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The fundamental concept of a fuzzy set, introduced by Zadeh in 1965 [1],
provides a natural foundation for treating mathematically the fuzzy phenomena
which exist pervasively in our real world and for building new branches of fuzzy
mathematics. In the area of fuzzy topology, much research has been carried
out [2-8] since 1968. We should like to mention here that in 1975 Chou
Hao-xuan did some significant work concerning the relationship between fuzzy
topological spaces and ordinary topological spaces (unpublished). But there are
still two fundamental problems which remain to be solved. The first one concerns
the concept of a fuzzy point and its neighborhood structure. A definition of a fuzzy
point was given in [8] in such a way that a crisp singleton, equivalently, an
ordinary point, was not a special case of a fuzzy point. Moreover, the research
was carried on along with the same idea as that of the neighborhood system in
general topology so that the results thus obtained could not reflect the features of
neighborhood structure in fuzzy topological spaces. The properties derived
therefrom are often pathologies and demonstrate departures from general
topology, like those the author pointed out in [8]. The purpose of the present
paper is to remedy these drawbacks so that we can develop the theory of fuzzy
topology in a satisfactory way. We redefine a fuzzy point in such a way that it
takes a crisp singleton, equivalently, an ordinary point, as a special case. As for
the neighborhood structure of such a fuzzy point, in addition to the relation
“€’’ between fuzzy points and fuzzy sets and the corresponding neighborhood
systems, we shall introduce another important relation “Q” between fuzzy
points and fuzzy sets, called the Q-relation, and the corresponding neighborhood
structure, called the Q-neighborhood system. In an ordinary topological space,
as a special case of a fuzzy topological space, these concepts, neighborhood
system and Q-neighborhood system, e-relation and Q-relation coincide respec-
tively.

The second problem concerns the theory of convergence. Since the concept

* This paper was completed in 1976 and published in 1977 in an internal publication,
Sichuan Daxue Xuebao 1 (1977), 31-50 [in Chinese].
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572 PU AND LIU

of convergence occurring in [2] and [6] is limited to sequences of fuzzy sets and
the neighborhood structure used to definejconvergence has the same character
as the traditional neighborhood system, the conclusions thus obtained are unsatis-
factory, to say nothing of generalizing Moore-Smith convergence of nets to
fuzzy topological spaces. As peinted out in [6], new concepts of convergence
and clustering are needed in order to develop the theory further in this direction.
With the present treatment of these two problems, all the theorems concerning
the neighborhood structure of a point and the theory of convergence in Chapters
I and II of the celebrated book on general topology [10] are generalized to fuzzy
topological spaces, with the exception of at most two less important ones. This
means that these two problems in fuzzy topology have been solved to almost
the same degree as the corresponding problems in general topology. In the frame-
work of the present paper, there are still many properties of fuzzy topological
spaces which can be investigated. Further results will be given in future papers.

1. PRELIMINARIES

Since many concepts and statements have not yet taken their final forms,
to begin with, let us recall some concepts occurring in the papers [2-9], which
will be needed in the sequel. In the present paper X always denotes a non-empty
(ordinary) set.

DerINITION 1.I. A function A from X to the unit interval [0, 1] is called a
Juzzy set in X. For every x € A, A(x) is called the grade of membership of x in A.
X is called the carrier of the fuzzy set A. The set {x € X | A(x) > O} is called the
support of A and is denoted by Supp A or A, . If A takes only the values 0, 1, A is
called a crisp set in X. From now on, we shall not differentiate between a crisp set A
in X and Supp A. Particularly, the crisp set which always takes the value | on X is
denoted by X, and the crisp set which always takes the value 0 on X is denoted

by &.

DeriniTION 1.2. Let I be an indexed set, and let &/ ={4,|xel} be a
family of fuzzy sets in X. Then the union | {4, | x € I'} or (| &7) and the inter-
section ({4, |«xel} (or (&) are defined, respectively, by the following
formulae (and hence are also fuzzy sets in X):

(Ue) (x) = sup{d (x) | e €I}, x€X,
(N) (x) = inf{d(x) | a€l}, xeX.

DeriNiTION 1.4. The complement of 4, denoted by A4’ is defined by the
formula: A'(x) =1 — A(x), x € X.
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By means of the properties of lub and gIb of real numbers, it is easy to verify
the following De Morgan’s law:

(Uid, | ael}) = n{4, | acl}.

DeriniTION 1.5. A family 7 of fuzzy sets in X is called a fuzzy topology
for X iff (1) o, Xe9, 2) AN Be.J whenever 4, BeJ and (3) J{4,|
ae€l} e whenever each 4, € I (a€l). Moreover, the pair (X, ) is called a
fuzzy topological space or fts, for short. Every member of . is called a 7 -open
fuzzy set (or simply open fuzzy set). The complement of a J -open fuzzy set is
called a J -closed fuzzy set (or simply closed fuzzy set).

Let 7, and 7, be two fuzzy topologies for X. If the inclusion relation
J,C T, holds, we say that J, is finer than J, and ., is coarser than ., .

DerFiNITION 1.6. Let (X, 7) be a fts. A subfamily # of  is called a base
for 7 iff, for each A € 7, there exists #,, C # such that 4 = {J #, ; a subfamily
& of T is called a subbase for 7 iff the family # = {(} F | # is a finite subset
of &} is a base for 7. (X, 7} is said to satisfy the second axiom of countability
or is said to be a Cy; space iff 7 has a countable base.

DerintTION 1.7. Let 4 and A, (x€1) be fuzzy sets in X. {4, |a€el} is
called a cover of 4 iff |} {4, | a €I} D A. If there exists a subset 7, of I such that
Uf{d, | xel;} D A4,{4,| ael}is called a subcover.

(X, ) will always denote a fuzzy topological space in this paper. We remark
that all of the following definitions and conclusions take the corresponding defini-
tions and conclusions take the corresponding definitions and conclusions in
general topology as special cases, respectively. In general, we shall not repeat
this remark any more.

2. ConceprT oF A Fuzzy PoINT AND ITs NEIGHBORHOOD STRUCTURE

DEerFinNITION 2.1.1 A fuzzy set in X is called a fuzzy point iff it takes the value
0 for all y e X except one, say, x € X. If its value at x is A (0 << A < [) we denote
this fuzzy point by x, , where the point x is called its support.

DreriniTION 2.2. The fuzzy point x, is said to be contained in a fuzzy set 4,
or to belong to 4, denoted by x, € 4, iff A < A(x). Evidently, every fuzzy set 4
can be expressed as the union of all the fuzzy points which belong to 4.

! 'The concept of a fuzzy point is actually the so-called crisp singleton given in section
4 of [9]. But the very important neighborhood construction was not mentioned at all
in [9].

409/76/2-18
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DerintTION 2.3. Two fuzzy sets 4, B in X are said to be intersecting iff there
exists a point x € X such that (4 N B)(x) = 0. For such a case, we say that 4
and B intersect at x.

DerFiNrTION 2.4, A fuzzy set A in (X, ) is called a neighborhood of fuzzy
point x, iff there exists a BeJ such that x, € BC A; a neighborhood 4 is
said to be open iff 4 is open. The family consisting of all the neighborhoods of
x, is called the system of neighborhoods of x;, .

Corresponding to the above definitions, we introduce the following important
concepts.

DEerFINITION 2.2°. A fuzzy point x, is said to be quasi-coincident with 4,
denoted by x,¢4, iff A > A'(x), or A 4 A(x) > L.

DerFINITION 2.3°. A is said to be quasi-coincident with B, denoted by
AgB, iff there exists x € X such that A(x) > B'(x), or A(x) + B(x) > 1. If this
is true, we also say that 4 and B are quasi-coincident (with each other) at x. It is
clear that if 4 and B are quasi-coincident at x, both A(x) and B(x) are not zero
and hence 4 and B intersect at x.

DerINITION 2.4°. A fuzzy set 4 in (X, ) is called a Q-neighborhood of x,
iff there exists 2 BeZ such that x,¢B C 4. The family consisting of all the
O-neighborhoods of x, is called the system of Q-neighborhoods of x, .

Note. A Q-neighborhood of a fuzzy point generally does not contain the
point itself. The neighborhood structure of a point which does not contain the
point itself was already studied in general topology by Fréchet in 1916 [cf. M.
Fréchet, “Les espaces abstraits,” Paris, p. 172] formed the foundation upon
which the Fréchet (V)-space theory has been built [cf. W. Sierpinski,” General
Topology, Chap. I, Toronto, 1952]. But the fact that a set 4 and its complement
A’ should not intersect, which is true in the theory of (V)-spaces, is no longer true
generally in the theory of fuzzy topological spaces. Hence our investigation of
the Q-neighborhood structure differs from that of the Fréchet (V)-space theory.

The substitute for the fact that 4 and A’ do not intersect in general topology
is the fact that 4 and A’ are not quasi-coincident in fuzzy topology. More general-
ly, we have the following proposition.

ProposiTiON 2.1. AC B iff A and B’ are not quasi-coincident; particularly,
x) € A iff x, is not quasi-coincident with A'.

Proof. This follows from the fact:

A(x) < B(x) iff A(x) + B'(x) = A(x) -+ 1 — B(x) < 1.
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PROPOSITION 2.2. Let U, be the family of Q-neighborhoods (resp. neighborhoods)
of a fuzzy pont e in (X, T ). Then we have

(1) If Ue,, then e is quasi-coincident with (resp. belongs to) U.

