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1. INTRODUCTION 

The papers of many authors [l-lo] are devoted to the finding of 
conditions for asymptotic equivalence of systems of ordinary differential 
equations. The present paper considers the problem of the asymptotic 
equivalence of the systems with impulse effect 

g = Ax +f( t, x), t#tk, 

(1) 

and 
Ax i,=rk = Bx(z,) + b(X(tk)), k = 1, 2, . . . . 

(2) 
AY It=rk = By(Tk)v k = 1, 2, . . . . 

where x,y:I+R”; f:IxR”+R”; b,:R”+R”; Z=[O,co); R” is the 
n-dimensional Euclidean space with a norm I .I ; A and B are constant 
n x n matrices; the moments {zk} form an increasing sequence 
Orr,<t,< ... <tkc ..., limk-moZk=co. 

For the systems with impulse effect of the kind (1) it is characteristic that 
at the moments t = zk the mapping point (t, x) undergoing a short period 
effect (a hit, an impulse) moves from position (rk, x(rk)) to position 
(TV, x(zk) + Ax(tk)) simultaneously. 
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We assume that at the moments of impulse effect t = zk the solutions of 
system (1) (or (2)) are left continuous, i.e., x(zk -0) =x(z~), dx(r,) = 
X(Zk + 0) - X(Tk). 

We shall use the following definitions for asymptotic equivalence. 

DEFINITION 1. We say that the systems with impulse effect (1) and (2) 
are asymptotically equivalent, if to every solution x(t) of (1) there 
corresponds a solution y(t) of (2) such that 

lim Ix(t)-y(t)1 =0 (3) z-03 

and conversely, to every solution y(t) of (2) there corresponds a solution 
x(t) of (1) such that (3) holds. 

DEFINITION 2. We shall say that between the systems with impulse 
effect (1) and (2) there exists a restricted asymptotic equivalence if relation 
(3) is fulfilled only between some subsets of solutions of (1) and (2). 

We shall note that the first results, connected with establishing 
asymptotic equivalence of systems of differential equations with impulse 
effect, are obtained in [ 111. 

2. PRELIMINARY NOTES 

Let to E I, x0 E R”. We denote with x( t; to, x0) the solution of system (1 ), 
for which x(t, + 0; t,, x0) =x0, and with Tf(to, x,,) the maximum interval 
of the kind (to, w) on which this solution is defined. 

Further on we shall use the following notations: i(s, t) is the number of 
the points tk lying in the interval (s, t); llA[l = sup,,, = r IAx/ is the norm of 
the n x n matrix A; E is the unit n x n matrix; 0, is the zero m x m matrix; 
and diag(A,, AZ) is the quasi-diagonal n x n matrix with blocks A, and A,. 

We say that the conditions (A) hold if the following conditions are 
fulfilled: 

(Al) The function f(t, x) is continuous and locally Lipschitzian in x 
on Ix R”. 

(A2) The functions bk(x), k = 1, 2, . . . . are continuous in R”. 
(A3) The matrices A and B commute and det(E + B) # 0. 
(A4) There exist constants Q > 0 and p > 0 such that 

li(to, t) -At - kdl s e for O<t,<t<co. 



ASYMPTOTIC EQUIVALENCEOF SYSTEMS 593 

(A5) For (t, x) E Ix R” and k = 1,2, . . . . the inequalities 

If(& XII d WC Ixl), Ibk(X)l Q Pk(l-4) 

hold, where the functions H(t, U) and flk(u), k = 1,2, . . . . are continuous and 
non-negative for t >, 0, u > 0 and non-decreasing in u > 0. 

For proving the main results we shall use the following lemmas: 

LEMMA 1 [IS]. Let the function g(t) be non-negative and continuous in Z 
and such that either j? g(t) dt < co or lim, _ o. g(t) = 0. Then for every (T > 0 

lim 
I 

’ e-“(‘-s)g(,s) ds = 0. 
,+cc 0 

LEMMA 2. Let q E [IO, 1 ), yk Z 0, and lim, j p yk = 0. Then 

Proof Let 0 = sup, yk 
number N, such that for 

)\rnx; $ qk - ‘yi = 0. 
_ i-1 

and the number E ~0 be given. We choose the 
k> N, the inequality yk< ~(1 - q)/2 is fulfilled 

and N, is such that 2coqNZ < E( l-q). Then for k > N, + N, we have 

O< i qk-iY;= 2 qk-iYi+ f qk-iYi 
i= 1 i= 1 i=NI+l 

1 -qN’ 
<oqkpNt- -. 

