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1. INTRODUCTION

The papers of many authors [1-10] are devoted to the finding of
conditions for asymptotic equivalence of systems of ordinary differential
equations. The present paper considers the problem of the asymptotic
equivalence of the systems with impulse effect

ijf:Ax+f(t,x), t#E T,
dt
(1)
Ax |, - ., = Bx(1,) + b(x(1,)), k=1,2,..,
and
d
E’—‘;—:Ay, t#1,,

(2)
Ay |l=‘rk=By(1:k)’ k= 19 29 ooy

where x,y:I—-R" f:IxR"—>R", b:R">R"; I=[0,0); R" is the
n-dimensional Euclidean space with a norm |-|; 4 and B are constant
nxn matrices; the moments {r,} form an increasing sequence
O=1,<1,< - <1< -+5 limy T, = 00.

For the systems with impulse effect of the kind (1) it is characteristic that
at the moments ¢ =1, the mapping point (7, x) undergoing a short period
effect (a hit, an impulse) moves from position (74, x(1,)) to position
(74, x(74) + 4x(7,)) simultaneously.
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We assume that at the moments of impulse effect ¢ = 7, the solutions of
system (1) (or (2)) are left continuous, ie., x(t,—0)=x(1,), 4dx(1;)=
x(1 +0)— x(1,).

We shall use the following definitions for asymptotic equivalence.

DErINITION 1. We say that the systems with impulse effect (1) and (2)
are asymptotically equivalent, if to every solution x(¢z) of (1) there
corresponds a solution y(¢) of (2) such that

lim [x(1)— (1) =0 (3)

11— o

and conversely, to every solution y(¢) of (2) there corresponds a solution
x(t) of (1) such that (3) holds.

DerINITION 2. We shall say that between the systems with impulse
effect (1) and (2) there exists a restricted asymptotic equivalence if relation
(3) is fulfilled only between some subsets of solutions of (1) and (2).

We shall note that the first results, connected with establishing
asymptotic equivalence of systems of differential equations with impulse
effect, are obtained in [11].

2. PRELIMINARY NOTES

Let tyel, xoe R". We denote with x(¢; t,, x,) the solution of system (1),
for which x(ty+ 0; t4, xo) = X, and with J * (¢4, x,) the maximum interval
of the kind (¢,, w) on which this solution is defined.

Further on we shall use the following notations: i(s, ¢) is the number of
the points 7, lying in the interval (s, t); || 4] =sup,, _, |4x| is the norm of
the n x n matrix A4; E is the unit n x n matrix; 0,, is the zero m x m matrix;
and diag(A4,, 4,) is the quasi-diagonal n x n matrix with blocks 4, and 4,.

We say that the conditions (A) hold if the following conditions are
fulfilled:

(A1) The function f(¢, x) is continuous and locally Lipschitzian in x
on IxR"

(A2) The functions b,(x), k=1, 2, ..., are continuous in R".

(A3) The matrices A and B commute and det(E + B)#0.

(A4) There exist constants Q >0 and p > 0 such that

[i(to, 1) —pt—1)| < Q for 0<ty<t<o0.
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(AS) For (t,x)eIx R" and k=1, 2, ..., the inequalities
| (2, ) < H(2, |x|), |b(x)] < Bllx])

hold, where the functions H(t, u) and f,(u), k=1, 2, ..., are continuous and
non-negative for ¢t >0, >0 and non-decreasing in u > 0.
For proving the main results we shall use the following lemmas:

LemMma 1 {5]. Let the function g(t) be non-negative and continuous in 1
and such that either j'3° g(t)dt < oo orlim,_, , g(t)=0. Then for every ¢ >0

lim j e 7= g(s) ds =0.
0

t—
LEMMA 2. Let ge[0,1), y. =0, and lim, ,  y,=0. Then

lim Z gc ,=0.