2 IfU, Ve, ,thnUNVe%,.

3) IfUec, and UCV, then Ve,.

4) If UeU,, then there exists Ve U, such that VC U and Ve ¥, for
every fuzzv point d which is quasi-coincident with (resp. belongs to) V.

Conversely, for each fuzzy point e in X. U, is a family of fuzzy sets in X satis-
Jfving the above conditions (1)~(3), then the family I of all the fuzzy sets U, such
that U € U, whenever eqU (resp. e € U) is a fuzzy topology for X. If, in addition,
U, satisfies the condition (4), mentioned above, then U, is exactly the Q-neighborhood
(resp. neighborhood) svstem of e relative to the fuzzy topology 7.

The proof is straightforward (cf. [10 problem 1.B]).

ProrosiTiON 2.3. Let {&7,} be a family of fuzzy sets in X. Then a fuzzy point e
is quasi-coincident with Us? iff there exists some A, € & such that eqA, .

Proof. If eqA, , it is evident that eqUA, . That the condition is necessary is
easily proved by means of the properties of lub and the concept of being
“‘quasi-coincident with.”

ProprosiTION 2.4. A subfamily & of a fuzzy topology T for X is a base for 7
tff for each fuzzy point e in (X, T°) and for each open Q-neighborhood U of e, there
exists a member B € & such that eqB C A.

Proof. The necessity of the condition follows directly from the definition of
a base and the necessary condition of Proposition 2.3. We shall now show its
sufficiency. If &4 is not a base for 7, then there exists a member, .4 € 7, such
that G = {Be % | BC A} # A, and hence there is an x such that G(x) < A(x).
Let A = | — G(x), which is obviously positive; we obtain a fuzzy point ¢ = x, .
Since A(x) + A > G(x) + A = [, egA. But since any member B ¢ # which is
contained in A is contained in G, we have B(x) + A << G(x) - A = 1; that is,
e == x, is not quasi-coincident with B. This contradicts the assumption.

3. LocaL Base. A COUNTEREXAMPLE

DeriNiTION 3.1. Let %, (resp. U,) be a Q-neighborhood system (resp.
neighrohood system) of a fuzzy point ¢ in (X, 7). A subfamily #,, (resp. %)
of #,q (resp. %,) is called a Q-neighborhood base (resp. neighborhood base) of
U .o (resp.U,)iff for each A € U, (resp. A € % ,)there exists a member Be #,%
(resp. B € 8,) such that BC A. A fts (X, ) is said to satisfy the Q-first axiom
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of countability (resp. first axiom of countability) or to be Q-C)) iff every fuzzy
point in (X, ) has a countable Q-neighborhood base (resp. neighborhood
base).

ProrositioN 3.1. If (X, ) is a C-space, then it is a Q-C\-space.

Proof. Let e = x, be an arbitrary fuzzy point. Consider a sequence {u,}nen
in (1 — A, 1] converging to | — A and let x, = e, . For each z € N, there exists
a countable open neighborhood base 4,, of e, (there is evidently no loss of general-
ity in assuming the openness of each member of #,). Each member B of B,, satis-
fies B(x) = p, > 1 — A and hence is a Q-neighborhood of e. The collection #
consisting of all the members of all &, is a family of open Q-neighborhoods of e.
Let A be an arbitrary O-neighborhood of e, hence A(x) > 1 — A. Since u,,
1 — A, there exists m € IV such that A(x) = p,, > 1 — A, ie,, e,,€ 4 and 4 is
an open neighborhood of e, . Therefore there exists a member Be &, C #
such that BC A4, B(x) > p, > 1 — A This shows that # is a countable Q-
neighborhood base of e.

ProrositioN 3.2. If (X, F)is Cyy, then it is also Q-C .

Proof. Let # be a countable base for 7. Let e be a fuzzy point in (X, 7).
For any U e  such that eqU, by Proposition 2.4, there exists B € & such that
eqB C U. Let 4 be the family of all those members B of % thus obtained. It is
easy to show that 4 is a countable Q-neighborhood of e.

The converse of Proposition 3.1 is generally not true. We shall construct, in
the following, a C;-space, which is of course O-C;, but is not Cj .

DerFiNiTION 3.2 [6, 5]. Let (X, %) be an ordinary topological space. Let
F(%) = {f [0, 1]* | fis lower semi-continuous}; (X, F(%)) is called the induced
fuzzy topological space of (X, #):

LemMa 3.1. Let (X, %) be a completely regular (crisp) topological space. For
every h e F(U), there exists a family F C [0, 11X each member of which is continuous
with respect to U, such that h = sup{f|fe F}. In other words, the family B —
{f1f«X, %)— [0, 1] is continuous} forms a base for the induced fuzzy topology.

For the proof of this lemma, refer to the proof of Proposition 5in [11 Chap. 9,
Sect. 1].

In the following, let (X, %) be the subspace [0, 1] of)the real axis. Let T
denote the totality of all rationals in (—o0, 1]. For each positive integer =,
subdivide X into 27 equal parts. The 2* + 1 points of subdivision are successive-
ly denoted by x,* (¢ = 0, 1,..., 27). For a fixed n, let &, = { | f(x,}) = fre T,
f is linear in 4, = [x,%, x5, for each k€{0, I,..., 2n}}. Each f is obviously
continuous and 4, is countable. For each fe &,, let f+(x) = max{f(x), 0},
then f+: X— [0, 1] is obviously continuous. Let &, ={f*|fe%,}, & =
Unei &, , For this countable family & of continuous functions, we have
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Lemma 3.2. Let g: X — [0, 1] be continuous and € > 0; then there exists
Jt € B such that

o) — e <f¥) <gl®), xeX

and hence g can be expressed as the least upper bound of a countable member of
functions in B.

Proof. For ¢ >0, since g is uniformly continuous on X, there exists a posi-
tive integer 7, such that on each of 2” equally subdivided intervals, the difference
between the greatest value of g and the least value of g (that is the oscillation) is
less than ¢/8. For each x,*, take f; € T such that g(x,*}) — /8 > f; > g(x,%) —
/4. Let f denote the function which takes the value f; at x,,* and is linear in each
of the equally subdivided parts. Then f+ is the required function. In fact, con-
sider an arbitrary interval 4, = [x,%, x5*1] and we may assume f; > fiq
without loss of generality, then f; is the greatest value of f on 4, . Noting that the
oscillation of g on 4, is less than ¢/8, for each x € 4, , we have

8x) > g(x,") — /8 > fi = 1 (%).

Hence for x € X, g(x) > f (x). On the other hand, the oscillation of f on 4, is
fi = frar < (8(25) — €/8) — (g(xa?") — €/4) = glx,*) — g(+3™) + /8 < /4,

and hence, for x € 4, , we have

| f(x) — )] < 1f(x) —fil + | fi — (x5 + | g(xa®) — g(x)]
<Sqp+g g <e

It follows that for x € X, g(x) — e < f(x) << g(x). Since g(x) > 0, it is clear that
(%) — e <fH(x) < g(x).

In order to prove the later part of the lemma, it suffices to take € == 1/n and
denote the corresponding f* by f,* € #. Then g is easily seen to be sup{ f,,* |
fnre B}

THEOREM 3.1. Let (X, %) be the subspace [0, 1] of the real axis, and let
T = F(%) be the induced fuzzy topology for %. Then (X, F(%)) is Cyy , but is not
CI .

Proof. From Lemmas 3.1 and 3.2 the countable family # C 7, given in
Lemma 3.2, obviously forms a countable base; that is, (X, J7) is Cy; . We now
take any point x € X and may assume x to be 0 € [0, 1] without loss of generality.
Consider the crisp singleton ¢ = x, i.e., the value of ¢ at x is 1. If a countable
member of open sets B, €5 (n =1, 2,...) forms a neighborhood base of e,
since ¢ € B, , we have B,(x) = 1. From the lower semi-continuity, for ¢ = 1/n,
there exists a Z-open neighborhood G, of x such that for y € G, , we always
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have B,(y) > 1 — e =1 — 1/n. Therefore for positive integer n, we can
inductively take y,e€ X such that 0 <y,€G, and y, <y,,/2 (with the
convention ¥y, = 2). Now let us construct a fuzzy set B in X as follows:

B(y) =1 — 1/, for y = y.,
a linear function, for ye[y,, Ynul
=0, for y =1,
=1, for y =x(=0).

Evidently B is continuous and takes values in [0, 1] and hence B €.7. Since
B(x) =1, B is an open neighborhood of e. But since B, (y,) > 1 — 1/n =
B(y,), any B, is not contained in B. This contradicts the fact that {B,} is a
neighborhood base of ¢ and hence (X, 77) is not a Cy space.

4. CLosURE AND KURATOWSKI’S THEOREM ON 14 SETS

DerFINITION 4.1. Let 4 be a fuzzy set in (X, Z) and the union of all the
7 -open sets contained in A is called the interior of 4, denoted by A4° or by
IntyA. Evidently A4° is the largest open set contained in 4 and (4%° = A4°.

DEerinITION 4.1°. The intersection of all the 7 -closed sets containing A4 is
called the closure of 4, denoted by 4, or by clyA. Obviously 4 is the smallest

T -closed set containing 4 and (4) = 4.

