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1.  I N T R O D U C T I O N  

Given a probability distribution Pn,k = Pr {Y(n) = k}, the Shannon entropy is defined by 

E(n) = - Z p n , k  1og(pn,k). (1.1) 

Here Y(n)  is a random variable that  depends upon n, e.g., Y(n)  could be the sum of n i.i.d.s. 
The Renyi entropy is defined by 

E ( n ; w ) =  - - 1  1 w l ° g [  k~Pn~'k ] ' (1.2) 

and we clearly have E(n; w) --* E(n)  as w --* 1. 
A central problem of information theory [1-3] is the computation of these entropy functions, 

especially asymptotically as n ~ oo. In some applications, only very rough bounds are used. For 
example, for a binomial distribution (Pn,k = (n k k ) P (1 -- p)n-k),  the following bounds hold if p -- 
1/2 (see [4]): (1/2)log(Trn/2) < E(n)  < (1/2)log(Tren/2). Thus, as n - *  oo, E(n) ,,~ (1 /2) logn ,  
and this also holds for a large class of discrete distributions. Recently [5], there has been some 
interest in obtaining more precise asymptotic estimates for these entropies. In [5], the authors 
showed that  for a wide class of distributions and n -* co, 

1 1 1 log (27ra 2) + o(1), E(n) = ~ l o g n +  ~ + (1.3) 

We would like to thank W. Szpankowski for making available the preprint [5]. 
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where Y(n) has variance nu2 and has a normal approximation as n -+ 00. For the binomial 
distribution the o(1) term in (1.3) was characterized as an asymptotic series in powers of n-l, i.e., 

-e-1 ZZz”=,oen . The last result was obtained using a method called “analytical depoissonization”, 
which involves generating functions and the estimation of complex contour integrals. 

In this paper, we obtain simple (exact) integral representations for the Shannon entropy of 
some discrete distributions, such ss Poisson, binomial, and negative binomial. From these, full 
asymptotic series as n --+ co for E(n) are obtained. The coefficients in these series are expressed 
in terms of the Taylor coefficients of elementary functions. Then we consider general Y(n) = 
x1 + *.* + X,, where Xj are i.i.d.s. We calculate the first correction to (1.3) and obtain the 

analogous term for the Renyi entropy E(n;w). 

2. POISSON DISTRIBUTION 

We illustrate our method by first considering the Poisson distribution, where 

Pn,k = e 
-nX (4 le 

k! ’ 

The Shannon entropy is thus 

E(n) = _ 2 emnAk$ 
k=O 

k=O,1,2 ,.... 

[-nx + klog(Xn) - log(k!)] 

= nX - nX log(nX) + E log(k!)e-“x@$. 
k=O 

(2.1) 

(2.2) 

We shall represent E(n) as an integral, from which the asymptotic series as n t 00 may be easily 
derived. We start from the elementary identity [6, p. 3781 

1ogA = 
I 

a~ e-z _ e-Ax 

dx, A > 0, 
0 X 

set A = j and sum from j = 1 to j = L?. This yields 

log@!) = klog j = 
co 

/( c _ 1 - ebez 

j=l 0 1 - e-” > 
Gdx. 

(2.3) 

(2.4) 

Using (2.4) to represent log(k!) in (2.2) as an integral and then evaluating the sum over k gives 

E(n) = nX - nXlog(nX) + J [ w e-” nX - 
1 - exp (nx (e-l - 1)) 

0 x 1 - e-” 1 * do 
(2.5) 

We write the integral in (2.5) as I = lim,,c(Pi + P2 + P3), where 

00 e-x 

J 
UJ 

PI = nX Fdx, P2 = - 
em” 1 

-- dx, 
c 1 -e-” z 

P3 = 
J 

O” e-” 1 
-- exp [nX(e-” - l)] dx. 

c 2 1 -e-z 

(2.6) 

For small E, we have 
PI = nX [-loge - y + o,(l)], (2.7) 

where 7 is the Euler constant and o,(l) denotes terms that vanish as e + 0. Similarly, for Pz, 
we obtain 

&-i-i] dx-~me-x [-$+&I dx 

= -1+ f log(27r) - ; - ; loge + 1 - $ + o,(l). 

(28) 
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Here we have set e = 0 in the first integral, explicitly evaluated it as 1 - log ~ (see [6, p. 377]) 
and integrated by parts in the second integral. In P3, we change variables with y = A(1 - e -z)  
and obtain 

[ 
P3 : JA--(1-~- ) e-'~Y dy y log(1 - y/A) 

/0 E ; : e-nU y l o g ( 1 - - y / A )  ~2 + d y + o e ( 1 ) + - P -  e-nY ~-2 dy, 

where 

-P = e -nv dy. 
O-e-~) 

(2.9) 

(2.10) 

Integrating by parts in (2.10) and using 1 - e -~ = e - e2/2 + O(e3), we obtain 

-- ( 1 )  1 ( 1 )  
p = l + e  A n +  l o g ( A e ) + ~ - n A + ( l o g n + 7 )  A n +  +oe(1).  (2.11) 

Using (2.7)-(2.11), we see that  P1 + P2 + P3 approaches a finite limit as e --* 0, which when used 
in (2.5) yields the following. 

