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Abstract

For a nondegenerate additive subgroup G of the n-dimensional vector space Fn over an

algebraically closed field F of characteristic zero, there is an associative algebra and a Lie

algebra of Weyl typeWðG; nÞ spanned by all differential operators uDm1

1 ?Dmn
n for uAF½G� (the

group algebra), and m1;y;mnX0; where D1;y;Dn are degree operators. In this paper, it is

proved that an irreducible quasifinite WðZ; 1Þ-module is either a highest or lowest weight

module or else a module of the intermediate series; furthermore, a classification of uniformly

bounded WðZ; 1Þ-modules is completely given. It is also proved that an irreducible quasifinite
WðG; nÞ-module is a module of the intermediate series and a complete classification of

quasifinite WðG; nÞ-modules is also given, if G is not isomorphic to Z:
r 2003 Elsevier Science (USA). All rights reserved.

MSC: 17B10; 17B65; 17B66; 17B68

1. Introduction

Let n be a positive integer. A (classical) Weyl algebra of rank n is the associative

algebra Aþ
n ¼ C½t1;y; tn;

@
@t1
;y; @

@tn
� or An ¼ C½t71

1 ;y; t71
n ; @

@t1
;y; @

@tn
� of differential

operators over the complex field C: The Lie algebra with An as the underlined vector
space and the commutator as the Lie bracket is called a Lie algebra of Weyl type,
and denoted by WðnÞ: The Lie algebra WðnÞ is a Zn-graded Lie algebra
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WðnÞ ¼ "aAZnWðnÞa with the grading space WðnÞa spanned by

taDm ¼ ta11 ?tan
n D

m1
1 ?Dmn

n for m ¼ ðm1;y; mnÞAZn
þ;

where a ¼ ða1;y; anÞAZn and Di ¼ ti
@
@ti
: It is known [8,14,19] that WðnÞ has a

nontrivial universal central extension if and only if n ¼ 1: The universal central

extension #Wð1Þ of Wð1Þ is the well-known Lie algebra W1þN of the W-infinity
algebras, which arise naturally in various physical theories such as conformal field
theory, the theory of the quantum Hall effect, etc. and which have received intensive
studies in the literature (see for example, [1–6,8–14,16,19–21]).
Let F be an algebraically closed field of characteristic zero. Consider the vector

space Fn: An element in Fn is denoted by a ¼ ða1;y; anÞ: Let G be an additive
subgroup of Fn such that G is nondegenerate, i.e., it contains an F-basis of Fn: Let F½G�
denote the group algebra of G spanned by fta j aAGg with the algebraic operation

ta 
 tb ¼ taþb for a; bAG: We define the degree operators Di to be the derivations of
F½G� determined by Di : ta/ait

a for aAG; where i ¼ 1;y; n: The Lie algebra of

generalized Weyl type of rank n (or simply a Lie algebra of Weyl type, also called a
Lie algebra of generalized differential operators) is a tensor product space WðG; nÞ ¼
F½G;D1;y;Dn� ¼ F½G�#F½D1;y;Dn� of the commutative associative algebra F½G�
with the polynomial algebra F½D1;y;Dn� of D1;y;Dn; which is spanned by

ftaDm j aAG; mAZn
þg; where Dm stands for

Qn
i¼1 D

mi

i ; with the Lie bracket:

½taDm; tbDn� ¼ ðtaDmÞ 
 ðtbDnÞ � ðtbDnÞ 
 ðtaDmÞ ð1:1Þ

and

ðtaDmÞ 
 ðtbDnÞ ¼
X
lAZn

þ

m

l

 !
½b�ltaþbDmþn�l; ð1:2Þ

where

½b�l ¼
Yn

i¼1
bli

i ;
m

l

 !
¼
Yn

i¼1

mi

li

 !
;

i

j

 !
¼

iði�1Þ?ði�jþ1Þ
j! if jX0;

0 otherwise:

(

The associative algebra with the underlined vector space WðG; nÞ and product
(1.2) is called a generalized Weyl algebra of rank n; denoted by AðG; nÞ: Then the
classical Lie algebra WðnÞ of Weyl type is simply the Lie algebra WðZn; nÞ by our
definition.
Clearly WðG; nÞ is a G-graded Lie algebra WðG; nÞ ¼ "aAGWðG; nÞa with the

grading space

WðG; nÞa ¼ spanftaDm j mAZn
þg for aAG: ð1:3Þ

It is proved in [19] that WðG; nÞ has a nontrivial universal central extension if and

only if n ¼ 1: The universal central extension #WðG; 1Þ of WðG; 1Þ is defined as
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follows: The Lie bracket (1.1) is replaced by