1-q 

+&(1-q) 1 -qkpN1 
2 1-q 

CoqN2 
6- 

I-qq 

LEMMA 3. Let cr >O and the sequences {Yk} and (zk} be such that 
Yk>O, lirnk,rn Yk= 0, z,-z,-,>tl>O, z,>O. Then 

lim 1 e-“(r-rk)yk = 0. 
f+m o<q<t 

(4) 

Proof Let z,<tGt,+,. Then rn-ri>,(n-i)8 and 

OG 1 e -o(l-r,)y;< i ,-a(7”-rdyig i e-oe(n-i)yi. 
O<r,<t i=l i= 1 

We apply Lemma 2 with q = e--O’ and get (4). 
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3. MAIN RESULTS 

First we shall investigate the question of the asymptotic equivalence of 
system (2) and the system 

$=Az+g(?), t#sk, 

AZ (,=rt=BZ(Tk)+bk, k = 1, 2, . . . . 

where bk E R”, k = 1, 2, . . . . and the function g: I+ R” is continuous for t E Z, 
t # rk, at the points t = rk. g(t) may have a first kind discontinuity and is 
left continuous. 

Since the general solution Z of the linear non-homogeneous system (5) is 
in the form 

z= Y+q, 

where Y is the general solution of the linear homogeneous system (2) and q 
is a partial solution of (5), then the following theorem holds. 

THEOREM 1. Let det(E+B)#O. Then the systems (2) and (5) are 
asymptotically equivalent if and only if system (5) has at least one solution 
z,(t) such that 

lim zO( t) = 0. 
1-m 

Before stating the following results we shall do some preliminary 
reasoning and introduce new notations and assume everywhere that the 
conditions (A3) and (A4) are fulfilled. 

Let t, E Z, y, E R”. Since the matrices A and B commute, then the solution 
y(t; t,, yO) of system (2) is in the form 

y(t; to, yO) = (E+ B)i(ro~‘)eA(f-‘o)yO, t > 102 0, 

i.e., the Cauchy matrix Y(t, to) of system (2) is 

y(t, to) = (E+ B)i('"')e,+~O)= (E+ B)'('O.')-P('-rO)en(t-rO,, 

where n = A +p ln(E + B). 
The matrix ,4 can be represented in the form 

/i = S-l diag(/i _, A,) S, 

where /i _ is a Jordan q x q matrix with eigenvalues n,(/l_ ), which have 
negative real parts, Re&(n-)<max,Gi.,Re&(n-)= -a<O, and A, is 
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a Jordan TX r matrix with eigenvalues A,(&), for which O<Ai(A,) Q 
max q+l<i<nAi(Ao)=IZ; q+r=n; detS#O. 

If the matrix A has eigenvalues with a real part equal to p then we 
denote with d(p) the maximum order of these blocks of the matrix 
diag(A _, .4,) which correspond to the eigenvalues with real parts p. 

We assume m = d(A), w = d( - c1), v = d(0) if A, has eigenvalues with real 
parts, equal to zero or v = 1, in the opposite case. 

We introduce the matrix functions 

G(t, s) = 
1 

W+B) it&r)-p(f--s)S-1 diag(e”-(t-“), eAo(l-.r))~, 

(E+ B)- i(r.s)+P(s-ft)S-l diag(e”-(‘-“), eh(t-~)) s, 

G-(t,s)= 
{ 

(E+ B) i(~,t)-~(t--s)Spl diag(e”-(‘-“, O,)S, 
(E+ B)-i(faS)+P(S-r)S-l diag(e”-(‘-“I, O,)S, 

Got& s) = 
i 

(E+ B) i(s,~)-~(~-s)s-l diag(O,, eno(tps))S, 

(E+ B)- i(ks)+&-OS-1 diag(O,, eh(l-s))~, 

The immediate check shows that 

G(t,s)=G-(t,s)+G,(t,s), 

G(t, t) = E, 

G(z, + 0, zk) = E, 

G(z, + 0, s) = (E + B) G(z,, s), 

t E I, 

k = 1, 2, . . . . 

s<zk, 

%AU 
at ’ t#z,, (10) 

t > s, 

t < s, 

t > s, 

t 6 s, 

t > s, 
t 6s. 