THEOREM 4.1. A fuzzy point e € A° iff e has a neighborhood contained in A.
The proof, being straightforward, is omitted.

THEOREM 4.1'. A fuzzy point e = x,€ A iff each Q-neighborhood of e is
guasi-coincident with A.

Proof. «x,€ A iff, for every closed set FD A4, x, € F, or F(x) > A. By taking
complement, this fact can be stated as follows: x, € A iff, for every open set
BC A’, B(x) <1 — A In other words, for every open set B satisfying B(x) >
1 — A, B is not contained in 4’. From Proposition 2.1, B is not contained in A’
iff B is quasi-coincident with (4') = 4. We have thus proved that x, € 4 iff
every open (-neighborhood B of x, is quasi-coincident with 4, which is evi-
dently equivalent to what we want to prove.

DreriniTiON 4.2. A fuzzy point e is called an adherence point of a fuzzy
set A iff, every O-neighborhood of e is quasi-coincident with A4.

COROLLARY. 4 is the union of all the adherence points of A.
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THEOREM 4.2. A° = (A)), 4 = (A, (AY = (4), (&) = (4%

Proof. Let o ={A4,|A,e€Z and A,C 4}; then A° = () o/. Evidently,
& ={A'| A, e o} is the family of all the closed sets containing A4’ and
hence A’ = () («7'). From De Morgan’s law, we have m =(N(&)) =
U{(4)} =& = A% The first formula is thus obtained. The other three
can be similarly derived or from the first formula.

THEOREM 4.3. (The 14-set theorem). If A4 is a fuzzy set in (X, T), then at
most 13 fuzzy sets can be constructed from A by successive applications, in any order,
of interior, closure and complementation. Moreover, there is a crisp set A in a
crisp topological space from which 14 different sets can be constructed by these
three operations.

Proof. The last part of the theorem is well known in general topology. The
first part can also be proved in a manner similar to that in general topology, since
in the original proof, (4') = 4, (4) = A, (A°° = A° and only the formulae in
Theorem 4.2 are used (cf. [10, note on p. 45, Problem 1.E].

DerFINITION 4.3. A mapping f: [0, 1]¥ — [0, 1]¥ is called a fuzzy closure
operator on X iff f satisfies the following Kuratowski closure axioms: (1)
f(@)=a,2)4ACf(A), Q) f(f(A) =f(4) Df(AY B)=[f(A)V f(B).

In a fuzzy topological space, it is easily seen that 4 U B= A4 U B (cf. [10,
pp. 42-43]) and hence the mapping g: [0, 1]¥ — [0, 1]¥ defined by g(4) = 4
is a fuzzy closure operator on X. Conversely, any fuzzy closure operator on X
can determine some fuzzy topology for X. For this, we have

TureoreM 4.4. Let f be a fuzzy closure operator on X, let F ={d | A< [0, 1}¥
such that f(A) = A} and let T ={A’' | Ae F}, then T is a fuzzy topology for
X and for every Be [0, 1]%, clgB = f(B). The topology J thus determined as.
above will be called the fuzzy topology associated with a fuzzy closure operator

The proof may be carried out by repeating verbatim the proof of Theorem 1.8 in
[10, p. 43] with the corresponding modifications of symbols. But the simple fact
“awhen A C B, f(A) Cf(B),"” used in the proof, has to be proved as follows: from
ACB, we have B=A U B and hence f(B) =f(AVB) =f(A)Vf(B)D
£(A).

DerINITION 4.4. A fuzzy point e is called a boundary point of a fuzzy set 4
iff ee AN A'. The union of all the boundary points of 4 is called a boundary
of A, denoted by b(A).

It is clear that B(A) = AN 4.

ProposITION 4.1. A D AU b(A), where the inclusion symbol cannot be
replaced by an equality.
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The first part of the proposition is obvious from the definition of 5(A4). The
last part will be shown by an example. It should be noticed that in general
topology, we have 4 = A U b(4), which is a departure from fuzzy topology.

ExaMpLE. Let x€ X, I ={X, @, 5y}, A = x,,5, and ¢ = x,, ; then the
(O-neighborhood of e in (X, ) are X and x,.,, which are all quasi-coincident
with 4. Hence, by Theorem 4.1', ec A. On the other hand eé 4 and the
O-neighborhood of {x, ,} is not quasi-coincident with 4’, i.e., e ¢ () and hence
e¢ AV b(A).

5. AccumuLATION Porrs: GENERALIZATION OF C. T. YANG’s THEOREM

DerFiNITION 5.1. A fuzzy point e is called an accumulation point of a fuzzy
set 4 iff e is an adherence point of 4 and every Q-neighborhood of e and 4 are
quasi-coincident at some point different from supp(e), whenever ec 4. The
union of all the accumulation points of .4 is called the derived set of A, denoted
by A% It is evident that 49 C A.

THeOREM 5.1. A = A U A4, where A% is the derived set of A.

Proof. Let 2 = {e] eis an adherence point of A}. Then, from Theorem 4.1,
A = Q. On the other hand, ¢ € 2 is either “ec A” or “e ¢ A;" for the latter
case, by Definition 5.1, e € 4%, hence 4 = |J 2 C A U A% The inverse inclu-
sion relation is obvious.

CoroLLARY. A fuzzy set A is closed iff A contains all the accumulation points
of A.

Noting that 4 is closed iff 4 = A4, we obtain the corollary by Theorem 5.1.

LeMmaA 5.1; In (X, T), let /{: %, ; then (1) for y £ x, A(y) = A% ). (2)
If A(x) > A, A(x) = A%4x). (3) A(x) = A iff A4x) = 0.

Proof. The conclusions of (1), (2) and the sufficiency of (3) follow from
Theorem 5.1. Now let A(x) = A. We claim that any fuzzy point x, is not an
accumulation point of 4 and hence A%x) = 0. In fact, when pu > A, x, ¢ 4
and hence x, ¢ A% when p <A, x, € A. But then any Q-neighborhood of x,
and A can not be quasi-coincident at a point different from x. Therefore x, is
not an accumulation point of 4.

ProrosiTION 5.1. In(X, T), let A = {x,}; then (1) when A%x) >0, A = A
ts closed. (2) when A%(x) = 0, A% is closed iff there exists an open set B* such that
B*(x) = | and for y + x, B*(y) = (A)(v) = (49'(¥). (3) 4%x) = 0 i}f there
exists an open set B such that B(x) =1 — A.
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Proof. (1) From (3) of Lemma 5.1 and the fact that A(x) > A(x) = A, we
have A(x) > A. It follows from (2) and (1) of Lemma 5.1 that 4 = 4% (2) 4%is
closed iff (%)’ is open. When A%(x) = 0, in view of (1) and (3) of Lemma 5.1,
it follows that (A49)’ is the required B*. The proof is thus completed. (3) From
(3) of Lemma 5.1, A%(x) = 01iff A(x) = A = A(«x). This implies that there exists
a closed F such that F(x) = A, or equivalently, there exists an open B such that
Bx)=1—A

The following is a generalization of Yang’s result [10, p. 56], the proof of
which in fuzzy topology is more complicated than usual.

THEOREM 5.2. The derived set of each fuzzy set is closed iff the derived set of
each point is closed.

Proof. 'The necessity is obvious. We shall now show its sufficiency. Let H
be an arbitrary fuzzy set. In the light of the corollary of Theorem 5.1, in order
to show that H¢ = D is closed, it suffices to show that for an arbitrary accumula-
tion point x, of D, x, € D. Since x, € D — (H%) C (H) = H, by Theorem 4.1',
x, is an adherence point of H. If x, ¢ H then x, is an accumulation point of H,
1e., € D. We may assume that x, € H, 1.e.,, A << H(x) = p without loss of
generality. Consider the fuzzy point ¥, = A and the two possibilities concerning
A% (I} Let A%x) = p; > 0. From Lemma 5.1, p; > A4(x) = H(x), and hence
x, ¢ H. But since x, € A7C ACH, %, 1is an accumulation point of H, x, € D.
Moreover, A <X H(x) < py , 1.e., x, € D. (II) Let 4%x) = 0. Let B be an arbitrary
open Q-neighborhood of &, . We shall show that B and H are quasi-coincident
at some point different from x and hence we know that x, € D. In view of (2) of
Proposition 5.1, there exists an open set B* such that B*(x) = 1 and for y +# x,
B*(y) = (4)(y). Let C=Bn B*; then C(x) =B(x) >1—A, and C is
also an open Q-neighborhood of x, . Because x, is an accumulation point of D,
C is quasi-coincident with D at some point z, i.e., D(z) + C(z) > . Owing
to the fact that D is the union of all the accumulation points of H, there is an
accumulation point z, such that u 4+ C(2) > [. Therefore C is also an open
(O-neighborhood of 2, . The proof will be carried out, according to the three
possible cases concerning z,, as follows: (1) When 2 =& and p <p, then
2, € H. But since 2, is an accumulation point of H, the Q-neighborhood of «x,
(and hence B) and H are quasi-coincident at some point different from & = «x. (2)
When 2 =« and p > p, then 2, ¢ H. From (3) of Proposition 5.1, there is an
open set B such that B(x) =1 — p > 1 — p. Therefore G = C U B is also
an open Q-neighborhood of z, and G and H are quasi-coincident at some point
w. Since G(x) < B(x) =1 — p = | — H(x), w 5 x, i.e., G (and hence C and B)
and fI are quasi-coincident at some point different from x, (3) When z + «,
by (2) of Proposition 5.1, B#(2) = (A)(z). But (A) = (A')® (Theorem 4.2).
Since (.A)%(z) = B*(2) = C(2) > | — p, by Definition 4.1, there exists an open
set BC A’ such that (')%2) = B(2) > | — p. Therefore BN B is also an
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open Q-neighborhood, which is quasi-coincident with H at some point w. Since
BC A4, Bx) <1 —A(x)=1— H(x), w+*=x, we have thus proved that
B N B (and hence B) is quasi-coincident with H at some point different from x.