½ta½D�m; tb½D�n� ¼ ðta½D�mÞ 
 ðtb½D�nÞ � ðtb½D�nÞ 
 ðta½D�mÞ

þ da;�bð�1Þmm!n!
aþ m

mþ nþ 1

 !
C ð1:4Þ

for a; bAGCF; m; nAZþ; where ½D�m ¼ DðD � 1Þ?ðD � mþ 1Þ; and C is a central

element of #WðG; 1Þ (the 2-cocycle ofWðG; 1Þ corresponding to (1.4) seems to appear
first in [10]).
A WðG; nÞ-module (or an AðG; nÞ-module) V is called a quasifinite module

[1,6,8,11,13,16] if V ¼ "aAGVa is G-graded such that WðG; nÞaVbCVaþb for a; bAG
and such that each grading space Va is finite-dimensional (this is equivalent to saying
that a quasifinite module is a module having finite-dimensional generalized weight
spaces with respect to the commutative subalgebra W0). A quasifinite module V is
called a uniformly bounded module if the dimensions of grading spaces Va are
uniformly bounded, i.e., there exists a positive integer N such that dim VapN for all
aAG: A quasifinite module V is called a trivial module if WðG; nÞ acts trivially on V :
Clearly an AðG; nÞ-module is a WðG; nÞ-module, but not the converse. Thus it

suffices to consider WðG; nÞ-modules. The quasifinite highest weight modules over
#Wð1Þ ¼ #WðZ; 1Þ were intensively studied in [1,6,9–11,13,16,21] (it is also worth
mentioning that Block [3] studied arbitrary irreducible modules over the classical

Weyl algebra Aþ
1 of rank 1).

Let pX1: Denote by Mp�pðFÞ the set of p � p matrices with entries in F: Denote

Mn
p�pðFÞ ¼ fG ¼ ðG1;y;GnÞ j GiAMp�pðFÞ;GiGj ¼ GjGi for i; j ¼ 1;y; ng;

the set of n-tuples of commuting p � p matrices. Denote by 1p the p � p identity

matrix. Denote 1 ¼ ð1p;y; 1pÞAMn
p�pðFÞ: Let G ¼ ðG1;y;GnÞAMn

p�pðFÞ: Then one

can define a quasifinite WðG; nÞ-module Ap;G as follows: it has a basis

fy
ðiÞ
a j aAG; i ¼ 1;y; pg such that

ðtaDmÞYb ¼ Yaþb½b 1þ G�m for a; bAG; mAZn
þ ð1:5Þ

where

Yb ¼ ðyð1Þ
b ;y; y

ðpÞ
b Þ; ½b 1þ G�m ¼

Yn

i¼1
ðbi 1p þ GiÞmi :

Here bi 
 1p denotes the scalar multiplication of the identity matrix. Clearly Ap;G is

also an AðG; nÞ-module. By Su and Zhao [20], there exists a Lie algebra
isomorphism s : WðG; nÞDWðG; nÞ such that

sðtaDmÞ ¼ ð�1Þjmjþ1ð½Dm; ta� þ taDmÞ for aAG; mAZþ; ð1:6Þ
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where jmj ¼
Pn

i¼1 mp is the level of m ¼ ðm1;y; mnÞAZn
þ: This isomorphism is

uniquely determined by sðtaÞ ¼ �ta; sðDj
iÞ ¼ ð�1Þjþ1

Di for aAG; i ¼
1;y; n; jAZþ: Using this isomorphism, we have another WðG; nÞ-module %Ap;G;

called the twisted module of Ap;G, for the pair ðp;GÞ; defined by

ðtaDmÞYb ¼ ð�1Þjmjþ1Yaþb½ðaþ bÞ 
 1þ G�m for a; bAG; mAZn
þ: ð1:7Þ

Obviously, %Ap;G is not an AðG; nÞ-module. When G ¼ Z; n ¼ p ¼ 1; the above

modules Ap;G; %Ap;G were obtained in [21]. Clearly, Ap;G or %Ap;G is indecomposable if

and only if at least one Gi is an indecomposable matrix (here a p � p matrix B is
called indecomposable if there does not exist an invertible matrix P such that