(6) 

(7) 

(8) 

(9) 

where U is one of the matrices G, G- , or Go. 

Golf, s) = G(t, to) Go(to, s), t> to, s> to, t # zk, s+zk, (11) 

Got& Tk) = ‘3~ to) F(t,, T,), toeZ, k=l,2 ,..., (12) 

where F(t,, rk) = (E+ B)“G,(t,, rk) and the number o is equal to 1, - 1, 
or 0 depending on the mutual position of to, t, and rk. Then from (7k( 10) 
it follows that for the solutions ~(t; to, yo), z(t; to, z,), and x(t) = x(t; to, x0) 
of systems (2), (5), and (1) for t > to the relations 

Y(C to, ~0) = ‘36 to) YO, (13) 

4c to, zo) = G(t, to) zo + j-' G(t, s) g(s) ds 
10 

+ 1 G(t, tk)bk, 
10 < It < f 

(14) 



596 SIMEONOVANDBAINOV 

hold. 
Having in mind the structure of the matrix n and condition (A4) we 

obtain that for the matrices G, G-, G,, and F the estimates of the kind 

IlG_(t, s)ll Gae-“‘-“‘x,(t-s), O<s<t<m, (15) 

IlGo(t, s)ll d ax& - t)t o<t<s<co, (16) 

lIFtto> T/J/ Gaxv(~k - to), O<t,<Tk, (17) 

llG(t, s)ll <coei.(f-“‘~m(t-s), O<s~ttco, (18) 

hold, where a 3 0 and c0 > 0 are constants and 

k-l for t>l 
for O<<tl. 

THEOREM 2. Let the conditions (A3) and (A4) hold and 

t’-’ [g(t)1 dt+ f T;-’ lb/,/ < 00. 
k=l 

(19) 

Then system (5) has at least one solution zo( t) for which lim, _ o. zo( t) = 0. 

ProoJ: Let z(t) = z(t; 0, zo) be a solution of (5). From the estimates (16) 
and (17) and condition (19) it follows that 

G,(t, s) g(s) ds + 
I I 

f F(t, zk) bk < co 
k=l 

for every fixed t E I. Then having in mind the formulae (1 1 ), (12), (14), and 
(6) we can write 

z(t) = G(t, 0) 
[ J 

zo + O” Go(O, s) k’(s) ds + f F&t zk) bk 
0 k=l I 

+ j-k(t,s)g(s)ds+ c G-(t,Tk)bk 
0 Tk < f 

- 
s m Got& s) g(s) ds + c Got6 zk) bk. 

, I c Tk 
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We choose z. = - j; G,(O, s) g(s) ds - C?= 1 F(0, ~~)b~. Then the solution 
z,(t) has the form 

- 
I 

g: Go(t, s) g(s) ds - 2 Got4 ~k)bk. 
f I 6 Tk 

Let supuao e -‘xu’2)x,Ju) = M. Then from estimate (15), condition (19), 
Lemma 1, and Lemma 3 it follows that 

q= ‘Gp(t,s)g(s)ds+ 1 Gp(t,z,)b, 
o<q<t 

f 

d ae 
s ~ 

“‘-s’x,(t-s) Ig(s)l ds+ 1 ae-z”~-‘k)Xw,(f-5k) lb,] 
0 o<rt<r 

4d2)‘r-“‘x,,(+S) e-‘Z/2,bS’lg(s)l ds 

+ 1 ae- lm~7k)XM’(f-Zk) ,~‘a/2)‘r--rk) p,, 

a<r,,<r 

ec’y’2)“--s) Ig(s)j ds + aM 1 
o<ri<r 

From the estimate (16) and condition (19) it follows that for t 2 1, 

+a{* s”-l Igb)l &+a c 7L-l lb 
1+1 lfl<Tk 

< 2a 
(i 

m 

s “--l Jg(s)J ds+ 1 z;-’ lbkl -0, 
I I < Tk > 

as t-co. 

Therefore lim, _ a, z,(t) = 0. Thus Theorem 2 is proved. 
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THEOREM 3. Let the conditions (A) hold and 

I Oc tvp’H(t,c)dt+ 2 r;- ’ bk(C) < co (20) 
0 k=l 

for every c 3 0. 
Let system (1) have solutions which are defined and bounded on intervals 

of the kind [to, CC ). 
Then for every such solution x(t) there exists a solution y(t) of system (2) 

so that (3) is fulfilled. 