k—x
i=

Proof. Let w=sup,y, and the number ¢ >0 be given. We choose the
number N; such that for k> N, the inequality y, <e&(l —q)/2 is fulfilled
and N, is such that 2wg™ <&(1 —q). Then for k> N, + N, we have

k . Ny ) k )
0<Y ¢ =Y ¢ v+ Y 4
i=1

i=1 i=Ni+1
\wq"*Ml'qu fl—-g) 1—-¢" ™
1—¢q 2 l—g¢q
N2
wg™ NN, € &€
< e < — =g,
i—¢7 3373

LeMMA 3. Let 6>0 and the sequences {y,} and {t,} be such that
e=20,lim, | . v:.=0, 1, ~71,_,260>0, 7,>0. Then

lim Y e U7y, =0, (4)

e P
Proof. Letrt,<t<t,,,.Then1,—1,2(n—1i)0 and

e—aO(n~i)

1

n
OS z —a(t t'?, Z e—a(r,,~t,y1< v

O<r<t

H'M=

i

We apply Lemma 2 with g=e~°? and get (4).
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3. MAIN RESULTS

First we shall investigate the question of the asymptotic equivalence of
system (2) and the system

dz
E=A2+g(t)a [ #1;,

(5)
dz|,_,=Ba(t,) + b, k=12,

where b, € R", k=1, 2, ..., and the function g: I - R”" is continuous for e/,
t#1,, at the points t=1,. g(z) may have a first kind discontinuity and is
left continuous.

Since the general solution Z of the linear non-homogeneous system (5) is
in the form

Z=Y+n,
where Y is the general solution of the linear homogeneous system (2) and 7

is a partial solution of (5), then the following theorem holds.

THEOREM 1. Let det(E+ B)#0. Then the systems (2) and (5) are
asymptotically equivalent if and only if system (5) has at least one solution
zo(t) such that

lim zo(t)=0.

t— oo

Before stating the following results we shall do some preliminary
reasoning and introduce new notations and assume everywhere that the
conditions (A3) and (A4) are fulfilled.

Let t4€ 1, yo€ R™. Since the matrices 4 and B commute, then the solution
y(t; ¢y, yo) of system (2) is in the form

y(t7 t07 ,Vo)=(E+B)i“°")eA“"°).Vo, t>t0>07
i.e., the Cauchy matrix Y(¢, ¢,) of system (2) is
Y(t, ty) =(E+ B)i(’m’)ef‘(’—’o)z (E+ B)i(to,t)‘p(r—to)eA(iﬂo)’

where A=A+ pIn(E + B).
The matrix A can be represented in the form

A=S""'diag(4_, 4,) S,

where A4 _ is a Jordan ¢ x g matrix with eigenvalues 4,4 _), which have
negative real parts, Re A(4 _)<max, ., ,Rei(4_)=-—a<0, and 4, is
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a Jordan rxr matrix with eigenvalues A(A,), for which 0<1,(4,)<
max, ;. <icnAlAo) =4 g+r=n; det S#0.

If the matrix A has eigenvalues with a real part equal to p then we
denote with d(u) the maximum order of these blocks of the matrix
diag(A _, A,) which correspond to the eigenvalues with real parts p.

We assume m=d(1), w=d(—a), v=d(0) if A, has eigenvalues with real
parts, equal to zero or v= 1, in the opposite case.

We introduce the matrix functions

G(t B (E+B)i(s’l)7p(tis)571 diag(eA,(tfs)’ er(r—s))S, 1>,
,8)= (E+B)—i(r,s)+p(:—t)S~l diag(e"*"“", er(tfs)) S, 1<s,
G (g {E+BITPIS  diag(e? 1 0))5, 1>,
L Ss)= (E+B)~i(z,s)+p(s~1)snl diag(eA,(lfs), O,)S, 1<s,
Gt )< (BT BIU0 705" diag(0,, e ), (>,
ol )= (£ + B) -0 +r=0 g1 diag(0,, e""~)S, 1<s.

The immediate check shows that

G(t,s)zG_(t,S)+G()(t,S), (6)

G(t, 1)=E, tel, (7

G(te+0, 1) =E, k=1,2, .., (8)

G(1,+0, s)=(E+ B) G(14, 5), 5 <Ty, 9)
ou

—6—[=AU, t# T4, (10)

where U is one of the matrices G, G _, or G,.