P�1BP ¼ diagðB1;B2Þ for some pi � pi matrices Bi with piop; i ¼ 1; 2) and Ap;G or
%Ap;G is irreducible if and only if p ¼ 1:When p ¼ 1; we refer AG ¼ A1;G or %AG ¼ %A1;G

to as a module of the intermediate series (a notion borrowed from that of modules
over the Virasoro algebra, cf. [15]).
Since each grading space in (1.3) is infinite-dimensional, the classification of

quasifinite modules is thus a nontrivial problem, as pointed in [11,13]. The aim of
this paper is to prove the following theorem (the analogous results for the affine Lie
algebras and the Virasoro algebra were obtained in [7,15]).

Theorem 1.1. ðiÞ A uniformly bounded module over Wð1Þ ¼ WðZ; 1Þ or over #Wð1Þ ¼
#WðZ; 1Þ is a direct sum of a trivial module, a module Ap;G and a module %Ap0;G0 for some

positive integers p; p0 and some GAMn
p�pðFÞ;G0AMp0�p0 ðFÞ (in the central extension

case, the central element C acts trivially on a uniformly bounded module); a quasifinite

irreducible module is either a highest or lowest weight module or else a module of the

intermediate series.

ðiiÞ Suppose G is not isomorphic to Z: A quasifinite module over WðG; nÞ or over
#WðG; 1Þ is a direct sum of a trivial module and a uniformly bounded module; a

uniformly bounded module is a direct sum of a trivial module, a module Ap;G and a

module %Ap0;G0 for some positive integers p; p0 and some GAMn
p�pðFÞ;G0AMn

p0�p0 ðFÞ: In

particular, a nontrivial quasifinite irreducible module is a module of the intermediate

series.

Thus, we in particular obtain that an indecomposable uniformly bounded

WðG; nÞ-module is simply an AðG; nÞ-module (if the central element t0D0 acts by 1)

or its twist (if t0D0 acts by �1), and that there is an equivalence between the category
of uniformly bounded AðG; nÞ-modules without the trivial composition factor and
the category of the finite-dimensional W0-modules obtained by restriction to any
nonzero graded subspace.
A composition series of a module V is a finite or infinite series of submodules

V ¼ V ð0Þ*V ð1Þ*V ð2Þ*?*f0g such that each V ðiÞ=V ðiþ1Þ; called a composition

factor, is irreducible.
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Remark 1.2. Note that the definition of quasifiniteness does not require that V is a
weight module (i.e., the actions of Di; i ¼ 1;y; n on V are diagonalizable). If we
require that V is a weight module, then each Gi in (1.5) is diagonalizable, and thus all
uniformly bounded modules are completely reducible. Also note that in Theorem
1.1(ii), if a module have infinite number of the trivial composition factor, then it is
not necessarily uniformly bounded since any G-graded vector space can be defined as
a trivial module.
We shall prove Theorem 1.1(i) and (ii) in Sections 2 and 3, respectively.

2. Proof of Theorem 1.1(i)

For convenience, we shall only work on noncentral extension case since the proof
of central extension case is exactly similar. In this section, we shall consider the Lie

algebraWðZ; 1Þ ¼ spanftiDj j ði; jÞAZ� Zþg; which is now denoted by W: Then W

is Z-graded W ¼ "iAZWi with Wi ¼ spanftiDj j jAZþg; and it has a triangular
decomposition W ¼ Wþ"W0"W� with Wþ ¼ "i40Wi;W� ¼ "io0Wi: Ob-
serve that Wþ is generated by the adjoint action of L1;0 on W0 and that adL1;0

is

locally nilpotent on W; where for convenience, we denote

Li;j ¼ ti½D�j for ði; jÞAZ� Zþ:

Note that in fact Li;j ¼ tiþjðd
dt
Þj (cf. notation in (1.4)). Suppose V ¼ "iAZVi is a

quasifinite module over W: For any aAF; we denote

VðaÞ ¼ "
iAZ

VðaÞi where VðaÞi ¼ fvAVi j L0;1v ¼ ða þ iÞvg:

Since ½L0;1;Li;j� ¼ iLi;j; it is straightforward to verify that VðaÞ is a submodule of V :