6. SEPARATION AXIOMS

DErFINITION 6.1. (X, J) is called a fuzzy quasi-Ty-space iff for every
xe X, and A =y, A, pe[0, 1], either x, ¢ &, or x, € X, .

Since when u << A, x, € X, , we have: (Z, 3) is a quasi-T,, space iff, for every
xeS,and 0 <p <A<, x€%,.

DEFINITION 6.2. (X, ) is called a fuzzy T, space iff, for any two fuzzy
points e and d such that e = d, either e¢ d or d ¢ €.

DEFINITION 6.3. (X, J) is called a fuzzy T, space iff every fuzzy point is a
closed set.

The following implications are obvious: T} = T = quasi-T, . Every ordinary
(crisp) topological space vacuously satisfies condition of being quasi-T, and
hence the quasi-T,-separation is a particularity in fuzzy topology.

Let (X, ) be a quasi-T, space, let x€ X and 4 = (p; , p)(0 < py <pp < 1);
then there exists B € J suchthat B(x) e 4. Infact,letA =1 —p,p =1 — pp;
then A > p > 0. Since (X, J7) is a quasi-T| space, x, ¢ ¥, and hence there exists
some open Q-neighborhood & (B(x) > 1 — A = p;) which is not quasi-coin-
cident with x_, i.e., B(x) <1 — p = p, . Hence B(x) € 4.

The following property concerning quasi-T,, spaces can be sharpened as
follows.

THEOREM 6.1. (X, ) is a quasi-T, space off for every x € X and p€ [0, 1],
there exists a B€ I such that B(x) = p.

Proof. Necessity. When p =0, it suffices to take B = @; when 0 <p < I,
take a strictly monotonic increasing sequence of positive real numbers converging
to p. Let 4, = (pn » prsal (n =1, 2,...); from the property just proved above
there exist B, €7 such that B® e 4,, for each n. Therefore B = Uney By is
open and B(x) = p.

Sufficiency. For two fuzzy points x, and x, with u <A, there exists from
hypothesis an open set B such that B(x) = 1 — p > 1 — A. It is evident that
B is an open Q-neighborhood of x, but is not quasi-coincident with {x,}. Hence
it follows from Theorem 4.1’ that x, ¢ X, .

THEOREM 6.2. (X, T) is a T, space iff (X, T) is quasi-T,, and for any two
distinct points x, y in X and for any p, v € [0, 11; then there exists B€ J such that
B(x) = p and B(y) > v, or B(x) > p and B(y) = v.
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Proof. Necessity. When (X, ) is T, it is also quasi-Ty. For x # y and
p, ve[0, 1), putting A =1—p and p = | — v, we obtain two distinct fuzzy
points x, and y, . If x, ¢ 7, , there exists an open O-neighborhood B, (B,(x) >
1 — A = p) which is not quasi-coincident with {y,}, i.e,, Byi(y) <1 —p =w.
In view of Theorem 6.1, there is B, €7 such that By( y) = ». Then the fuzzy
open set B = B, U B, is the required one. If y, ¢ {#,}, the argument can be
carried out in a similar way.

Sufficiency. Since (X, ") is quasi-Ty, it suffices to consider the separation
of two fuzzy points x, and y, with x == y. Putting p =1 — A, v = | — p, from
the hypothesis, we may assume that there exists B€.J such that B(x) = p
and B(y) > v. Then B is a Q-neighborhood of y, which is not quasi-coincident
with {x,}. Hence y, ¢ ¥, .

THEOREM 6.3. (X, J) is a Ty space iff, for each x € X and each A€ [0, 1],
there exists Be T such that B(x) = | — Aand B(y) =1 for y # x.

Proof. Necessity. When A =0, it suffices to take B = X. When A >0,
x, being a fuzzy point is a closed set by hypothesis, then B = 1 — x, is the
required open set.

Sufficiency. Let x, be an arbitrary fuzzy point. Then, by hypothesis, there
exists a BeZ such that B(x) =1 — A and B(y) =1 for y + x. It follows
that x, = B’ is closed.

DEerFINITION 6.4. (X, J)is fuzzy T, (Hausdorff) space iff, for any two fuzzy
points e and d satisfying supp e # supp d, there exist Q-neighborhoods B and C
of e and d, respectively, such that BN C = @.

ProPosITION 6.1. Let (X, T) be a T, space, then any accumulation of a fuzzy
point y, in (X, T is of the form y, (A > p).

Proof. When A < u, y,€y,, but since any O-neighborhood of y, can be
quasi-coincident with y, at most at y, y, is not an accumulation point of v, .
When x 5= y, from the property of being fuzzy T, , there exist Q-neighborhoods
B and B, of x, and y,, , respectively, such that B N B, = @, But since B;( y) >
1 —p =0, B(y) =0, ie., Bis not quasi-coincident with y, at y and hence x,
is not an accumulation point of y, . We have thus proved that the only possible
form of an accumulation point of y, is of the type y, with A > p.

Since the separation axiom, 7T is concerned only with those fuzzy points with
different supports, it is possible, as the following example shows, that a 7,
space need not be quasi-T, to say nothing of being 7} .

ExamprLe. Let X ={y, 2}, when y 5 2. Let Z be the fuzzy topology on X
which has # = {y, A€ (2/3, I} U {2, ] A€ (0, 1]} U {P} as a base. Obviously,
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(X, 7) is a fuzzy T, space. But since there is no J -open set which takes the
value } at y, in view of Theorem 6.1 (X, ") is not quasi-T .

TaeoREM 6.4. If (X, I) is both T, and quasi-T,, , then it is also T .

Proof. Let y, be an arbitrary fuzzy point. From Proposition 6.1, an accumu-
lation point, if any, of y, is of the form y, (A > p). In the light of the property
of (X, ) being T, and Theorem 6.1, there exists a Be€.7 such that B(y) =
1 —u>1—A ie, Bis a Q-neighborhood of y, and is not quasi-coincident
with y, . Hence y, (A > p) cannot be an accumulation point of y, and therefore
¥, has no accumulation point. Owing to the corollary of Theorem 5.1, y, is
closed. This means that (x, 7)is T3 .

Since the derived set of every fuzzy point in a T, space is obviously @, we
obtain from Theorem 5.2 the following.

THEOREM 6.5. The derived set of every fuzzy set on a Ty space is closed.

7. £2-AccUMULATION POINTS: LINDELOF PROPERTY

DEerFINITION 7.1. A fuzzy set 4 in X is said to be uncountable iff supp 4 is
an uncountable subset of X.

ProrosiTION 7.1. Every uncountable fuzzy set on a Cyy space has an uncount-
able number of accumulation points the supports of which are mutually different.

This proposition is a corollary of Theorem 7.1, below.

DEFINITION 7.2. A fuzzy point e is called an £2-accumulation point of A iff
the set consisting of all the points at each of which every Q-neighborhood of e
and A are quasi-coincident is uncountable.

DeriniTION 7.3. A fuzzy set D in (X, J) is said to have the Lindelof
property iff every open cover of D has a countable subcover. (X, J7) is called a
hereditarily Lindeléf space iff every fuzzy set in X has the Lindelof property.
(X, 7) is called a Lindelof space iff X has the Lindel6f property.

PROPOSITION 7.2. Every Cyy space is a hereditarily Lindelof space.

The proof is similar to that of Theorem 1.15 of [10], p. 49].

THEOREM 7.1. Let (X, T) be a hereditarily Lindelof space. Let A be an
uncountable fuzzy set on X. Let B =) {e | e is an Q-accumulation point of A
such that e € A}. Then X, = supp A — supp B is a countable subset of X.
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Proof. If X, is non-empty, taking any point y € X, and putting A = A( y) >
0, we know the fuzzy point y, € 4. Since y ¢ supp B, v, is not an £-accumulation
point of 4. Then there exists some open Q-neighborhood B, such that the set
of all points at each of which B, is quasi-coincident with A4 is at most countable,
L.e., the set {z | 2 € X such that B,(z) > | — A(2)} is at most countable. Now
put Z = {B, |y € X} and define D as follows:

D(y) = B(y), for yeX,
=0, for y¢ X,

It is clear that # is an open cover of D. Since D has the Lindelof property, there
are a countable number of B, € %, i = 1, 2,..., such that W = {J,_, B, D D.
Theset{ze X | W(z) >1 — A(z)} is evidently at most countable. On the other
hand, for every y € X;, W(y) = D( ), and B, is a Q-neighborhood of y, , i.e.,
B(y) >1— =1 — A(y). Therefore W(y) > 1 — A(y) and X, is at most
countable.