THEOREM 1. For the Poisson distribution, we have 

1 1 1 log(21rA) E(n)  = ~ l o g n  + ~ + 

f0)' [ - 1  A ~y] j~A °° (~2  2 y )  + e-"U ylog(1 - y/A) y2 + dy - e -ny dy. 

This is exact for all n > 1. Now we evaluate E(n)  for n ~ o0. The second integral is expo- 
nentially small (O(e-nA/n)) ,  and the first has the form f o  e-nYF(Y)dy ,  where F(y)  is analytic 
at y = 0. By Watson's Lemma [7], we obtain the following. 

THEOREM 2. For n ---, c~, for the Poisson distribution, 
o o  

1 1 1 l°g(27rA)+ Z ~-£n~f~'l+l ' E(n)  ~ ~ logn + ~ + 
£=0 

oo ~'(~(0) y~, 
A 1 ~.~,T.y~ Z = = 
y2 + ~y ~=o ~=o " 

where ~e are obtained from 

- 1  ~:(y) = 
y log(1 -- y/A) 

and, in particular, 

: F o = - -  
-I -I 
12A' 5r1= 24A 2" 

3. B I N O M I A L  A N D  N E G A T I V E  

We consider 0 < p, q < 1 with p + q = 1 and 

B I N O M I A L  D I S T R I B U T I O N S  

0 < k < n ,  n > _ l  (binomial), (3.1) 

k > n, n > 0 (negative binomial). (3.2) 

We again represent log(k!) and log[(n - k)!] as integrals. For the binomial case, this leads to 

E(n)  = - n  (p log p + q log q) 

~0 °° e -x 1 (3.3) + x 1 : ~ - z  [(q+pe-X)" + (v+qe-X) " -  1 -  e-"z] ~x. 

By using ideas similar to the Poisson case, we again obtain an exact integral representation 
for E(n) ,  from which the asymptotics are easily obtained. Below, we give only the final results; 
the details may be found in [8]. 
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THEOREM 3. For the binomial distribution, 

1 1 llog(2~rpq)_log(~2)n_nenv/-~) E(n) = ~ l o g n +  ~ + 

e-"~ e~ l log[(e-~ q)/v] 
JO -- -- 

7 t . f  - l°g(p) e_n, [ 1 - 1  
J0 e¢ - 1 log [(e-¢ - p)/q] 

where F(.) is the gamma function. As n -* o% 

~2 + 

q oo 

o o  

1 1 l log(2~pq) + ~ ~! E(n) ,.. 5 log n + 5 + 2 Ge ne+l,  
£=0 

where Y~-~o G ~  e = G(~) with 

1 [ -1 
a(~) = ~ 'log [ (e - - ( -  q)/p] 

In particular, 

1 
+ log [(e-~ - p)/q] -- + 2-~" 

GO ---- 3 -- 15 -~" ' G1 = ~ + 12 24 + ' 

1) 1) 
lS--6 24 + + ~ + ~ -  + ~  

By setting A = 1 - e -~ and defining ct from the Taylor series - A / l o g ( 1  - A) = ~-~=0 c~ At, 
we can expand G(~) in terms of ct and powers of A. This yields the alternate representation 

1 1 1 log(27rpq) E(n) ~ ~ log n + ~ + 

oo m [ ( n - X ) ] { X  [p-m-1 q-m-I 1]} 
+ Z ~'mTn~ ~Crn+,-em+: [p-m + q - m _  1] + c m + ,  + - , 

rn=O 
rn--1 

as n --* c~. We have co = 1, and for m > 1, cm = - ~ j = 0  cff(m + 1 - j). 
Analogous results for the negative binomial ease are given below. 