Since Vi is finite-dimensional, there exists at least an eigenvector of L0;1 in Vi; i.e.,
VðaÞa0 for some aAF: If V is irreducible, then V ¼ VðaÞ for some aAF; i.e., L0;1 is

diagonalizable on V and so V is a weight module. Since L0;0 ¼ 1 is a central element

and L0;0jV0
has at least an eigenvector, we must have

L0;0jV ¼ c 
 1V for some cAF if V is indecomposable: ð2:1Þ

Proposition 2.1. Suppose V is a quasifinite irreducible W-module which is neither a

highest nor a lowest weight module. Then L1;0 : Vi-Viþ1 and L�1;0 : Vi-Vi�1 are

injective and thus bijective for all iAZ: In particular, V is uniformly bounded.

Proof. Say L1;0v0 ¼ 0 for some 0av0AVi: By shifting the grading index if necessary,
we can suppose i ¼ 0: Since L0;0jV0

;L0;1jV0
;y are linear transformations on the

finite-dimensional vector space V0; there exists sX2 such that for all kXs; L0;kjV0
are

linear combinations of L0;pjV0
; 0ppos: This implies that W0v0 ¼ Sv0; where S ¼
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spanfL0;p j 0pposg: Recall that adL1;0
is locally nilpotent such that Wk ¼

adk
L1;0

ðW0Þ for k40: Choose m40 such that adm
L1;0

ðSÞ ¼ 0; then for kXm; one has

Wkv0 ¼ ðadk
L1;0

ðW0ÞÞv0 ¼ Lk
1;0W0v0 ¼ Lk

1;0Sv0 ¼ ðadk
L1;0

ðSÞÞv0 ¼ 0:

This means

W½m;NÞv0 ¼ 0; ð2:2Þ

where in general, for any Z-graded space N; we use notations Nþ;N�;N0 and N½p;qÞ
to denote the subspaces spanned by elements of degree k with k40; ko0; k ¼ 0 and
ppkoq respectively. For any subspace M of W; we use UðMÞ to denote the
subspace, which is the span of standard monomials with respect to a basis of M; of
the universal enveloping algebra of W: Since W ¼ W½1;mÞ þW0 þW� þW½m;NÞ;

using the PBW theorem and the irreducibility of V ; we have

V ¼UðWÞv0 ¼ UðW½1;mÞÞUðW0 þW�ÞUðW½m;NÞÞv0

¼UðW½1;mÞÞUðW0 þW�Þv0: ð2:3Þ

Note that Vþ is a Wþ-module. Let V 0
þ be the Wþ-submodule of Vþ generated by

V½0;mÞ: We want to prove

Vþ ¼ V 0
þ: ð2:4Þ

Let xAVþ have degree k: If 0pkom; then by definition xAV 0
þ: Suppose kXm:

Using (2.3), x is a linear combination of the form u1x1 with u1AW½1;mÞ; x1AV : Thus

the degree deg u1 of u1 satisfies 1pdeg u1om; so 0odeg x1 ¼ k � deg u1ok: By
inductive hypothesis, x1AV 0

þ; and thus xAV 0
þ: This proves (2.4).

Eq. (2.4) means that Vþ is finitely generated as aWþ-module. Choose a basis B of
V½0;mÞ; then for any xAB; we have x ¼ uxv0 for some uxAUðWÞ: Regarding ux as a

polynomial with respect to a basis of W; by induction on the polynomial degree and
using the formula ½u;w1w2� ¼ ½u;w1�w2 þ w1½u;w2� for uAW;w1;w2AUðWÞ; we see
that there exists a positive integer kx large enough such that kx4m and
½W½kx;NÞ; ux�CUðWÞW½m;NÞ: Then by (2.2), W½kx;NÞx ¼ ½W½kx;NÞ; ux�v0 þ
uxW½kx;NÞv0 ¼ 0: Take k ¼ maxfkx j xABg; then

W½k;NÞVþ ¼ W½k;NÞUðWþÞV½0;mÞ ¼ UðWþÞW½k;NÞV½0;mÞ ¼ 0:

Since we haveWþCW½k;NÞ þ ½W½�k0;0Þ;W½k;NÞ� for some k04k; we getWþV½k0;NÞ ¼
0: Now if xAV½k0þm;NÞ; by (2.3), it is a sum of elements of the form u1x1 such that

u1AW½1;mÞ and so x1AV½k0;NÞ; and thus u1x1 ¼ 0: This proves that V has no degree

Xk0 þ m:
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Now let p be maximal integer such that Vpa0: Since W0 is commutative, there

exists a common eigenvector v00 ofW0 in Vp: Then v00 is a highest weight vector ofW;

this contradicts the assumption of the proposition. &

Proposition 2.2. Suppose V is an indecomposable uniformly bounded W-module

without the trivial composition factor. Then V is a module of the form Ap;G or %Ap;G:

Proof. First we claim that Li;0 acts nondegenerately on V for all ia0: Say Li0;0v0 ¼ 0

for some i040 and some 0av0AV0: Denote W0 ¼ WðZi0; 1Þ ¼
spanfLi0j;k j j; kAZ; kX0g; a subalgebra of W; which is clearly isomorphic to W:

Let V 0 be the W0-submodule of V generated by v0: Then by replacing W and V by

W0 and V 0; respectively, in the proof of Proposition 2.1, we see that V 0 has a highest

weight vector v0 with respect to W0 (cf. (2.3), the left-hand side of (2.3) is now V 0).
Then v0 generates a highest weight W0-submodule V 00: Since a nontrivial highest

weight W0-module is not uniformly bounded (see for example [11]), V 00 must be a
trivial W0-module V 00 ¼ Fv0: Denote Vir ¼ spanfLj;1 j jAZg; a subalgebra of W;

which is isomorphic to the centerless Virasoro algebra, then v0 generates a uniformly
bounded weight Vir-submodule U of V (note that in general we do not assume V is a
weight module over W). Since Li0j;1v

0 ¼ 0 for all jAZ; by a well-known result of a

uniformly bounded weight Vir-module (see for example, [15,18]), we have Li;1v
0 ¼ 0

for all iAZ: But W is generated by W0 and Vir; we obtain that Fv0 is a trivial W-
module. This is a contradiction with the assumption of the proposition. This proves
the claim.
So, there exists pX1 such that dim Vk ¼ p for all kAZ; and one can choose a basis

Y0 ¼ ðyð1Þ
0 ;y; y

ðpÞ
0 Þ of V0 and define a basis Yk ¼ ðyð1Þ

k ;y; y
ðpÞ
k Þ of Vk by induction

on jkj such that

L1;0Yk ¼ Ykþ1 for kAZ: ð2:5Þ

Furthermore, by induction on p; we see that V has a finite number of composition
factors.
First note that

ti d

dt

� 	j

; tk d

dt

� 	c
" #

¼
X

s

j

s

 !
½k�s �

c

s

 !
½i�s

 !
tiþk�s d

dt

� 	jþc�s

; ð2:6Þ

where ½k�j ¼ kðk � 1Þ?ðk � j þ 1Þ is a similar notation to ½D�j: Now assume that

Li�j;jYn ¼ ðtiðd
dt
ÞjÞYn ¼ Ynþi�jPi;j;n for some Pi;j;nAMp�p: In the following discussion,

we remind the reader that tiðd
dt
Þj is in the grading space Wi�j; not in Wi: Applying

½tiðd
dt
Þj ; t� ¼ jtiðd

dt
Þj�1 to Yn; we obtain Pi;j;nþ1 � Pi;j;n ¼ jPi;j�1;n: Thus induction on j
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gives

Pi;0;n ¼ Pi; Pi;1;n ¼ %nPi þ Qi;

Pi;2;n ¼ ½ %n�2Pi þ 2 %nQi þ Ri; Pi;3;n ¼ ½ %n�3Pi þ 3½ %n�2Qi þ 3 %nRi þ Si ð2:7Þ

for some Pi;Qi;Ri;SiAMp�p; where %n ¼ n þ G for some fixed GAMp�p (here

and below, when the context is clear, we identify a scalar with the corresponding
p � p scalar matrix), ½ %n�j is again a similar notation to ½D�j; and Q1 ¼ 0 (we use

notation %n ¼ n þ G in order to have Q1 ¼ 0; note from ½L0;1;Li;j� ¼ iLi;j that G

commutes with all other matrices involved in the following discussion). Then by (2.1)
and (2.5), P0 ¼ c; P1 ¼ 1 and Pi is invertible for ia0 by the proof above. Applying

½d
dt
; t2� ¼ 2t to Yn and comparing the coefficients of %n

0; we obtain 2cP2 þ ½Q0;P2� ¼ 2

(where ½P2;Q0� ¼ P2Q0 � Q0P2 denotes the usual commutator of matrices).
Comparing the traces of matrices in this equation shows ca0: Thus all Pi are
invertible.
Now we encounter the difficulty that though Pi;Qi;Ri;Si satisfy lots of relations,

most nontrivial relations are too complicated to be used; since the products of
matrices are not commutative nor the cancellation law holds in general, there is still a
problem in finding the solutions for Pi;Qi;Ri;Si: Our strategy is first to find some
relatively simple nontrivial relations among Pi (cf. (2.9)).