8. SUBSPACES

DEerFInNITION 8.1. Let (X, .7) be a fuzzy topological space, and Y C X
then we call the family %, defined by % = {4 | Y| 4 € 7}, which is obviously a
fuzzy topology for Y, the relative fuzzy topology, or the relativization of 7 to Y.
Such a fuzzy topological space (Y, %) is called a subspace of (X, 7). More
formally, a fuzzy topological space (Y, %) is called a subspace of another fuzzy
topological space (X, J) iff Y C X and % is the relativization of 7 to Y. A
Y-open (resp. %-closed) set is also called a relative open (resp. %-closed) set
on Y.

Since the terms ‘‘space” and ‘“‘subspace’ often occur simultaneously in an
argument, in order to simplify the exposition, we shall adopt the following
conventions under conditions such that no confusion can arise: (1) For a subspace
(Y, %) we often omit the relative topology # and simply say the subspace Y.
(2) A fuzzy set 4 on Y is automatically considered as a fuzzy set on X in the
sense that A takes the value 0 on X\Y. And conversely, any fuzzy set on X,
taking value 0 on X\Y, can also be considered a fuzzy set on Y. (3) For a fuzzy
set 4 on the subspace (Y, %), the closures of A with respect to % and .7 are
respectively denoted by cly A and clx(4).

Prorosition 8.1. Let (Y, %) be a subspace of (X,J), and A€]0, 1]Y;
then (1) A is U-closed iff there is a T -closed set B such that 4 =B|Y. (2) 4
Sfuzzy point y, in Y is an accumulation point of A with respect to % iff y, is an
accumulation point of A with respect to I . (3) cly.d = Y Nncly4.
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Proof. Property (1) follows directly from the definition of the relative
topology and the operation of complementation.

(2) Since the Q-neighborhood system of y, with respect to % is obtained from
that of y, with respect to J by restriction to Y, noting that A is a fuzzy set on
Y, we can directly obtain the result from the definition of accumulation point.

Property (3) follows directly from Theorem 5.1, (2), and the definition of
derived set.

9. SEPARATION

DErFINITION 9.1. Two fuzzy sets 4, and 4, in (X, ) are said to be separated
iffthereexist U, €. (1 = 1,2)suchthat U, D 4,;(i = 1,2)and U, N A, = & —
U,n A, .

DerFINITION 9.1°. Two fuzzy sets 4; and A, in a fuzzy topological space
(X, 7) are said to be Q-separated iff there exist 7 -closed sets H, (i = I, 2)
such that H,24; (f =1,2) and HiNn A, = o =H,Nn A4,. It is obvious
that 4, and A, are Q-separated if A, " 4, =® = 4,N A4, .

PROPOSITION 9.1.  Separation and Q-separation do not imply each other.

This is obvious by observing the following example.

Exampre I. Let X = X, U X,, where X; and X, are (crisp) non-empty
sets such that X; N X, is empty. Let A, € [0, 1] and define

Coal®) =24y,  forxe X,
= A, forve X,.

Obviously, C, Aoy is a fuzzy set on X.

(1) Let Z = {X, D, Cy 5,9, Cy.0/3}, let T be the topology for X, which takes
Z as a base, and let .4y = Cyy yand A, = Cy 4y - Then 4, and A4, are separated
with respect to 7, . But 4, = C,,,4 and 4, N 4, # ®, A, and A4, are not
O-separated.

(2) Let Z,={X, ®Cy)5;,C, 1/} and let T, be the topology for X, which takes
%, as a base, then A4, and 4, are  ,-closed, do not intersect and hence are, of
course, O-separated. But they are obviously not separated.

Separation and Q-separation coincide in (crisp) general topology. Moreover,
we have

PROPOSITION 9.2. Let D, and D, be two crisp sets of a fuzzy topological space
(X, 7). Then D, and D, are separated iff they are Q-separated.
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Proof. Let D, and D, be Q-separated, then, by definition, there exist closed
sets H, D D;and H; N D; = @ (1 %, 1, = 1, 2). Therefore H; has to take the
value 1 on the subset D, of X, and the value 0 on the subset D, of X. And hence
H; = G, takes the value 0 on D, , and the value 1 on D, . Then we have G, D D,
and G, N D; = . This shows that D, and D, are separated. In order to show
that separation of D; and D, implies their Q-separation, it suffices to interchange
the positions of the two terms “open sets” and “closed sets’’ occurring in the
above argument.

We recall that 4, = supp 4.

Tueorem 9.1. Two fuzzy sets A and B are Q-separated iff 1,0 B, = 2,
Cleuao A =clyd, cl, 5 B =clyB.

Proof. Necessity. Let A and B be Q-separated, then B N clyd = <. Then
AyNn By = & and BynNclyd = 5. From (3) of Proposition 8.1, we have

oo, 4 = (AgUB) A clyd = dynely d = el A.

Stmilarly we can prove that cl a,u8,B = clp B.

Sufficiency. From the hypotheses and Proposition 8.1, it follows that
Bncly s, 4 =Bncl, ACB,N A, = c. Therefore

Brcdyd =Bn(By,ud)nclyd=Bnc,gd= -

Similarly, 4 N clyB == . That is, A and B are Q-separated.

ProPOsSITION 9.3. Two fuzzy sets A and B are Q-separated iff cl 4,0 A and
cls,up,B are Q-separated.

Proof. 'The sufficiency holds obviously. We shall now show its necessity.
Let C =cl, yp A, D = cleuBoB. From Theorem 9.1, C = cl, A4, D= clBoB,
and hence C, =4,, Dy=B,. Then Cyn Dy, = . Moreover, cle, € C
ce,up,C = degun(Clausd) = clyusd = clyd = cle,d C e C, e,
ce,C = clg,sC. Similarly, we have clp D = clc, p,D- Tt follows from
Theorem 9.1 that C and D are Q-separated.

DreriniTiON 9.2, Let A and B be two fuzzy sets in X. The operation 4 ~ B
is defined as follows:

(A ~B)x) = Ax), for xe{yeX|A(y)> B(yh
=0, otherwise.

<

The operation “‘~ defined above reduces evidently to the difference “—
between two ordinary sets in ordinary set theory. In general topology, there is a
theorem concerning separation of sets, which says as follows: If Y and Z are
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subsets of a topological space X and both Y and Z are closed or both are open,
then Y\Z is separated from Z\Y (cf. [10 p. 52. Theorem 1.17]). This result is
no longer true in fuzzy topology, as is shown by the following example. This is
the only theorem in [10, Chap. I}, which cannot be generalized in fuzzy

topology.

ExampLE 2. Let X = X, U X,, X, and X, being non-empty sets with

empty intersection. The fuzzy set C 2,4, In X is defined as in Example 1. Let

={C,. 1A pel0, )} v iX}, which is obviously a fuzzy topology for X. Let

Y = Cygy, Z = Cy,93. Then both ¥ and Z are F -closed, but ¥ ~ Z = C, ;

and Z ~ Y = (| 4 are not separated, since the only open set containing ¥ ~ Z

is X. They are also not Q-separated, because (¥ ~ Z) = C|,,, , which intersects
Z~Y.

PrROPOSITION 9.4. Let A and B be two fuzzy sets in X such that A U B = X
then (1) A ~ B and B ~ A are crisp sets on X; and (2) A ~ B and B ~ A are
separated iff they are Q-separated.

Proof. (1) Suppose that (4 ~ B)(x) > 0. By the definition of 4 ~ B,
A(x) > B(x). But max(A4(x), B(x)) =1 and hence A4(x) =1 = (4 ~ B)(x).
Therefore 4 ~ B takes only the value 0 and 1 on X. By definition, 4 ~ Bis a
crisp set in X. Similarly, B ~ 4 can be proved to be crisp.

(2) Noting Proposition 9.2, we see at once the equivalence of separation and
O-separation between the crisp sets 4 ~ B and B ~ 4.

THEOREM 9.2. Let A, B and D be fuzzy sets in a fts. (X, T ) such that AV B =
X,and A ~ B and B ~ A are Q-separated (or separated); then

cly D = cly (D N A) U clp (D N B).

Proof. In view of Proposition 9.4, we need only consider the case in which
A ~ B and B ~ A are Q-separated.

It is evident that clyD D cl, (D N A) U cly (D N B). We shall now show that
cyDCel, (DN A)Uclg (DN B).FromA U B =X, wehave 4 U (B~ 4) =
X. Then D=DnNnAvu(DN(B~A4A), AnclyD =(ANcly (DN ) v
(A N cly(D N (B ~ A))). The first term of the right side is obviously contained
in Ay N cly(D N A) = cl, (DN A); We shall now show that the second term
of this side is contained in clp (4 N D). In fact, cly(B ~ A) and 4 ~ B do not
intersect. Then for every x € X such A(x) > B(x), cly(B ~ A) takes the value 0.
Therefore it may take the non-zero value only at those points x, where B(x) =
A(x). But when B(x) > A(x), it is easily seen that B(x) = I, because A U B = Z.
This means that cl(B ~ A) may take non-zero values at points x, where
{(Bx) =1, and hence clx(B ~ 4)C B, .