Proof Let x(t) be a bounded solution of system (1) defined on 
[to, co) c I and c= suptsro [x(t)l. 

If y(t) is an arbitrary solution (2) then z(t) = x(t) -y(t) is a solution of 
the system 

dz 
z = AZ +f (t, x(t)), tZTk, 

(21) 
AZ II=I~ = Bz(Tk) + bk(X(5k)), k = 1, 2, . . . . 

and if z(t) is a solution of (21) then y(t) = x(t) - z(t) is a solution of (2). 
Using (20) and condition (A5), we get 

s 
Oc t”-’ If(t, x(t))1 dt+ c Tip’ Ibk(x(Tk))l 

10 10 < sii 

I 
cc 

6 t”-*H(t, C)dt+ c z;;-‘fik(C)< 00. 
VI ‘0 c fi 

Therefore, according to Theorem 2, system (21) has a solution zO(t) such 
that lim, _ m zo(t) = 0. Then for the solution ye(t) = x(t) - z,(t) of system 
(2) we have 

lim Ix(t) - yo(t)l = 0. 
t-cc 

THEOREM 4. Let the following conditions be fulfilled: 

(1) The conditions (A) hold. 
(2) x(t) is a solution of system (1) such that 

Ix(t)1 < cep’th, t 2 to >, 0, 

where c 2 0, p 2 0, and h > 0 are constants. 

(3) w I t”-‘H(t, cep’th) dt + f ~;-‘/?~(ce~‘~~f) < co. 
0 k=l 
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Then there exists a solution y(t) of system (2) for which 
lim,, m Ix(t) -Y(f)1 = 0. 

The proof of Theorem 4 is analogous to the proof of Theorem 3. 
If the conditions (A3) and (A4) are fulfilled, then from (13) and (18) it 

follows that for the solution y(t) of system (2) an estimate of the kind 

holds. 

Iv(t)l d co Iv(O)1 eA’xm(tL t20, (22) 

If the systems (1) and (2) are asymptotically equivalent then for the 
solutions x(t) = x( t; to, x0) of system (1 ), estimates of the kind 

lx(t)\ < DeA”-‘o’~m(t - to), f> to, (23) 

hold, where D = D( to, x0). 
The following Theorem gives sufficient conditions under which for the 

solutions of system ( 1) the estimate (23) holds. 

THEOREM 5. Let the following conditions be fu!filled: 

(1) 
(2) 

(3) 

The conditions (A) hold. 
For every c 2 0 

e-“‘H(t, ce”‘x,(t)) dt + f ep”“/Ik(ceAT*x,(tk)) < co. 
k=l 

There exists to > 0 such that 

(24) 

e-“‘H( t, ce”X,( t)) dt 

(25) 

where co is from (22). Then every solution x(t) = x(t; to, x0) of system (1) is 
defined for t > to and the estimate (23) holds. 

Proof Let x(t) = x(t; to, x0) be a solution of (1). Then for 
fEF-+(fo, x0), 

x(t) = G(t, to) xo + 1’ G(t, s)f (s, x(s)) ds 
fo 

+ 1 G(t, ~k)bkt-+k)). 
10 < Tk < , 

(26) 



600 SIMEONOV AND BAINOV 

First we assume that Y-f(t,,x,)=(to, CO). Then from (26), (18), and 
condition (A5) it follows that 

Ix(t)1 <c,e”“-‘O)&-to) lx01 

I 
f 

+ c e’(‘ps)X,(t-s) H(s, Ix(s)/) ds 0 
10 

c coe”“-‘k’x,(t-Zk)Bk(l~(Zk)J). 
to < Tk < I 

Since to -C s G 2, then t - s < I - to, x,(t - S) < x,( t - ro), and 

lx(t)1 6 c,e”x,(t- to) lxol eCi”‘+ ’ ep’“H(s, Ix(s)l) ds I 4 

We set 

A,= IxoJ ecL’o+~Tep’“H(s, Ix(s)l)ds 
10 

Then 

Ix(t)1 < c,e”‘X,(t - to) for t,<t<T. (28) 

(27) 

We shall consider two cases: 

(a) A, < l/c, for T> to. Then from (28) it follows that 

Ix(t)/ < e”@e”(‘- ‘O)xm(t - to) for t>t,. 