First from ½ti; tj� ¼ 0; we obtain that ½Pi;Pj� ¼ 0: Applying ½d
dt
; ti� ¼ iti�1 to Yn

and comparing the coefficients of %n0; we obtain that ½Q0;Pi� ¼ �ic Pi þ iPi�1: By

induction on iX0; we obtain an important fact that P0
i ¼

Pi
s¼0ði

s
Þð�cÞs

Ps; if

not zero, is an eigenvector for adQ0
with eigenvalue �ic: Since the operator

adQ0
acting on the finite-dimensional vector space Mp�p has only a finite number

of eigenvalues, we have P0
i ¼ 0 for ic0: Let qX0 be the least number such

that

P0
i ¼

Xi

s¼0

i

s

 !
ð�cÞs

Ps ¼ 0 ð2:8Þ

for i4q: Note that for any jX0; we have

P00
i;j :¼

Xj

k¼0
ð�1Þk i

k

 !
P0

k ¼
Xj

k¼0

Xk

s¼0
ð�1Þk i

k

 !
k

s

 !
ð�cÞs

Ps

¼
Xj

s¼0
cs

i

s

 ! Xj

k¼s

i � s

k � s

 !
ð�1Þk�s

 !
Ps

¼
Xj

s¼0
cs

i

s

 !
i � 1� s

j � s

 !
ð�1Þj�s

Ps:
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In particular, letting j ¼ i; we obtain that P00
i;i ¼ ciPi and letting j ¼ q; by (2.8), we

obtain

Pi ¼ c�iP00
i;i ¼ c�iP00

i;q ¼ c�i
Xq

s¼0

i

s

 !
i � 1� s

q � s

 !
ð�1Þq�s

csPs ð2:9Þ

for i4q: If 0pipq; (2.9) holds trivially. Observe that ði
s
Þði�1�s

q�s
Þ is a polynomial on i

of degree q with the coefficient of iq being 1
s!ðq�sÞ! ¼ 1

q!ð
q
s
Þ: Thus ð�1Þq

ciPi is a

polynomial on i (with coefficients in Mp�p) of degree q with the coefficient of iq being
1
q!

Pq
s¼0ðq

s
Þð�cÞs

Ps:

By (2.6), we have

3½tðd
dt
Þ2; ½tðd

dt
Þ2; ti�� � 2ð2i � 1Þ½tðd

dt
Þ3; ti� þ ½i þ 1�4ti�2 ¼ 0:

Applying this to Yn and comparing the coefficients of %n0; we obtain

f ðiÞ :¼ 3ðð½i � 1�2 þ R1Þð½i�2 þ R1ÞPi � 2ð½i � 1�2 þ R1ÞPiR1 þ Pið2þ R1ÞR1Þ

� 2ð2i � 1Þðð½i�3 þ 3iR1 þ S1ÞPi � PiS1Þ þ ½i þ 1�4Pi�2 ¼ 0: ð2:10Þ

Using (2.9) in (2.10), we obtain that ð�1Þq
cif ðiÞ is a polynomial on i of degree at

most q þ 4: By comparing the coefficients of iqþ4; we obtain

1

q!
ðc2 � 1Þ

Xq

s¼0

q

s

 !
ð�cÞs

Ps ¼ 0: ð2:11Þ

If necessary, by using the isomorphism in (1.6) (which interchanges Ap;G with %Ap;G),

we can always suppose ca� 1:
Assume that ca1: Then (2.11) shows that (2.8) also holds for i ¼ q: Thus the

minimality of q implies that q ¼ 0 and then (2.9) implies

Pi ¼ c1�i ð2:12Þ

for iX0: Assume that c ¼ 1: Using (2.9) in (2.10) and comparing the coefficients of

iqþ3; we again obtain that (2.8) holds for i ¼ q: Thus in any case, q ¼ 0 and we have
(2.12).

