth locus of such a model is a
weak Néron model of Xan and, thus, can be used to compute the motivic integral.

Let Ξ be the group of characters of T and Ξ∗ the dual group. We have a canonical injective
homomorphism ρ :Λ → Ξ∗ given by the valuation on K . Choose bases {v1, v2}, {u1, u2} for Λ

and Ξ such that the matrix of ρ is diagonal(
m1 0
0 m2

)
with positive mi , and let T � Gm,K × Gm,K , Λ � Z2 be the corresponding isomorphisms. Con-
sider the standard “relatively complete” model Gm of Gm,K over R in the sense of Mumford

13 The notion of nerve of a scheme is recalled in Remark 2.2.
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[37, §5]. We view Gm as a formal scheme over R whose associated K-analytic space is Gan
m,K

and which is equipped with an action of the multiplicative group K∗, extending the translation ac-
tion on Gan

m,K , and an involution that acts as x �→ x−1 on Gan
m,K . The special fiber of Gm is a chain

of projective lines P1
k ; the action of K∗ induces a simple and transitive action of Z � K∗/R∗ on

the set of its irreducible components. The quotient of Gm × Gm by Λ ⊂ T (K) = K∗ × K∗ is a
proper strictly poly-stable formal model of Aan. Its smooth locus is the formal Néron model of
Aan [11, Definition 1.1 and Theorem 6.2]. In particular, our assumptions on A and K imply that
the 2-torsion points of A define 16 sections of (Gm × Gm)/Λ over R meeting the special fiber
at distinct smooth points. Let Z be the blow-up of (Gm × Gm)/Λ at these sections. By construc-
tion, the involution σ of A extends to an involution σ of Z. The quotient X = Z/σ is again a
proper strictly poly-stable formal scheme whose generic fiber is the analytic K3 surface Xan. In
particular, every K ′-point of Xan, where K ′ ⊃ K is a finite unramified extension of K reduces
to a nonsingular point of the special fiber of X. It follows that the smooth locus Xsm ⊂ X of X

is a formal weak Néron model of Xan [11, Definition 1.3]. As the Néron top degree differential
form on A induces a regular non-vanishing differential form on Xsm using [34, Theorem 4.4.1]
we see that the motivic integral

∫
X

equals the class [Ysm] of the smooth locus of the special fiber
Y of X. We shall show that

∫
X

depends only on the order of the group C = Z/m1Z × Z/m2Z of
connected components of the formal Néron model of Aan. Indeed, since all the 2-torsion points
of A are defined over K , the numbers mi are even. Thus, the involution σ has precisely 4 fixed
points on C. It follows that Ysm has |C|

2 +2 connected components. All the components of Ysm are
isomorphic to Gm,k ×Gm,k except for those 4 that correspond to fixed points of σ on C. These 4
components are isomorphic to the blow-up of Gm,k × Gm,k at 4 points of order 2. Summarizing,
we find ∫

X

=
( |C|

2
+ 2

)
Q(0) + (

20 − |C|)Q(−1) +
( |C|

2
+ 2

)
Q(−2).

Thus, to complete the proof of the formula (5.1) we need to show that |C| = r2(X,K). Consider
the commutative diagram induced by the morphism f :Z → X of the formal schemes

H 2(|N(X × k)|,Z)
∼

f ∗

Γ 2
Z
(X)

f ∗

H 2(Xan
K̂

,Z�) �

f ∗

H 2(XK,Z�)

f ∗

H 2
Zar(|N(Z × k)|,Z)

∼
Γ 2

Z
(Z) H 2(Zan

K̂
,Z�) � H 2(ZK,Z�)

(5.2)

The topological space |N(Z × k)| is homeomorphic to a real 2-dimensional torus14; the map
|N(Z × k)| → |N(X × k)| induced by f identifies the target space with the quotient of the torus
modulo the involution that takes a point to its inverse (with respect to the usual group structure