(b) There exists To > to such that c,A,,>l. Then c,A,bl for 
T> To since A, is non-decreasing in T and from (25) it follows that 

s 
cc 

e-““H(s, c,A,e”“x,(s)) ds 
ro 

(29) 
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From (27)-(29) and the monotonicity of H(t, U) and jk(u) in u we 
obtain 

I 
T 

A,< (x01 eC"'O+ e-'" H(s, c,A Te’sxm(s - to)) ds 
f0 

+ c e -‘rkflk(cOA TeArkXm(T.k - to)) 
10 < rk < T 

d 1x0( ep”“‘+ ec”“H(s, c,A,e”“~,Js))ds 

+ C eC2’k/?,(cOA .e”‘“X,(z,)) 
to < ‘k 

or 

We substitute in (28) and get 

co 1x01 
Ix(t)l 6- 1 _ SC0 ei.“-ro)~m(t - to), to < t d T. 

But the right-hand side of the inequality (30) does not depend on T. 
Therefore (30) is fulfilled for every t > to and an estimate (23) holds in 
case (b). 

Now let us assume that Y+(to, x0) = (to, o), o < co. Then Ix(t)\ should 
be unbounded for t E (to, 0). By the same reasoning as above for 
TE (to, w), we obtain that for Ix(t)1 that the estimate (23) holds for 
t E (to, 0). But this contradicts the unboundedness of Ix(t)l. Therefore, 
~+(to,xo)=(tO, co) and (23) holds for t>t,. 

Theorem 5 is proved. 

Remark 1. Condition 3 of Theorem 5 can be replaced by the condition 

H(t, ce”‘x,(t)) dt + 1 e 
f0 < Tk 

e”‘kflk(ce^‘k~,(r*))] = 0 (31) 

uniformly in c > 1. 

Before formulating the following theorems we shall make some 
preliminary investigations. Let D c Z and the function p: D --+ Z be positive 
and continuous. We denote with S(D, R”, p) the space of functions 
f: D + R”, which satisfy the following conditions: 
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(1) The function f(t) is continuous for t E D, t # rk and 

suplfol< co. 
LED dt) 

(2) There exist the limits 

(32) 

f(tk+O)=,;~~+Of(t) if zk E [a, bh 

and 
fbk - 0) =fbk + 0) if ~,E(u, fi] n D, k= 1, 2, . . . 

We denote with M(D, R”, p) the space of functionsf: D -+ R”, for which the 
equality of the kind (32) is fulfilled. 

Clearly, S(D, R”, p) c M(D, R”, p). 
In the spaces S(D, R”, p) and M(D, R”, p) we introduce the norm 

If fn, f~ M(D, R”, p) and IIf, -f/l, + 0 as n -+ co, then lim,, p f,(t) 
= f(t) uniformly in t on every finite subinterval of D. 

Then following the proof of [12, Theorem 1.4.83, it is easily proved that 
S(D, R”, p) is closed in M(D, R”, p) and M(D, R”, p) is complete and 
according to [12, Lemma 1.4.71, S(D, R”, p) is complete, i.e., S(D, R”, p) is 
a Banach space. 

Let D, c D and 9 c S(D, R”, p). 

DEFINITION 3. The set 9 is quasi-equicontinuous on D,, if for every 
&>O there exists 6>0 such that, if f~9; k=l,2,...; 
tl,t2~(~k-1,~k]nD, and It,-tt,l<6 then 

LEMMA 4. The set 9 c S((0, tk], R”, p) is relatively compact if and only 
if: 

(1) 9 is bounded, i.e., llfll p ,( c for every f s 4 and some c > 0. 

(2) 9 is quasi-equicontinuous on (0, tk]. 

Proof: It is clear that 9 =Fi x .., x&c S, x ... x Sk = S, where 
Si = S((ri- i, tiJ, R”, p), i= 1, 2, . . . . k, and e,-, i = 1, 2, . . . . k, is the set of 
functionsf,: (tie i, ~~1 + R”, for which 

L(t) =f(th tE(rj-,,rJ, fEF. 
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The set 9 is relatively compact in S if and only if every 8 is relatively 
compact in Si. But according to the Arzela-Ascoli theorem, this is fulfilled 
if and only if 9$ is bounded and equicontinuous, i.e., when conditions (1) 
and (2) of Lemma 4 are fulfilled. 