For any iAZ; choose j40 such that i þ j � 140: Applying ½ti d
dt
; tj� ¼ jtiþj�1 to Yn;

we obtain �jðPjPi � Piþj�1Þ ¼ ½Qi;Pj � ¼ 0: This implies that (2.12) holds for all iAZ:

Now using (2.12) and applying ½ðd
dt
Þ2; tiþ1� ¼ 2ði þ 1Þti d

dt
þ ½i þ 1�2ti�1 to Yn; by

comparing the coefficients of %n0; we obtain

ði þ 1ÞððiP0 þ 2Q0ÞPiþ1 � ð2Qi þ iPi�1ÞÞ ¼ ½Piþ1;R0� ¼ 0:
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Thus Qi ¼ 1
2c

1�ið1� cÞi þ c�iQ0 for ia� 1: Letting i ¼ 1; since Q1 ¼ 0; we obtain

that Q0 ¼ �1
2
cð1� cÞ: Hence,

Qi ¼ 1
2
c1�ið1� cÞði � 1Þ for ia� 1: ð2:13Þ

Applying ½ðd
dt
Þ3; tiþ1� ¼ 3ði þ 1Þtiðd

dt
Þ2 þ 3½i þ 1�2ti�1 d

dt
þ ½i þ 1�3ti�2 to Yn; we obtain

ði þ 1Þðð½i�2P0 þ 3iQ0 þ 3R0ÞPiþ1 � ð3Ri þ 3iQi�1 þ ½i�2Pi�2ÞÞ ¼ ½Piþ1;S0� ¼ 0:

Thus,

Ri ¼ 1
6
c1�iðc � 1Þð5� 4c þ ðc � 2ÞiÞi þ c�iR0 for ia� 1: ð2:14Þ

Using ½ðd
dt
Þ2; tiþ1 d

dt
� ¼ 2ði þ 1Þtiðd

dt
Þ2 þ ½i þ 1�2ti�1 d

dt
; we obtain

ð½i�2P0 þ 2iQ0ÞQi þ 2Piþ1R0 � ð2ði þ 1ÞRi þ ½i þ 1�2Qi�1Þ ¼ ½Qiþ1;R0� ¼ 0: ð2:15Þ

Using (2.12)–(2.14) in (2.15), by comparing the coefficients of i3; i2; i; we obtain
c ¼ 1;R0 ¼ 0: Then (2.12)–(2.15) show that Pi ¼ 1;Qi ¼ Ri ¼ 0:

Thus (2.7) shows that ðtiðd
dt
ÞjÞYn ¼ Ynþi�j½n þ G�j for jp2: Equivalently,

ðtiDjÞYn ¼ Ynþiðn þ GÞj for jp2: Since W is generated by ftiDj j iAZ; 0pjp2g;
we obtain that V is the module Ap;G defined in (1.5) (if we have used the isomorphism

in (1.6) in the above proof, then V is the module %Ap;G). &

Proof of Theorem 1.1(i). Assume that V is a nontrivial indecomposable uniformly
bounded module over W: Then V has at least a nontrivial composition factor, so
Proposition 2.2 means that L0;0 must acts as a nonzero scalar on V : Thus, V cannot

contain a trivial composition factor. Thus, Theorem 1.1(i) follows from Propositions
2.1 and 2.2. &

3. Proof of Theorem 1.2(ii)

In this section, we set W ¼ WðG; nÞ; where G is not isomorphic to Z: Denote
Witt ¼ spanftaDi j aAG; i ¼ 1;y; ng: Then Witt is a Witt algebra of rank n: In
particular, if n ¼ 1; Witt is a (generalized centerless) Virasoro algebra.
Denote D ¼ spanfDi j i ¼ 1;y; ng: We can define an inner product on G�D by

/a; dS ¼
Xn

i¼1
aidi for a ¼ ða1;y; anÞAG; d ¼

Xn

i¼1
diDiAD: ð3:1Þ

Then /
; 
S is nondegenerate in the sense that if /a;DS ¼ 0 for some aAG then
a ¼ 0 and if /G; dS ¼ 0 for some dAD then d ¼ 0:
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Proposition 3.1. Any quasifinite W-module V 0 with a finite number of the trivial

composition factor is a uniformly bounded module.