Golt, s)=G(1, t5) Golto, 5), t>1y, $>ty, t#T,, SFT, (11)
Go(t, 1) =G, tg) Flty, T, toel, k=1,2,.. (12)

where F(t,, 7,) = (E + B)*Gy(1,, T,) and the number w is equal to 1, —1,
or 0 depending on the mutual position of ¢,, ¢, and 7,. Then from (7)-(10)
it follows that for the solutions y(t; ¢, o), 2(Z; 1o, Zo), and x(t) = x(2; t, Xg)
of systems (2), (5), and (1) for #> ¢, the relations

W(t; to, ¥o) =Gt to) yo, (13)

2t 10, 20) = Glt, 10) 20+ [ G(1,5) gls) ds

+ Y Gt by, (14)

p<TE<t
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x(1)=G(4, to)x0+j (t, 5) f(s, x(5)) ds

+ Z G(t, 1) bp(x(t4))

< tE<t

hold.
Having in mind the structure of the matrix 4 and condition (A4) we
obtain that for the matrices G, G_, G,, and F the estimates of the kind

IG_(1, 8)l <ae "'~y (t—s), O0<s<r<o0, (15)
[Go(t, $)Il < ax (s —1), 0<r<s<oo, (16)
I F(to, T )ll < ax (14 — o), 0<to<1y, (17)

1G(t, $)|| € cge™ y,,(t—5), 0<s<t< o0, (18)

hold, where @ >0 and ¢, >0 are constants and

(0)= (! for =1
Xt = 1 for 0.

THEOREM 2. Let the conditions (A3) and (A4) hold and
fc el gl di+ Y i bl < oo (19)
o k=1

Then system (5) has at least one solution z(t) for which lim, , , zo(f) = 0.

Proof. Let z(1) =z(1; 0, zo) be a solution of (5). From the estimates (16)
and (17) and condition (19) it follows that

o0

Y F(1, 1) by < o0

“w Golt, s) gls) ds| +
0

for every fixed t € 1. Then having in mind the formulae (11), (12), (14), and
(6) we can write

2() = G(1, 0) [zo+f°° Gol0, 5) gls)ds+ 3 FIO, rk)bk]

f G (1,5)g(s)ds+ Y G_(t,7) by

<t

—f Golt, s) g(s) ds+ Y. Golt, i) by

1< Tk
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We choose zo= — [ Go(0, 5) g(s) ds— X, F(0, 7,)b,. Then the solution
zo(t) has the form

zo(1) = jo G (t,s)gls)ds+ Y G _(t,t)bs

O<t<t

_Lm Golt, s) g(s)ds— Y Golt, 7)) b

(<1

Let sup, e~ "y, (u)= M. Then from estimate (15), condition (19),
Lemma 1, and Lemma 3 it follows that

Z:

[[6_hogwds+ T G (L1)h,

<1<t

t
<[ ae =) gl ds+ T aem 0y 1=, lby

Q<<

t
SL e~ PNy (1 5) e HDU=9)| ()| ds

+ Z aeflm/Z)(tfrk)xw(t_.ck)ef(a/z)(r-rk)Ibkl

O<t <t

S(aMJ e | o(s) ds+aM )y, e @ |bk|> -0,
0

O<tp<t

as t— .

From the estimate (16) and condition (19) it follows that for 1> 1,

7" Gult 9 s ds+ 3 Gl v

1<ty

<af ps-0lg6lds+a T p(m— lbl

1<t

t+1
<a[ lglsldsta ¥ b

<y <t+1

+a'f s lgs)ds+a Y T bl

1+1 r+ 1<t

<2a (jw s gls) ds+ Y T |bk|> -0,

{ t< T,

as t-— 0.

Therefore lim, _, , z4(¢) = 0. Thus Theorem 2 is proved.
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THEOREM 3. Let the conditions (A) hold and

j CUH(G ) di+ Y 1 ule) < oo (20)
¢ k=1
Jor every ¢ =20.
Let system (1) have solutions which are defined and bounded on intervals
of the kind [t,, co}.
Then for every such solution x(t) there exists a solution y(t) of system (2)
so that (3) is fulfilled.