FUZZY TOPOLOGY I 589

Then we have
clx(D N (B ~ A))Ccly(D N B)N By = clg (D N B),
AncyDCc, (D A)uclg (DN B).
Similarly we can prove
Bncly DCcl (DN A)uclg (DN B),
consequently,
cxD=(ANcly D)V (BnclyD)Cecly (DN A)U clg (DN B).

THEOREM 9.3. Let A and B be two fuzzy sets in (Z, T )suchthat AVB =2
and A ~ B and B ~ A are Q-separated or separated. Let D be a fuzzy set in
(Z, T) such that D N A and D N B are relative closed (open) in the subspace A,
and B, , respectively; then D is T -closed (resp. T -open).

Proof. 'The closedness of D follows directly from Theorem 9.2. Since the
lattice [0, 1]* is not a Boolean Algebra, especially because 4 N A’ need not be
@, AU A need not be X, the openness of D can hardly be derived from the
closedness of D’ by taking complements. The following is a proof of the openness
of D, which has some features of lattice theory. Let X; = {x € X | B(x) = 0},
Xo={xeX|1 =4d(x) >B) >0}, X;={xeX |l =B(x) = A(x)}, X, =
fxeX|] =B() > A(x) >0}and X; ={vxe X | A(x) =0}since A U B = X,
at least one of A(x) and B(x) is 1. Moreover, it is obvious that X = Uf=1 » X,
and {X;, X,, X;, X,, X;} is a pairwise disjoint collection (some X; may be
empty). Let f be a fuzzy set in X. Let the restriction of f to X, be denoted by f, .
Then f may be also denoted by (f;, fo, f5, fa » f5)- For a fuzzy set f which takes
the value O or | on X, , the corresponding component in the above representation
of f will be directly written as 0 or 1. Using this representation and noting the
definition of .Y, , we see easily that 4 = (1, 1, 1, @, 0), B = (0, b, 1, 1,), where
a and b are restrictions of A and B to X and to X, respectively (a and b need
not be constant). Let D = (d, , d,, dy, dy, d;);then DN A =(dy, dy, dy, a N
di,0), DNB=(0,d,nb,dy, d,, dg). By hypothesis, D N4 and D N B are
relative open sets on 4y = XA, U X, U X, U Xjand By = X, U X, U X, U Y,
respectively, and hence there exist 7 -open sets I'; and V), such that 1, N Dy =
D N A, respectively. Let g denote the restriction of V) to A}, and let 4 denote
the restriction of I, to X; then we have 1|, = (d;, d,, dy, anndy, g), I, =
(h, b d,, dy, d,, d;). On the other hand, from Proposition 9.4, we may assume
that 4 ~ B and B ~ A are separated. Then there exist 7 -open sets G, , G,
suchthatG; D A ~B, G, DB ~AandGiN (B~ 4) = o =G, N (4 ~ B).
But it is easily seen that A~B =(1,1,0,0,0), B~.4=(0,0,0,1, 1) and
therefore Gy = (1, 1,5, 0,0) and G, = (0,0, ¢, 1, 1). We have thus reduced

408 76 2 19
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our problem to a problem concerning only lattice operations: Given V,, V,,
G,, G, and D as above, express D in terms of a combination of unions and
intersections I of those V,’s and G,’s. This can be done as follows. Let V' =
ViU V= YUhdy,dy,dy,d;Ug)FL =G UV,=(l,1s0Udy,d,,d;),
Fo =G, UV, =(d,dy, tVdy, L, N FLNFy, =(d,,dy,dyU(sNt),d,,d);
finally, we have the required expression:

(FLNF)NV = (dy,dy, dy, dy, ds) =D

By replacing ‘“‘open sets” by ‘“‘closed sets” and separation by Q-separation,
in the foregoing argument, a similar proof for the closedness of D is obtained.

10. CONNECTEDNESS

DEerFiNITION 10.1. A fuzzy set D in (X, ) is called disconnected iff; there
exist two non-empty sets 4 and B in the subspace D, (i.e., supp D) such that
A and B are Q-separated and D = 4 U B. A fuzzy set is called connected iff it is
not disconnected.

Lemma 10.1. A fuzzy set D is disconnected iff there arve relative closed sets
in the subspace D, such that AND+® BND+P ANB =9 and
AUBDD.

Proof. The necessity can be obtained by means of Dy = A, U B, and
Proposition 9.3. We shall now show its sufficiency as follows. For the given
closed sets A and B,let A = AN D, B=BnN D;itis evident that J U B =
(AUuB)YND =D, 4 #®, B+, since it is easily seen that .4 and B are
O-separated and A C 4, BC B, A and B are also Q-separated in the subspace
D, .

THeOREM 10.1. Let D be a connected set in (X, T); then clyD and clp,D
are also connected.

Proof. Suppose clyD = E is disconnected. Then, from Lemma 10.1,
there are relative closed set 4 and B in the subspace E; such that 1 U BDE,
ANE+=®d, BNE #AP, AN B =¢&. Obviously, 4 U BDD. From the
connectedness of D, we may assume 4 N D = @ (for the case where BN D =
@, a similar argument holds). That is, D C B. It follows that £ = EN E, =
(cIyDYNE, = clg D Cclp B = B, but since AN B =@, AN E = @, which
is a contradiction.

The connectnesness of clp D can be proved analogously by indirect method.
(At this time take £ = clp D and note that Ey = (clp, D)y = D, )

THeoREM 10.2. Let &7 be a family of connected fuzzy sets in a fts (X, J)
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If no two members of ./ are Q-separated in the subspace (| &7), , then | J o is
connected.

Proof. For simplicity, let D = (J «/. Suppose D is disconnected. From
Lemma [0.1, there are relative closed sets 4 and B in D, such that A U BD D,
AND#E®, BN D+~ ®, AN B = ®. Let H be any member of 7. Since B is
connected and 4 U BD H, we may assume that 4 N H = @ (For the case in
which H N B = @, the argument can be carried out in a similar way.) Then
H C B. We have thus proved that any member of & is contained either in 4 or
in B. Moreover, since A N D 5 @ and BN D = @, we may suppose H, € &/
(i =1, 2)suchthat H, C 4, H, C B.In viewof clp H, C cp A =4d,clpH,C B,
it is obvious that H; and H, are J-separated in D, , which is a contradiction.

DerinrTioN 10.2.  Let D be a fuzzy set on (X, 7). The maximal connected
fuzzy set contained in D is called a component of D.

THeEOREM 10.3. Let D be a fuzzy set on (X, T), each connected fuzzy set
contained in D is contained in some component of D, and any two distinct components
of D are Q-separated in the subspace D, .

Proof. 'The last part of the theorem is a direct consequence of Theorem 10.2
and the maximality of a component. We shall now prove the first part of the
theorem. When 1) = @, the case is trivial. Suppose D 5= @, and A is a connected
set contained in D. First suppose 4 = @. Let # = {B | B is connected such
that A4 C B C D}. Any two members of # contain a non-empty set 4 and hence
are not Q-separated. By Theorem 10.2, | # = E is connected. It is obvious
that £ is a component of D. For the case where A4 = @, since D + @, take any
fuzzy point e € D; from the definition of a connected set, it is evident that e is
connected. According to this proof, e and hence @ is contained in a component
of D.

A component of a fuzzy set D need not be relative closed on D, , which is
another departure from general topology.

ExaMmpPLE. Suppose X is composed of a single point x. Let 7 = {X, @, x,,3}.
Let D = x5 ; then D is of course a component of D but is not a closed set in
Dy, = X.

ProposiTION 10.1. If D is a closed fuzzy set in (X, I7), then every component
of D is a closed set on X.

Proof. Let A be a component of D. In view of Theorem 10.1, clyA is con-
nected. From A C clyA CclyD = D and the maximality of a component, we
have A = clyA4; i.e., A is closed in X.

At the end of this section we shall point out that the theorem on separation
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sets (cf. [10, p. 60, Problem 1.Q]) can be generalized to fuzzy topological spaces.
The proof of this generalization, though a little longer, is straightforward and
hence is left for the readers.

THeorREM 10.4 (Theorem on Q-separated sets). Let 4 and B be connected
Juzzy sets and ADB. If A~ B=CuUD, and C and D are Q-separated in
(X, ), then B\ C and BV D are connected.

11. NETs

From this section on, we turn to the investigation of Moore-Smith conver-
gence in the fuzzy topological spaces. All the theorems in [10; Chap. II] have
been generalized to fuzzy topology in the following pages.

DerFiniTION 11.1. Let D be a non-void set. Let > be a semi-order on D.
The pair (D, >) is called a directed set, directed by >, iff, for every pair m,
n e D, there exists a pe D such that p = m and p > n.

DeriniTION 11.2.  Let (D, =) be a directed set. Let X be an ordinary set.
Let _# be the collection of all the fuzzy points in X. The function S: D — ¢
is called a fuzzy net in X. In other words, a fuzzy net is a pair (S, =) such that
S'is a function: D — _# and > directs the domain of S. For n € D, S(n) is often
denoted by S,, and hence a net S is often denoted by {S, , n e D}.

DermniTioN 11.3. Let S = {S,, n € D} be a fuzzy net in X. S is said to be
quasi-coincident with A iff, for each n € D, S, is quasi-coincident with 4. S is
said to be eventually quasi-coincident with A iff there is an element m of D
such that, if n € D and n = m, then S, is quasi-coincident with 4. .S is said to be
frequently quasi-coincident with A iff for each m in D there is an 7 in D such that
n > mand S, is quasi-coincident with .4. S is said to be in 4, iff for each n e D,
S,eAd.