THEOREM 4. For the negative binomial distribution (with 0.2)), 

1 1 1  ( 1 )  ( ~ 2 )  ~ ) E(n)=-~logn+-~ + log(21rqp-2)+ l - n l o g  1 +  + log  n-nenvfn 

f0 - l°g(p) [ 1 - 1  qe-___~Ue-~] 
"+" e-nu eU-"-'~ log [(1 -- peU)/q] py2 + dy 

fo ~ [ l e ,  - 1  e-' e-'j dy-/? (l~y 2y) e_nU l log(q + peU) + _~_ff + .~_y ] e_(n+l)y q 1 + 2 dy, 
-- log(p) 

and as n -..., co 
OO 

1 1 1 ~=.~e.-l-~"~UP-~!i E(n) ,,~ 5 log n + ~ + ~ log (2~rqp -2) + 
l=O 

where Y]~=o HeY e = H(y) with 

_1 111 
H(y) = e ~ - I  log[(1 --pe~)/q] + log(q+pe~) + + -~y" 

In particular, H0 = 1/6 - p2/(12q) = -(q + q-a _ 4)/12. 

We have thus obtained the full asymptotic series in a simple form. This method should also 
apply to other discrete distributions that  involve factorial and/or  binomial coefficient factors. 
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4 .  L E A D I N G  T E R M  F O R  G E N E R A L  i . i . d . s  

We now consider general discrete distributions and obtain the first two terms in the expansion 
of E(n)  - (1/2)logn,  and a corresponding result for the Renyi entropy. 

Let X1 be a random variable with density f ( x )  and moment generating function F(0) = 
E[eeX1]. Then for i.i.d. Xj,  we set Y = Y(n )  = X1 + X2 + . . .  + Xn.  The density of Y is 

g(y; n) = ~ e -°~ IF(O)] n dO, (4.1) 
r 

where Br is a vertical contour in the complex g-plane. Assuming the first few moments of X1 are 
finite, we set E[Xka] = mk, y = nml  + v~Z,  and expand (4.1) for 0 small. Sealing 0 = O(n -1/2) 

leads to the "central limit theorem" approximation (see, also, [9,10]) 

g ( y ; n ) =  ~ - ~ e x p  - ~  l + ~ + - -  ' (4.2) 

where a 2 = ms - m 2 is the variance of X1 and 

f* ga 1 ( 7 2 a )  g4 (v~a  , ( 7 2 a ) ~  1 ( ~ 2 ~ )  = -6  (x/~a) 3H3 ' g* = 24 gH4 + 72 (vf~cr) 6H6 . (4.3) 

Here Hk(.) is the k th Hermite polynomial and ~j is the j th  cummulant of X1. Thus, Ha(x) = 
8x 3 - 12x, Ha(x) = 16x 4 - 48x 2 + 12, and 

aa=ma-3mim2+2m•, ~4=m4-3m~-4mlma+i2m~m2-6m~. (4.4) 

For n - -  co, we use (4.2) to evaluate (1.1), noting that  the sum may be approximated by x/~ 
times an integral from z = -¢x) to z = +cx), with an error that  is exponentially small. We thus 
obtain the following. 

THEOREM 5. For a general discrete distribution with finite moments, we have as n --~ oc, 

S(n) - E(n)  - -~ log n - + ~ log (27ra 2) ,,~ 12a 6 n" 

I f  the third cummulant vanishes (e.g., binomial case with p = q = 1/2), then S(n) ~ _~2/  
(48aS)n -2 .  If/~3 = 1'~4 . . . . .  ~N = 0 but /'~N+I ¢ 0, then S(n) ,,, - a 2 + 1 / [ 2 ( N  + 1)! 
(72N+2]nl-N" 

A full asymptotic series for S(n) may be obtained by first deriving the full series in (4.2) (as 
was done in [9,10] for related problems) and using the result in (1.1). 

Theorem 5 also applies to continuous distributions, then E(n)  = - f g(y; n) log[g(y; n)] dy. For 
example, if X1 is exponential with density e -x (x > 0), then we obtain (exactly) E(n)  = log F(n)+  
n -  ( n -  1)¢(n), where F(.) is the gamma function and ¢(n) = r ' ( n ) / r ( n ) .  Now S(n) ~ -1 / (3n) .  
For Gaussian X1, we clearly have S(n) = O. If X1 is geometric, i.e., f ( x )  = ~k°¢=1 pqk-16(z - k), 

oo ( k-1 ) p,~qk-n6(y _ k) and Theorem 5 gives S(n) ,,~ - ( q  + q-1 + 2)/(12n). then 9(y;n) = Y~k=n n-1 

This agrees with Theorem 4 if we note that  the entropy/~(n) of this distribution is related to 
the entropy E(n)  of (3.2) by E(n  + 1) = E(n).  

Using (4.2), we obtain the Renyi entropy. 

THEOREM 6. Under the same assumptions as Theorem 5, 

1 1 1 logw ] 
S ( n ; w )  --  E(n;w) - ~ ogn+ ~ log (27ro "2) + 2('~---].) 

1[,,, ,,5 ]1 
~ -  3 2) - 

w ggi  4 ( 1  - + - n"  

As w ~ 1, this reduces to Theorem 5 for ~3 ¢ 0. 
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