Proof. Let x(t) be a bounded solution of system (1) defined on
[, c0)c= I and ¢ =sup,. , [x(¢)].

If y(¢) is an arbitrary solution (2) then z(¢) = x(¢) — y(t) is a solution of
the system

dz

E=Az+f(t, x(6)), 1#£1,,

AZ l:=rg=BZ(Tk)+bk(x(rk)), k= 15 2’ ey

(21)

and if z(¢) is a solution of (21) then y(¢) = x() — z(¢) is a solution of (2).
Using (20) and condition (AS5), we get

[T e e xldie 3 1t b))

0 10 Tk

<f°c PoH( ) di+ T 1 Bale) < oo

sy

Therefore, according to Theorem 2, system (21) has a solution z,(¢) such
that lim, _,  zo(t) =0. Then for the solution yy(t) = x(¢) — z4(2) of system
(2) we have

,li“; [x(1) = yo(2)l =0.

THEOREM 4. Let the following conditions be fulfilled:

(1) The conditions (A) hold.
(2) x(t) is a solution of system (1) such that

[x(1)] < ce*t, 121,20,

where ¢ 20, u=0, and h> 0 are constants.

3) f:o £ UH( ce ") di+ Y T Ba(cet™l) < oo.

k=1
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Then there exists a solution y(t) of system (2) for which
lim,_,  [x(¢) = y(£)| =0.

The proof of Theorem 4 is analogous to the proof of Theorem 3.
If the conditions (A3) and (A4) are fulfilled, then from (13) and (18) it
follows that for the solution y(¢) of system (2) an estimate of the kind

()1 <o |p(O)] e¥xnlt), 120, (22)

holds.
If the systems (1) and (2) are asymptotically equivalent then for the
solutions x(1) = x(t; t, xo) of system (1), estimates of the kind

[x()] < De™" ™y, (1 — t5), 1> 1ty, (23)

hold, where D = D(t,, x;).
The following Theorem gives sufficient conditions under which for the
solutions of system (1) the estimate (23) holds.

THEOREM 5. Let the following conditions be fulfilled:

(1) The conditions (A) hold.
(2) For every c=0

[ e Ht, ety ) di+ ¥ e Bulce T (n)) <o (24)
0 k=1
(3) There exists t, =0 such that

1 reo
sup l:—f e MH(t, ce*y, (1)) dt

21 LC Y5

1 ; . 1
+ - Y e v/'rkﬂk(cemxm(fk))] =S <z_—0, (25)

0 <7tk

where cq is from (22). Then every solution x(t) = x(t; ty, xy) of system (1) is
defined for t > t, and the estimate (23) holds.

Proof. Let x(t)=x(t;ty,x,) be a solution of (1) Then for
teJ *(to, Xo),

x(1) = G(1, 15) x0+j' G(t, 5) f (5, x(s)) ds

+ Y Gt 1 )bx(z)). (26)

n<tp<t
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First we assume that J *(1,, xo) = (to, o). Then from (26), (18), and
condition (A5) it follows that

lx(£)] S coe* ™y, (1 —tg) x|

+ [ et (1 -5) Hs, Ix(s)]) ds

0

Z coe™ Wy (1= 14) Bellx(Ti)]).

n<t<i

Since 1, <s<t, then t—s<t—1y, Y.t —85)<y.{t— 1), and

N B ! I
[x(0)] < coe™xmlt —1o) l:lxol e 0+ f e “H(s, |x(s)|) ds

0

. e"%(lx(u)l)}

< Th<t
We set
T 5
Ar=Ixol e 0+ [ e P H(s, |x(s)]) ds
0
+ ) e FHBlx(l), T>t,. (27)
to<t<T
Then
(x(1)] S coe*ymlt—1y)  for t,<t<T. (28)

We shall consider two cases:
(a) Ar<l/cyfor T>t,. Then from (28) it follows that
Ix(2)] S e*fe™ =y (t—1t,)  for t>1t,.