DerFINITION 11.4. A net Sin a fts (X, ) is said to converge to a point e in
X relative to  iff S is eventually quasi-coincident with each Q-neighborhood
of e.

THEOREM 11.1. In a fts (X, T), a fuzzy pont e € A iff there is a fuzzy net S
in A such that S converges to e.

Proof. Necessity. Let D = {Be[0, 11¥]| there exists 0 €7 such that eq.
0 C B}. Then {D, C} is a directed set (cf. Proposition 2.2, (2)). For cach Be D,
since ¢ € 4, by Theorem 4.1, there exists a point z € X such that B(z) F -(z) >
1. Hence A(z) = p > 0, and fuzzy point 2, € A and z,¢B. Now we have the
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function S: D — {fuzzy points e in A} such that for every Be D, S(B) =z, € 4.
Then the net (Sz ; B € D) is the required one.

Sufficiency. 1f there is a fuzzy net S in A converging to e, then, by Definition
11.4, for every O-neighborhood B of e, S is eventually quasi-coincident with B.
Hence there is some S, = 2, such that 2,¢g1and 2, € B., t.e., B(g) + p > 1 and
p < A(2). It follows that B(z) + A(z) > 1. Hence B and A are quasi-coincident.
From Theorem 4.1, e A.

THEOREM 11.2. A fuzzy subset A in a fuzzy topological space (X, T") is
closed iff every fuzzy net S in A cannot converge to a fuzzy point not belonging to A.

Noting that A is closed iff A = A, we see that this is a direct consequence of
Theorem 11.].

In Definition 9.2, we introduced the operation 4 ~ B as a generalization of
difference between sets in the ordinary set theory. We shall now introduce the
operation 4 — B between two fuzzy sets 4 and B, which is another generaliza-
tion.

DeriniTiON 11.4. Let A and B be two fuzzy sets in X. Then 4 — B is
defined as follows.

(4 — B)x) =0, for xe{yeX|A(y) = B(y) >0}
= A(x), otherwise.

Intuitively speaking, for x € X, when the fuzzy point xp, exists (i.e., B(x) >
0) and belongs to 4 (i.e., A(x) = B(x)), then the value of 4 at x is reduced to 0
and remains unchanged otherwise.

Evidently, when A(x) <A, 4 — x, = A; when A(x) = A, supp(4 — x,) =
supp 4 — {x}.

Tueorem [1.3. In a fuzzy topological space (X, T), x, is an accumulation
point of A iff there is a fuzzy net in A — x), converging to x, .

Proof. When A(x) <A, A — x, = A and x, ¢ 4. Hence x, is an accumula-
tion point of A iff x, € 4. In view of Theorem 1.1, this is also equivalent to the
fact that there is a fuzzy net in 4 = 4 — x, which converges to x, .

When A(x) = A, x, € A. At this time, x, is an accumulation point of A iff
every Q-neighborhood B of x, is quasi-coincident with A at a point different
from x, i.e., B and H = 4 — x, are quasi-coincident. In other words, x, is an
accumulation point of 4 iff x, € H. From Theorem 1.1, this is equivalent to the
fact that there is a fuzzy net in H = 4 — «x, converging to x, .
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12. Un1QuENESS OF CONVERGENCE THEOREM ON ITERATED LimiTts

As the following proposition shows, the set of fuzzy points to which a fuzzy
net converges is, in general, infinite. But if we put certain restrictions on the sup-
ports, we can obtain some appropriate result concerning the uniqueness of
convergence.

ProposrtioN 12.1. In a fuzzy topological space (X, T), if a fuzzy net S
converges o a fuzzy point x, , then, for every pe (0, A], S converges also to x, .

Proof. Since p << A, then | — pu > 1 — A, and hence any Q-neighborhood of
x, is also a Q-neighborhood of x, . From this fact, it is evident that .S converges
to X, .

. DrrFiNiTiON 12.]. Suppose for each a €1, (D, , >>,) be a directed set. Recall

that the Cartesian product D = x {D, : a €I} is the set of all functions d on [
such that d, (= d(a)) € D, for each a € I. The product order > on D is defined
as follows: for d, fe D, d > f iff, for each a € I, d, >, f, . The product directed
set of the collection of directed sets {(D,, >,) | « €} is defined as the pair
(D, >), where D is the Cartesian product of {D, | « €I} and > is the product
order on D. (It is easily verified that > directs D.)

THEOREM 12.1. In a fuzzy topological space (X, T), every fuzzy net does not
converges to two fuzzy points with difjerent supports iff (X, I} is a fuzzy T, space.

Proof. 1If there is a fuzzy net S = (S, , n€ D) in X converging to two fuzzy
points e, e, with supp e; # supp e,. For any Q-neibhborhood B, of e,
( = 1, 2), in view of Definition 1.4, there is some .S,, which is quasi-coincident
with both B, and B, . Let supp S,, = z. obviously B,(2) > 0, By(z) > 0. Hence
B, and B, intersect. This contradicts the fact that (X, 77) is T, . The sufficiency
is thus proved. We shall now show the necessity. If (X, 77) is not T}, then there
are fuzzy points ¢, and e, with different supports such that for any Q-neighbor-
hoods, A, of ¢, (I =1, 2), A; N A, # D, therefore, there exists 2 € X such that
Ay(2) >0, 4y(z) > 0. Let A = min(A,(2), As(2)); then the fuzzy point 2;_,/,
is quasi-coincident with both A, and A, . Denote this fuzzy point by S(d,; , 4,).
Let %, be the Q-neighborhood system of e, ; then both %, and %, are directed
by C and then we construct the product directed set {#%, X U, /} according
to the above definition. To each number 4, X Ay e ¥, % U, corresponds the
fuzzy point S(4, , #,) described above. This correspondence gives a fuzzy net
S in X. It is evident that .S converges to both e, and e, whose supports are differ-
ent. Contradiction.

The following theorem on iterated limits concerning the convergence of nets
has its own interest in mathematical analysis. To give the generalized form of
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this theorem here is to make a preparation for investigating the relationship
between topologies and convergence classes.

DrerFiNiTION 12.2. Let D and E,, , m e D be directed sets. If, corresponding
to each m € D and each n € E,, , there exists a fuzzy point S(m, n), we call the
function S an iterated fuzzy net in X: {S(m, n) |me D, neE,}, If in a fis
(X, 9), for a given m € D, the fuzzy net {S(m, n) n € E, } converges to a fuzzy
point S, in X, then we have a fuzzy net {S,,, me D}. If {S,, , m € D} converges
to a fuzzy point e in X, we say that the iterated limit e of the iterated fuzzy net
exists, or we simply say that .S converges to e.

TheorREM 2.2 (Iterated limit theorem). If, in a fits (X, T), an iterated
SJuzzy net {S(m, n), me D, ne E,} converges to e, let F denote the product order
D x (x {E,, | me D}). A function R with domain F is defined as follows: for each
(m,fYeF, R(m, f) = (m, f(m)). Then SR is a fuzzy net with domain F and
converges 1o e.

Proof. S < Ris obviously a fuzzy net with domain F. For any Q-neighborhood
B of ¢, since S converges to e, there is an me Dsuch that for every pe Dand p 2> m,
S, is quasi-coincident with B. Let x,, denote the support of S, . Then B(x,) +
S,(x,) > | and hence B is also an open Q-neighborhood of .S, . Since by hypo-
thesis, {S( p, n), n € E_} converges to .S, (cf. Definition 12.2), there corresponds
an f (p) € E, such that for every ne E, and n = f( p), S(p, n) is quasi-coinci-
dent with B. For each p > m, we have thus defined f (p) € E, . If p € D, which
does not follow m, let f ( p) be an arbitrary member of £, , then we obtain f€ X
{E,,peDiand(m, f)eF. When (p -qyeFand (p, q) = (m, f), wehavep > m,
g(p) = f(p). In view of the foregoing construction, we know that S( p, g( p))
gB, and hence So R (p, q) = S(p, g( p)) ¢B, i.e., SR is eventually quasi-
coincident with B. Hence S ¢ R converges to e.

13. SUBNETS AND SUBSEQUENCES

DerintTiON 13.1. A fuzzynet 7' == {7, , me I in Xis called a fuzzy subset
of a fuzzy net S = {S,,, ne€ D} in X iff there is a function N: £ — D such that
(1) T = 80N, thatis, foreachie £, T, := Sy, -
(2) For each ne D, there exists some m € E such that, if Eap ™ m,
N(p) = n.

TueoREM 13.1. Let S = {S,,ne D} be a fuzzy net in \ and let &/ be a
family of fuzzy sets in X such that the intersection of any two members of &/
contains a member of o7, and such that S is frequently quasi-coincident with each
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member of /. Then there is a subnet T of S which is eventually quasi-coincident
with each member of o7.