Remark 2. Lemma 4 remains true if in its formulating we replace the 
interval (0, zk] by [0, zk]. 

LEMMA 5. Let 9 c S(Z, R”, p) and the following conditions he fulfilled: 

(1) There exists cp E S(Z, R”, p) and a number d > 0 such that 

llf-dlpGd for fE9. 

(2) For every E>O there exists T>O such that If(t)-cp(t)l <&p(t) 
for t > T and f E 9 and 9 is quasi-equicontinuous in [0, T]. 

Then 9 is relatively compact. 

Proof. Without loss of generality we assume that cp = 0. In the opposite 
case, the proof of Lemma 5 is done for the set 2 = {h E S(Z, R”, p): 
h=f-cp, f#}. 

Let E > 0 be given. We choose T = rk such that 

If (t)l 6 &P(t) for t > T. 

But from the conditions of Lemma 5 it follows that the set 

(33) 

%= fg E S(CO, Tl, R”, P): g(t) =f (tl, t E CO, Tl,f E S> 

satisfies the conditions of Lemma 4. Therefore, 9$ is relatively compact in 
S( CO, Tl, R”, P). 

Then there exist fk E 9, k = 1,2, . . . . 1, such that for every f E % and some 
k = 1,2, . . . . 1 we have 

If(t) -f/At)1 G&P(t) for t E [0, T]. 

From (33) and (34) it follows that the functions 

(34) 

t E CO, Tl, 
t>T, k=l,2 ,..., 1, 

are such that for every f E 9 there exists k = 1, 2, . . . . 1 such that 

If(t) -&r(t)l 6 &P(t) for tEZ. 

Therefore, g, , . . . . g, form a finite s-net and 8 is relatively compact in 
S(L R”, PI. 
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THEOREM 6. Let the following conditions be jiil@ed: 

( 1) The conditions (A) and the condition (3 1) hold, 

(2) For c > 0 and 13 0 the inequality 

s 
m t’- ‘H(t, ce”‘x,(t)) dt + f r; ‘Bk(cedTkXm(rk)) < cc 

0 k=l 

holds. 

(3) For c 3 0 and A < 0 the inequality 

s 
m eC”‘H(t, ce”‘x,(t)) dt + $ e-“‘“pk(ce”‘“X,(z,)) -C cc 

0 k=l 

is fulfilled. 

(35) 

Then the systems (1) and (2) are asymptotically equivalent. 

Proof From conditions (2) and (3) of Theorem 6 it follows that 
condition (24) is fulfilled. Therefore, Theorem 5 holds. 

Let il < 0. Then from Theorem 5 and estimates (22) and (23) it follows 
that lim, _ a x(t; tO,xO)=lim,,, y(t; tO,xo)=O and the asymptotic 
equivalence of (1) and (2) is evident. 

Now, let A 3 0 and x(t) = x(t; to, x0) be a solution of (1). Let us consider 
the system 

$=Az+/(t, x(t)), ffTk, 

(36) 
AZ lr=rk = BZ(tk) +bk(X(~k)), k = 1, 2, . . . . 

From Theorem 5 and condition (2) of Theorem 6 it follows that 

t”-’ If(t, x(t))1 < t”-‘H(t, ce”X,(t), t>to, 

zi-l ibk(X(tk))i < ~;-‘bk(ce”‘“x&k)), rk > to. 

Then 

s 
O” t”- ‘If(t, x(t))] dt + c r;-’ lbk(X(7k))( < 00 

(0 f0 < Zk 

and according to Theorem 2, system (36) has a solution zo(t), for which 
lb,, zo(t) = 0. Then y(t) = x(t) - zo(t) is a solution of (2) and 
lim, + QI lx(t) -Y(t)1 = 0. 

Let y(t) = y(t; 0, yo) be a solution of (2). 
Let q> 0 be a constant and p(t) = e”‘x,(t). 
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According to (35) we can choose t, 3 1, t, # tk such that 

R(t,)r(a+aM) Jo sYp’H(s, c,e”“x,(s))ds 
10 

where M = sup,, a o e -@U’2)xJ~), ci = q, ly,J + q, and the constants a, CI, 
and cg are from the estimates (15) and (18). 