(b) There exists Ty>1, such that c¢q4,,>1. Then c¢y4,21 for
T> T, since A is non-decreasing in T and from (25) it follows that

foo e " MH(S, coAre™1,.(s)) ds

0

+ Y e BilcoArer pm(ti)) < Scod (29)

Wy < Tk
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From (27)-(29) and the monotonicity of H(t, u) and f.(u) in u we
obtain

T N .
A< xel e"“°+J' e " H(s, coA e (s —1,)) ds

]

+ Z e Br(co A ety (T, — 1))

to<t<T

< |xol e 0 +j e *H(s, coAre™y,(s)) ds

o

+ Z eihkﬁk(CoA Teme(Tk))

o < Tk
< |xol e "M+ Sco A,

or

lxol €70
Ar—v07.
"= 1—Sc,

We substitute in (28) and get

[x(2)] S%Q}e}‘('”’O)xm(t- to), to<t<T. (30)
— €

But the right-hand side of the inequality (30) does not depend on T.
Therefore (30) is fulfilled for every ¢>t, and an estimate (23) holds in
case (b).

Now let us assume that 7 * (1, xo) = (¢4, @), ® < 0. Then |x(¢)| should
be unbounded for re(ty, w). By the same reasoning as above for
Te(ty, w), we obtain that for |x(¢)| that the estimate (23) holds for
te (ty, w). But this contradicts the unboundedness of |x(¢z)|. Therefore,
T *(ty, xo) = (2g, 00) and (23) holds for 1> ¢,.

Theorem 5 is proved.

Remark 1. Condition 3 of Theorem 5 can be replaced by the condition

lim l[jwe*"H(t, ce*y (1) dr+ Y e‘“"ﬂk(ce“"xm(tk))]=0 (31)

19> C 1 fo< Tx

uniformly in ¢ > 1.

Before formulating the following theorems we shall make some
preliminary investigations. Let D = and the function p: D — I be positive
and continuous. We denote with S(D, R”, p) the space of functions
f: D— R", which satisfy the following conditions:
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(1) The function f(¢) is continuous for te D, t # 1, and

/)
ren o =

(2) There exist the limits

fte=0)= lim f() if 7,e(a B],

t—>14—0

f(t,+0)= lim Of(t) if t.e(a B),

(32)

and

flr,—0)=f(1,+0) if t,e{a, 1D, k=12, ...
We denote with M(D, R", p) the space of functions f: D — R”", for which the
equality of the kind (32) is fulfilled.

Clearly, S(D, R”, p) = M(D, R™, p).

In the spaces S(D, R”, p) and M(D, R™, p) we introduce the norm

i1, =sup L0 (e ao, &7, ).
teD P(t)

If f,, fe M(D, R", p) and | f,—f|,—0 as n— oo, then lim, _, , f,(¢)
= f(¢) uniformly in ¢ on every finite subinterval of D.

Then following the proof of [ 12, Theorem 1.4.8], it is casily proved that
S(D, R", p) is closed in M(D, R", p) and M(D, R", p) is complete and
according to [12, Lemma 1.4.7], S(D, R", p) is complete, i.e., S(D, R, p) is
a Banach space.

Let D, D and & < S(D, R”, p).

DerFINITION 3. The set & is quasi-equicontinuous on D, if for every
¢>0 there  exists 6>0 such that, if fe#; k=12, .;
t,t€(Te_ ), Tl D, and |, —t,] < then

|f(2)) —f(22)] <k,
LEMMA 4. The set F < S((0, T, ], R", p) is relatively compact if and only
(1) & is bounded, ie., | f|,<c for every fe # and some ¢ > 0.
(2) & is quasi-equicontinuous on (0, 7, ].