Proof. The intersection of any two members of &7 contains a member of &/
and therefore &7 is directed by C. Let D, = {4, C} and E, the set of all pairs
(m, A)such that me D, 4 € o/, and S,,¢A. Since S is frequently quasicoincident
with each member of o7, E is evidently nonvoid. It is clear that E is a subset of
D x D, . The product order for D X D, restricted on E, gives a semi-order >
for E. Then E is directed by >. In fact, for members (m, A) and (n, B) of E,
there is G € o7 such that G C 4 N B. Moreover, since S is frequently quasi-
coincident with G, there is p € D such that p > m, p > n and S,¢G and hence
(p, G)EE and (p, G) follows both (m, A) and (n, B). In the directed set
(E, =), define a function N: E — D such that N(m, A) = m. It is easily seen that
condition (2) of Definition 13.1 is satisfied. Therefore 7 = S« Nis a fuzzy sub-
net of S. Finally, if 4 is a member of &7, since S is frequently quasi-coincident
with 4, there is some m € D such that S,,¢4, and hence (m, A) e E. For (n, B) €
Eand (n, B) > (m, A) = S N(n, B) = S,,, S.¢B and hence S,¢A4. Therefore
T is eventually quasi-coincident with 4.

DerinrTION [3.2. Inafts (X, ), a fuzzy point e s called a cluster point of a
fuzzy net S iff for every Q-neighborhood B of e, S'is frequently quasi-coincident
with B.

THEOREM 13.2. Inafis (X, T) a fuzzy point e is a cluster point of a fuzzy net
S iff S has a fuzzy subnet T converging to e.

Proof. 'The sufficiency follows directly from Definitions 13.2 and 13.1.
Suppose ¢ is a cluster point of .S. In view of the fact that the Q-neighborhood
system of e satisfies the conditions concerning the family &/ in Theorem 13.1,
the necessity follows directly.

THEOREM 13.3. Let S ={S,, ne€ D} be a fuzzy net on X. For each ne D,
let A, be the union of all fuzzy points Sy, (m > n): A, = Unen Sm , then in the
fts (X, T), a fuzzy point e is a cluster point of S iff e € A, for each n € D.

Proof. If e is cluster point of S, from Definition 13.2, for each n, A, is quasi-
coincident with each Q-neighborhood of e because S is frequently quasi-coinci-
dent with each Q-neighborhood of e. Therefore ¢ € 4, for each n. Conversely,
let e e A, for each n. Take any Q-neighborhood B of e and any m € D. Since
ec A, , by Theorem 4.1, B and A,, are quasi-coincident at some point z, i.e.,
B(z) + A,(z) > 1. By the definition of 4,,, 4, = Upem S, , we have sup,p
S,(2) = 1 — B(z). Hence there is n = m such that A,,(2) = S,(z) > 1 — B(z),
i.e., B(2) + S,(z) > 1, that is to say, S,¢B. Hence S is frequently quasi-
coincident with B. It follows that e is a cluster point of S.
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When the domain of a fuzzy net {S, , n€ D} in X consists of the positive
integers, with the natural order between positive integers as semi-order, we call
this net a fuzzy sequence. Similar to the definition of subnets, we may define
the concept of fuzzy subsequences.

THeEOREM 13.4. Let (X, T) be a fuzzy C, space or Q-Cy space. A fuzzy set
in X, and e a fuzzy point in X. Then

(1) e A iff there is a fuzzy sequence converging to e.

(2) A s closed iff every fuzzy sequence cannot converge to a fuzzy point not
belonging to A.

(3) e is an accumulation point of A iff there is a fuzzy sequence in A — e
converging to e.

(4) eis a cluster point of a fuzzy sequence iff S has a subsequence converging
to e.

Proof. 1In view of Proposition 3.1, it suffices to suppose (X, ) tobe a Q - C;
space. Let e be an arbitrary fuzzy point and # = {B,} (n = 1, 2,...) a countable
open O-neighborhoods of e. By taking appropriate intersections, we may assume
B, D B, without loss of generality. The Q-neighborhood base satisfying the
above condition is said to be monotonic. We shall use the monotonic O-neighbor-
hood system instead of the Q-neighborhood system of a fuzzy point. Condition (1)
may be proved by a method similar to that of Theorem 11.1; (2) can be obtained
from (1) following the proof of Theorem 11.3; (3) can be similarly proved (use
(1) just obtained to replace Theorem 11.1 in the proof of Theorem 11.3). The
proof of (4) may be simpler than that of Theorem 13.2, which is given as follows:
If S = {S, , n € D} has a subsequence converging to a fuzzy point ¢, ¢ is obvious-
ly a cluster point of S. Conversely, if S has e as a cluster point, let {B,} ({ = 1,
2,...) be 2 monotonic open Q-neighborhood base of e. Evidently, we can induc-
tively take S,, , for each B, , such that S,, is quasi-coincident with B, and n, >

n,_, (ng is understood as 0, and n, may be arbitrarily taken, only requiring that
Sn, , be quasi-comncident with B,). Then {S, }, i =1, 2,... is the required fuzzy
subsequence converging to e.

14. A ONE-TO-ONE CORRESPONDENCE BETWEEN
COoNVERGENCE CLASSES AND Fuzzy TOPOLOGIES

DeriniTION 14.1. Let @ be a class consisting of pairs (S, e), where S is a
fuzzy net in X and e a fuzzy point in X. We say that % is a convergence class
for X iff it satisfies the four conditions listed below. For convenience, we also
say that .§ converges (%) to e or that lim,, S, = e(%) ift (S, ¢)
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(1) If § =(S,, ne D)is a fuzzy net such that S, = e, a fuzzy point, for
each n, then (S, e) € 9.

(2) If S converges (%) to e, then so does each fuzzy subnet of S.

(3) 1If S does not converge (%) to e, then there is a fuzzy subnet T of S,
no fuzzy subnet of which converges (%) to e.

(4) Let D be a directed set, and for each m € D, let E,, be a directed set. Let
S ={S(m, n): me D, ne E,} (cf. Definition 12.2) be the iterated fuzzy net in
X. For each m € D, let the fuzzy net {S(m, n), n € E,,} converge (%) to some fuzzy
point S,, and let the fuzzy net {S,, , m € D} thus obtained, converge (%) to a
to a fuzzy point e. Let F be product directed set D x (x {E, , me D}) For
each (m, f) eF, let R(m, f) = (m, f (m)). Then S ¢ Ris a fuzzy net with domain
F and converges (%) to e.

PropPoOSITION 14.1. In a fts (X, 9), if a fuzzy net S ={S,,ne D} fails
to converge to a fuzzy point e. Then there exists an open Q-neighborhood B and a
fuzzy subnet T = {T,,, me E} of S such that T,, is not quasi-coincident with B
Jor each m € E and hence any fuzzy subnet of T does not converge to e.

Proof. Since S does not converge to e, by Definition 1.4, there exists an
open n-neighborhood B such that for any n € D, there exists m € D such that
m > n, and S,, 1s not quasi-coincident with B. Let £ ={me D] S,, is not
quasi-coincident with B}, E is a cofinal subset of D. Let N denote the identity
mapping N: £ — D. It is evident that S o V = T is a subnet of S, which satis-
fies the requirements.

It has previously been proved that convergence in a fts (X, 7) satisfies (1),
(2), (3) and (4) (especially cf. Theorem 12.2 and Proposition 14.1). Hence the
class consisting of all pairs (S, ), where S is a fuzzy net converging to e, relative
to , 1s actually a convergence class. This convergence class is determined by
the fuzzy tkpology  and is hence denoted by (7). Conversely, as the follow-
ing theorem shows, every convergence class 4 for X can also determine a fuzzy
topology (7)) for .X.

THEOREM 14.1. Let % be a convergence class for a set X, and for each fuzzy
set A in X let A¢ denote the union of all the fuzzy points e such that, for some fuzzy
net in A, S converges (§) to e. Then c is a closure operator for X. (cf. Definition 4.3)
and (S, e)e % iff S converges to e relative to the fuzzy topology (%) associated
with the closure operator c.

Proof. That ¢ is a closure operator and that if S converges to e relative to
(%), then (S, e) € ¥ can be proved by repeating the corresponding arguments
in the proof of Theorem 9 in [10] with a slight modification in terminology. We
shall now show that if (S, ¢) € &, then S converges to e relative to the fuzzy
topology (%) associated with ¢. Suppose S fails to converge to e relative to
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¥(%), from Proposition 14.1, there exists an open Q-neighborhood of e and sub-
net T ={T,,: me E} of S such that each T, is not quasi-coincident with B.
From Proposition 2.1; T, C B’ for each me E, i.e.,, T = {T,,, me E} is in B’
From property (2) of convergence class, (T, ¢) € %, and hence, by definition,
e (B'). Since B’ is closed, (B')* = B’ and e € B’. By using Proposition 2.1, e
is not quasi-coincident with (B’) = B, which contradicts the fact that B is a
O-neighborhood of e.

Theorem 14.1 not only establishes the fact that to every convergence class %
for X, there corresponds a fuzzy topology y(%) for X, but also proves that the
convergence class x((%)) determin .d by the fuzzy topology (%) is exactly ¥,
that is, x4 = |. Then the correspondence x is a surjection (“onto” mapping).
From Theorem I 1.1, it is easily seen that for distinct topologies 7, (i = 1, 2),
the corresponding convergence classes x(77,) (i = I, 2) are also distinct, i.c.,
x is injective. Hence y is a bijection between the family of fuzzy topologies
for .Y and that of the convergence classes for X and ! = ¢. It is also evident
that the correspondence y is order inverting, i.e., if 7, 23.7,, x(7,) C x(7,)-
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