We choose such a ro. Then for the operator 

Vcp(t) =y(f) + 5’ G-t& s)f(s, ds)) ds+ 1 G-(t, T/c) bk((P(Tk)) 
Q 10 c Tk < I 

-j'" Go(t, s)f(s, cp(s)) ds- c Got& Tic) bd(P(Tk)) (37) 
I 1 s ‘k 

we shall prove the following: 

(I) V is defined on B,= {peS([t,, cc), R”, p): Ilq-~~ll~<q}. 
Indeed, let q E B,, i.e., 

Iv(t) -At)1 6 v’kdt), t> to. 

Then from (22) it follows that 

Idt)l d (co lyol + VI e”‘x,(t) = c,e”Af), t> to, (38) 

and successively we get the estimates 

IGo(t, s)f(s, &))I ~w,A- t) Ws, Ids)l 

< as “-- ‘H(s, c~~‘~x~(s)), >s>t>to>l, (39) 

IGo(t, T/c) bdv(tk))l G QT;- ‘~ic(c~e”‘“Xm(T~))> Tk> t> to>, 1. (40) 

From (39), (40), and (35) it follows that the improper integral and the 
series in (37) are convergent, i.e., the operator I-’ is defined on B,. 

(II) VB, t B,. This follows from the estimate 

I Vdr) -y(t)l d j-< IGo(t, s)l If (3, &))I ds 
cl 

+ 1 IGo(f, T~)I Ibk((P(Tk))l 
10 < Zk -=z I 

+ jm IG-(t, s)l Ifb, q(s))1 ds + 1 IG -Cc s)l lb/c((P(Tk))\ 
f I i 74 

409/135/Z-16 
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s , da e -““-“$,(t -s) H(s, c,eAsx,(s)) ds 
10 

+a 1 e -““-s’x,,(t - 5k) p&,e”‘“~,(Q) 

+a s a x,(s - t) H(s, c, e”“x,(s)) ds 
I 

6 aA4 
I 

’ H(s, c, e’“x,Js)) ds 
10 

+ a 
s 

m 
s”-’ H(s, c,eAsx,(s)) ds 

I 

d Nt,) < ~6 r&,,,(t). 

(III) V is continuous on B,. 
Let E > 0 be given, (P,,, cp E B,, and 11~~ - ‘p(Ip -+ 0 as n -+ co. We choose 

t, > t, such that 4R(t,) < E. For t > t, we have 

I Vcz(t) - vdt)l G j-’ lG,(c s)l U-h cpnb)) -fb cp(s))l ds 
10 

+ .<;<< IGcdc t/c)1 lbd(~n(~k)) - bk(d~k))l 

+ j- IG-(6 ~11 Ifb cp,h)) -As, cpb))l ds r 

+ 1 K-t& s)l lU(~n(~d) - bc((~(~k))l. 
16 T!i 

Using the estimates (15), (16), condition (A5), and considering cases 
to < t < t, and t, < t, G t, we get that for t > t, the inequality 

I v%(t) - Vdt)l 

d ” (aM+ as’-’ 
s 1 If(s, cpnb)) -As, cpb))l ds 

;1 1 (aM+aT;-’ 1 lU(~n(~k)) - ~,c(d~~)N + Wt, 1 
10 CI rk < I, 

=F,,+2R(t,) 
is fulfilled. 



ASYMPTOTIC EQUIVALENCE OF SYSTEMS 607 

From the continuity of f(t, X) and bk(x) and from the fact that 
q,(s) + q(s), as n -+ 00, uniformly with respect to SE (to, tl], it follows that 
there exists n, > 0 such that if n > n, then YR < c/2. 

Then 1 Vqn,(r) - P’p(t)l < E <&e”~,,Jf), or I/ Vqo, - Vqllp = E, i.e., V is con- 
tinuous. 

(IV) lim,, 3o IVqn(t)-y(t)1 =0 uniformly in DEB,. 

Indeed, for t > 1, ) Vcp(t) -y(t)/ < 5 + Fz2, where 

&= 
II 

’ G-(4 s)f(s, ds)) ds+ c G-(fl~k) ~A(P(T~)) 
IO ro < rl: < I 

s 
f 

6a e -~(t-S~~,&-~) H(s, c&,(s)) ds 
10 

I 

f 
<aM e-(d2)(+‘)H(s, c,e”Jx,(s)) ds 

10 

(41) 

s 
cc 

<a x,(s - t) H(s, sl e”“x,(s)) ds 
I 

cc 

,<2a sYplH(s, c,eLSX,(s)) ds+ 1 ~~~‘fi~(c,e”‘~~,(r~) . (42) 
I< ‘k > 

From (41), condition (35), and Lemma 1 it follows that % -+ 0 as t + co. 
and from (42) and condition (35) it follows that Fz + 0 as t + co. 