Proof. 1t is clear that F =% x -.- xFH <S8, x --- x§, =S, where
S;=S((t,_, ;L. R, p), i=1,2,..,k, and &, i=1,2,.,k, is the set of
functions f;: (t,_,, ;] = R™, for which

L) =1(1), te(t, 1, 1,), feZ.
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The set & is relatively compact in S if and only if every % is relatively
compact in S;. But according to the Arzela—Ascoli theorem, this is fulfilled
if and only if % is bounded and equicontinuous, i.e., when conditions (1)
and (2) of Lemma 4 are fulfilled.

Remark 2. Lemma 4 remains true if in its formulating we replace the
interval (0, 7, ] by [0, 7. ].
LEMMA 5. Let # = S(I, R", p) and the following conditions be fulfilled.
(1) There exists @ € S(I, R", p) and a number d> 0 such that

If—ol,<d  for fe#F.

(2) For every £>0 there exists T>0 such that |f(t)— (1) <ep(t)
for t>T and fe F and F is quasi-equicontinuous in [0, T].
Then & is relatively compact.

Proof. Without loss of generality we assume that ¢ = 0. In the opposite
case, the proof of Lemma5 is done for the set # = {heS(I, R", p):

h=f-o,feF}.
Let £¢>0 be given. We choose T'=1, such that

| (D <eplt) for t>T. (33)
But from the conditions of Lemma 5 it follows that the set
Fr={geS([0, T], R", p):g(t)=f(1), 1€ [0, T], fe F }

satisfies the conditions of Lemma 4. Therefore, % is relatively compact in
S([0, T], R", p).

Then there exist f, e #, k=1, 2, ..., [, such that for every fe # and some
k=1,2,.. [ we have

IS () —filt) <ep(r)  for te[0, T]. (34)

From (33) and (34) it follows that the functions

(t)={fk(t)’ te[o’ T]a
&« 0, 1>T, k=1,2,..,],

are such that for every fe & there exists k=1, 2, ..., / such that

[f(t)—gult)l <ep(t)  for tel

Therefore, g, .., g, form a finite ¢-net and £ is relatively compact in
S(I, R, p).
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THEOREM 6. Let the following conditions be fulfilled:

(1) The conditions (A) and the condition (31) hold.
(2) For ¢=20 and 220 the inequality

[0 H ety () di+ T 1 Bulee gt <0 (35)
0 k=1
holds.
(3) For ¢c=0 and 1 <0 the inequality

V e MH(1, ce* (1)) dt + Y, e PR i(cet ™y, (T,)) < 00
k=1

0
is fulfilled.
Then the systems (1) and (2) are asymptotically equivalent.

Proof. From conditions (2) and (3) of Theorem 6 it follows that
condition (24) is fulfilled. Therefore, Theorem 5 holds.

Let A <0. Then from Theorem 5 and estimates (22) and (23) it follows
that Hm, ,  x(¢; ¢y, xo) =lim,_ , p(; 1y, Xo)=0 and the asymptotic
equivalence of (1) and (2) is evident.

Now, let A0 and x(¢) = x(¢; t,, x,) be a solution of (1). Let us consider
the system

d:
£=A2+f(t, x(1)), £,

Az |, . =Bz(t) + by(x(t)),  k=1,2,...

(36)

From Theorem 5 and condition (2) of Theorem 6 it follows that
U X)) <07 H(E ety (1), 1> 1,
T b (z ) 7 Bl ml(Ti)) Ti> to.

Then

[T @) de+ T o bzl < o

L] 10 < T4

and according to Theorem 2, system (36) has a solution z,(¢), for which
lim,_,  zo(t)=0. Then y(t)=x(t)—zy(¢) is a solution of (2) and
lim, _, , |x(¢) = »(2)| =0.

Let y(¢)=y(¢; 0, y,) be a solution of (2).