14 Indeed, the scheme Z × k is isomorphic to a direct product of two (reducible) curves Di , i = 1,2, which, in
turn, are isomorphic to mi -gons of P1

k
’s. Thus, using that the formation |N(·)| commutes with products of poly-

stable schemes over algebraically closed field [7, Proposition 3.14(ii) and Corollary 3.17], we find that |N(Z × k)| �
|N(D1)| × |N(D2)| � S1 × S1.
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on the real torus). In particular, |N(X × k)| is homeomorphic to a 2-dimensional sphere. This
proves the first part of the theorem. Moreover, we have a commutative diagram

Z
∼

2

Γ 2
Z
(X)

f ∗

Z
∼

Γ 2
Z
(Z) � Γ 2

Z
(A)

(5.3)

where the isomorphism Γ 2
Z
(A)

∼−→ Γ 2
Z
(Z) is induced by the morphism of formal schemes Z →

(Gm × Gm)/Λ that identifies the nerves of their special fibers. On the other hand, since the
morphism Z → X induced by f has degree 2, we have

(x, y) = 1

2

(
f ∗(x), f ∗(y)

)
, x, y ∈ Γ 2

Z (X).

Comparing this with (5.3) we find that

r2(X,K) = r2(Z,K)

2
= r2(A,K)

2
.

It remains to show that r2(A,K)
2 = |C|. Consider the exact sequence of G-modules

0 → Λ∗ ⊗ Z� → H 1(AK,Z�) → Ξ ⊗ Z�(−1) → 0.

The canonical morphism Γ 1
Z
(A) ↪→ H 1(AK,Z�) identifies Γ 1

Z
(A) with Λ∗ ⊂ H 1(AK,Z�) [5,

§6.5]. Let ũ1 ∧ ũ2 be an element of H 2(AK,Z�)(2) that projects to u1 ∧ u2 ∈ ∧2
Ξ ⊗ Z�. Then,

we have

N2(ũ1 ∧ ũ2) = N
(
N(ũ1) ∧ ũ2 + ũ1 ∧ N(ũ2)

) = 2N(ũ1) ∧ N(ũ2)

= 2m1m2
(
v∗

1 ∧ v∗
2

) ∈
2∧

Λ∗ ⊗ Z�.

It follows that the monodromy pairing on Γ 2
Z
(A) � ∧2

Λ∗ is given by the formula

(
v∗

1 ∧ v∗
2 , v∗

1 ∧ v∗
2

) = −〈v∗
1 ∧ v∗

2 , ũ1 ∧ ũ2〉
2m1m2

= 1

2m1m2

and therefore r2(A,K) = 2m1m2 = 2|C|. The proof of the formula (5.1) is completed.
Let us prove the second statement of the theorem. We will derive it from an analogous result

for abelian varieties [5, §6.5] which asserts that the lattice

Γ 2
Z�

(A) ↪→ H 2(AK,Z�)

is saturated. It follows that the lattice

Γ 2 (A)
∼−→ Γ 2 (Z) ↪→ H 2(Z ,Z�) � H 2(A ,Z�) ⊕ Z�(−1)⊕16
Z� Zl K K
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is also saturated. We claim that in the commutative diagram

Z�
∼

2

Γ 2
Z�

(X)

f ∗

H 2(XK,Z�)

f ∗

Z�
∼

Γ 2
Z�

(Z) H 2(ZK,Z�)

(5.4)

the vertical morphisms are isomorphisms up to 2-torsion. Indeed, the compositions f∗f ∗ and

f ∗f∗ with the trace morphism H 2(ZK,Z�)
f∗−→ H 2(XK,Z�) are equal to 2 Id. This proves the

second part of the theorem for � �= 2. For � = 2, we apply a result of Nikulin (see, e.g. [36,
Lemma on p. 56]) that states the lattice

H 2(AK,Z�) ↪→ H 2(ZK,Z�)
f∗
↪→ H 2(XK,Z�) (5.5)

is saturated. As the lattice Γ 2
Z�

(X) equals the image of the saturated lattice Γ 2
Z�

(A) ↪→
H 2(AK,Z�) under composition (5.5) it is saturated as well. �
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