(V) The set VB, is relatively compact. 

We shall prove that 9 = VB, satisfies the conditions of Lemma 5. 
Let E > 0 be given. We choose T> t, such that 

1 VV(t) -Y(t)1 <E for t G T. 

This is possible according to assertion (IV). 
It remains to be proved that 9 is quasi-equicontinuous on (to, T]. 
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Let T, 2 T be chosen such that 4R( T, ) -K E. Using (IS), (38), (39), and 
(40), we obtain that for t,, t2 E (rk -, , rk] n (to, T], t, 6 t,, the estimate 

d IAt,) -At,)1 + 1” IG-(fz, s) - G-Cl,, $11 MS, q(s))1 ds 
10 

+ c IG-(t,, Tic)-G-(t,, T/c)/ lbk((P(Tk))l 
IO<Tk<l, 

+ J*’ IGdt, 2 s) - Go(t, > s)l MS, cp(s))l a’s 

+ ‘2 c IGo(t,, T/c) - Go(t,, zk)l lbk(d~k))l 
12 < ‘k -c TI 

+ J ‘* IG-(t,, ~11 If(s, &))I ds 11 
+ J” IGo(t,, s)l Ifk cp(s))l ds Ii 
+ Jr lGo(t,, s) - Go(t, > $)I Ifk cpb))l d.s 

+ .;,, IWt,, ok) - Go(t, 3 T/c)1 IhJdtk))l 
I. 

G I.Y(~A -Y(~,)I + IT IG-(~ 2, s) - G-(t,, $11 ffb, c,e%n(T)) ds 
10 

+ c IG-(t,, ~,)-Gp(t,, T/c)1 P~~~,~dr~m(T)) 
10 < r/( < T 

+ JT’ lGo(tz , s) - G,(t,, $11 fJ(s, cf e”T’x,(T1)) ds 

+“x IG( o by ok) - Go(r,, ~~11 B~(cle”“x,(TI)) 
12 i rk -Z TI 

+(&+a) TY-‘IH(T,c~~‘~x~(T))(~~-I~)+~R(T~) 

= l~(fd-~(ll)l +y(t,> fd+WT,) 

is fulfilled. 
From the last estimate and from the properties of the functions 

G,(t, s), G- (t, s), y(t), and q(r) it follows that there exists 6 > 0 such that if 
(t,-tt,( ~6 then 
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With this choice of 6 we have that for every k = 1, 2, . . . . cp E Bq, and 
t,, t, E (zk _, , zk] n (to, T], It, - t,l < 6 the inequality 

is fulfilled, i.e., 9 = I/B, is quasi-equicontinuous. 

The assertions (I), (II), (III), (IV), and (V) provide for the application of 
Schauder’s theorem, according to which the operator I/ has a fixed point 
.X E B,, i.e., x(t) = V’x(t) for t > t,. The immediate check shows that x(t) is a 
solution of system (1) and from assertion (IV) it follows that 
lim,,, Ix(t)-y(r)1 =lim,,, IVx(t)-y(t)1 =O. 

THEOREM 7. Let the conditions of Theorem 3 hold. Then there exists 
restricted asymptotic equivalence between the set of all bounded solutions of 
system (1) and the set of all bounded solutions of system (2). 

Proof: Let x(t) be a bounded solution of system ( 1). Then, according to 
Theorem 3 there exists a solution y(t) of system (2) which satisfies relation 
(3). But from (3) it follows that y(t) is also bounded. Now, let y(t) = 
y(t; 0, yO) be a bounded solution of (2). The proof that there exists a 
solution x(t) of system (1) which satisfies relation (3) is done in the same 
way as in Theorem 6. The only difference is that the operator V: B, -+ B, is 
considered on the set 

where pi(t) s 1, and the point to> 1, t,#~, is chosen such that 

R,(t,)z(a+aM) SW S”-‘H( 
( 

s>c,)ds+ c $-‘PdcI) <rl, 
‘0 IO< Ti ! 

where A4 = sup, a 0 e -(Xu’z)x,Y(u), c1 = c0 I y,( + 4. Condition (20) is con- 
siderably used in the proof. 
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