Let # >0 be a constant and p(¢) = e*y,,.(1).
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According to (35) we can choose 1, 1, #, # 1, such that

Rito) = (a +aM) [J“ &V H(s, ¢ (s)) ds

1y

-
Z T, '"Bilc e'Tka Tk))J<’1,

o< Tk

where M =sup,.oe” "y (u), c;=cq|yol +1, and the constants a, o,
and ¢, are from the estimates (15) and (18).
We choose such a r,. Then for the operator

o=y +[ G_(L9)f o) ds+ T G5 1) bulo(r)

(] p<Tp<t

—] Gult. )1 0N ds— T Golt ) bulolz)) ()

1<ty
we shall prove the following:

(I) V is defined on B, = {@ e S([1,, ©), R", p): o =y, <n}.
Indeed, let pe B,, ie

lp(1) = y(0)] Sne*yn(t), 1>t
Then from (22) it follows that
|Q(DI < (co | yol +1) e sm(t) = ce*ynlt), 1> 1o, (38)
and successively we get the estimates
|Golt, ) f (s, p(s))] S ayls — 1) H(s, |o(s)]
<as* " 'H(s, ¢, e™y,(5)), szt>t2l, (39)
1Golt, 1) bil@(ul < aty ™ 'Bele ey ml(ty)),  Te2t>121. (40)

From (39), (40), and (35) it follows that the improper integrai and the
series in (37) are convergent, i.c., the operator V is defined on B,.

(I1) VB, < B,. This follows from the estimate
Vo) =30l <[ 16l 91165, 0(s))] d

+ Z 1Go(t, i)l 1B ()

<tk <t

#7169 1S5 oDl ds+ T 1G (1, ) i)

1< g

409/135/2-16
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<af e (1= 5) His, ¢, e*1,(s)) ds

o

ta Y e Tn (=) Bele et n(Ti))

n<tp<t
+a | nls— 1) H(s, e,e¥,(s)) ds

+a Z Xv(Tk - t) ﬂk(cl ethm(Tk))

1<,

<aM I[ H(s, c,e™y,,(s)) ds

L]

+aM z Bilcie*™xm(ti))

o<ty <t

+ af s' T VH(s, ¢ €™y ,,(s)) ds
14

+a Z T I,Bk(ﬁeikxm(rk))

<t
< R(15) <n<ney, ().

(II) ¥V is continuous on B,.
Let ¢>0 be given, ¢,, € B,, and |l¢,— @], — 0 as n — 0. We choose
t; >ty such that 4R(r,) <e. For t>f, we have

Vo) = Vo)l <[ 1Go(t, ) 175, 0,() 1(s, (s)| ds
+ Z [Go(t, T )l 1bil@a(T)) — brl@(T))l

g <t <t

+ j T1G_ (1, ) 115 0uls)) — (s, 0(s))] ds

+ X 1G_(15) 1bil@u(12)) ~ bil (T ).

£ 73
Using the estimates (15), (16), condition (AS5S), and considering cases
tp<t<t,and 7, <t, <1, we get that for > ¢, the inequality

Vo, (1) - Vo(1)|
<[ (@M+as' =) 1105, 0,(5) — £ (5, (s))] ds

+ X (@M +atY) [b(9u(1i) — bilo(1,)) +2R(1)

1<t < 1y
=7,+2R(1))
is fulfilled.
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From the continuity of f(¢, x) and b.(x) and from the fact that
@,(s) = @(s), as n — oo, uniformly with respect to s € (¢, ¢, ], it follows that
there exists n, > 0 such that if n>n, then 7, <¢/2.

Then [Vo,(1) — Vo(1)] <e <ege*'y,,(1), or |Vo,— Vol ,=¢, ie, Vis con-
tinuous.

(IV) lim,, , |Ve(t)—y(t)| =0 uniformly in ¢ € B,.

Indeed, for 1= 1, |Vo(r) — p()| < I + T, where

[G a)fso6nds+ T 6_(1m)bilow)

0 o< tp <t

g, =

sa f "o =y (1 — 5) H(s, ¢,€"n(s)) ds

]

+a Z e Iy (1—1) Bile e n(1h))

<t <t

t o
San e I (s, ¢, eMy,(5)) ds

]

+aM Y e CPUTIB (e ety (1)), (41)

<<t

7=\ Gult9)f s 061 s+ T Golt ) uloten)

[

<a|” pds—1) Hs 5,71,(s)) ds

+a Y 1t — 1) Bilc1€* % m(Ti))

I Ty

<[5 G cepeN dit T T e e ). (42)

t 1< T

From (41}, condition (35), and Lemma 1 it follows that 7, -0 as 1 > .
and from (42) and condition (35) it follows that Z, —» 0 as ¢ — c0.