Proof. Let V be a nontrivial composition factor of V 0: Then V is a weight module
over W (i.e., Di act diagonalizable on V for i ¼ 1;y; n). Regarding V as a module
over Witt; then V is a quasifinite weight module over Witt: If there exists some group
embedding Z� Z-G; then by Su [18], V is uniformly bounded. If there does not
exist a group embedding Z� Z-G; then n ¼ 1 and G is a rank one group with
infinite generators (since GD/ Z). By choosing a total ordering on G compatible with
its group structure one can prove (as in the proof of Proposition 2.1 or using similar
arguments as in [17] since in this case the group G behaves just like the additive group
Q of the rational numbers) that V is uniformly bounded. Hence in any case, V is
uniformly bounded. Thus, V 0 has only a finite number of nontrivial composition
factors and so it is uniformly bounded. &

For any pair ða; dÞ with aAG; dAD such that /a; dSa0; we have a Lie algebra of

Weyl type, denoted by Wða; dÞ; spanned by ftiadj j iAZ; jAZþg; which is isomorphic
to WðZ; 1Þ:

Proposition 3.2. Let V be a uniformly bounded W-module without the trivial

composition factor. Then ta 
 va0 for all aAGWf0g; vAVWf0g:

Proof. Suppose tb 
 v0 ¼ 0 for some ba0; v0a0: By shifting the grading index if

necessary, we can suppose v0 has degree 0: Let V 0
0 ¼ fvAV0 j tb 
 v ¼ 0g: Then V 0

0 is

invariant under the action of D since ½D; tb�CFtb: Thus we can find a common

eigenvector (i.e., a weight vector), denoted again by v0; of D in V 0
0: Thus tb 
 v0 ¼ 0

and D 
 v0CFv0: For any d 0AD with /b; d 0Sa0; considering the Wðb; d 0Þ-
submodule V 00 of V generated by v0; by Theorem 1.1(i), and by (1.5) and (1.7),
V 00 must be the trivial submodule Fv0: In particular, d 0 
 v0 ¼ 0 for all d 0 with
/b; d 0Sa0: Since such d 0 span D; we obtain D 
 v0 ¼ 0: If ta 
 v0 ¼ 0 for all
aAGWf0g; then by Theorem 1.1(i), Fv0 is a trivial submodule over Wða; dÞ for all
pairs ða; dÞ with /a; dSa0; and so it must be a trivial submodule over W: Thus
tg 
 v0a0 for some gAGWf0g: Choose dAD such that /b; dSa0a/g; dS: Then by
Theorem 1.1(i) and (1.5), v0 generates a submodule of the intermediate series over

Wðg; dÞ such that ðtigdjÞ 
 v0 ¼ 0 for ja0 and all iAZ (note that the coefficient of the

right-hand side of (1.5) does not depend on a). So tibþjg 
 v0 ¼ /ib; dS�1½tjgd; tib� 

v0 ¼ 0 if ia0: Similarly, ðtibþjgdÞ 
 v0 ¼ 0 if ia0: Choose some i; j with ia0 such that

a ¼ /ibþ jg; dSa0; then tg 
 v0 ¼ a�1½t�ibþð1�jÞgd; tibþjg� 
 v0 ¼ 0; a contradic-
tion. &

Proof of Theorem 1.1(ii). Suppose V is an indecomposable uniformly bounded

module without the trivial composition factor. Choose a basis Y0 ¼ ðyð1Þ
0 ;y; y

ðpÞ
0 Þ of

V0 and by Proposition 3.2, we can define basis Ya ¼ ta 
 Y0 of Va for all aAGWf0g:
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For any bAGWf0g with /b;DiSa0 for i ¼ 1;y; n; set V ½b� ¼ "kAZVkb; then V ½b�
is a submodule of V over Wðb;DiÞ of type Ap;Gi

for some GiAMp�p; i ¼ 1;y; n:

Since ½D;D� ¼ 0; we have GiGj ¼ GjGi for i; j ¼ 1;y; n: Since

fbAG j/b;DiSa0; i ¼ 1;y; ng generates G; it is straightforward to see that V is

a W-module of type Ap;G or %Ap;G with G ¼ ðG1;y;GnÞAMn
p�pðFÞ: If V contains a

trivial composition factor, then V must be a trivial module as in the proof of
Theorem 1.1(i). Thus we obtain Theorem 1.1(ii). &
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