(V) The set VB, is relatively compact.

We shall prove that # = VB, satisfies the conditions of Lemma 5.
Let £ >0 be given. We choose T> ¢, such that

|Vo(t)—y(t)] <e for 1<T.

This is possible according to assertion (IV).
It remains to be proved that # is quasi-equicontinuous on (tq, T].
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Let T, > T be chosen such that 4R(T,)<e¢. Using (15), (38), (39), and
(40), we obtain that for ¢, t,e (1, _, 1.1 N (L, T, t, <t,, the estimate

V(1) = V()

<) =30+ [ 16 (120 )= G (11, 9] 1£(5, 05D s

+ Z G (13, 1) =G _(t1, )l [be(p(t))]

n<Th <t

7 1Gult2, )= Golt, 1 1/ (5. 9(5))]

+ z [Golty, 7)) — Goltys Te)l |br(@(T4))]

n<u<T)

+j G (12, )] 1/(s, @(s))] ds
+] *1Golt1. )1 1/ (s, 0(s))] ds

] 1Go(t20 )= Golt, ) 115, 9(s)) ds

+ Z [Golts, 1) = Golty, 1)l |be(@(T4))]

i<y

<1y() =y + [ 16 _(12,.5) =G (11, ) H(s, e,/ T, (T)) ds

+ Z |G (12, 1) — G (11, T)l Belc, eyl T))

n<u<T

A
+ [ 1Golt2, )= Golty, ) Hs, 1e*T,(Ty)) ds
5]

+ Z |Golt2, Ta) = Golty, Tl Bilc,e* " y,n(Ty))

nEy<n

+(@M+a) T~ 'H(T, c,e* "y, (T))t,— t,) + 2R(T,)
=|p(6) =y + T (¢, 1)+ 2R(T))

is fulfilled.

From the last estimate and from the properties of the functions
Go(t, 5), G_(1, 8), y(1), and @(¢) it follows that there exists > 0 such that if
|t —t,] <o then

[¥(t2) =y + T (1, 1) <e/2.
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With this choice of & we have that for every k=1,2, .., ¢€ By, and
t, 1€ (T, Tl O (g, T, |1, — 15| < 6 the inequality

Vol —Vo(r) <e
is fulfilled, ie., # = VB, is quasi-equicontinuous.

The assertions (1), (I1), (II1), (IV), and (V) provide for the application of
Schauder’s theorem, according to which the operator V' has a fixed point
xeB,, ie, x(t)=Vx(t) for t > t,. The immediate check shows that x(#) is a
solution of system (1) and from assertion (IV) it follows that
lim, . [x(¢) = y(O)l =lim, . |Vx(1) = p(1)| =0.

THEOREM 7. Let the conditions of Theorem 3 hold. Then there exists
restricted asymptotic equivalence between the set of all bounded solutions of
system (1) and the set of all bounded solutions of system (2).

Proof. Let x(1) be a bounded solution of system (1). Then, according to
Theorem 3 there exists a solution y(7) of system (2) which satisfies relation
(3). But from (3) it follows that y(z) is also bounded. Now, let y(1)=
¥(£;0,y,) be a bounded solution of (2). The proof that there exists a
solution x(7) of system (1) which satisfies relation (3) is done in the same
way as in Theorem 6. The only difference is that the operator V: B, - B, is
considered on the set

B,={@eS([ty, ©), R", p)): lo—yl,, <n},

where p,(7)=1, and the point 74> 1, 1, # 1, is chosen such that

R(ty) = (a +aM) (jm S""'H(s,c,)ds+ Y r,”(‘ﬁk(cl)> <n,

0 0<%

where M =sup,.oe "y (u), ¢, =cq|yol +1 Condition (20) is con-
siderably used in the proof.
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