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The fundamental concept of a fuzzy set, introduced by Zadeh in 1965 [I], 
provides a natural foundation for treating mathematically the fuzzy phenomena 
which exist pervasively in our real world and for building new branches of fuzzy 
mathematics. In the area of fuzzy topology, much research has been carried 
out [2-81 since 1968. We should like to mention here that in 1975 Chou 
Hao-xuan did some significant work concerning the relationship between fuzzy 
topological spaces and ordinary topological spaces (unpublished). But there are 
still two fundamental problems which remain to be solved. The first one concerns 
the concept of a fuzzy point and its neighborhood structure. A definition of a fuzzy 
point was given in [8] in such a way that a crisp singleton, equivalently, an 
ordinary point, was not a special case of a fuzzy point. Moreover, the research 
was carried on along with the same idea as that of the neighborhood system in 
general topology so that the results thus obtained could not reflect the features of 
neighborhood structure in fuzzy topological spaces. The properties derived 
therefrom are often pathologies and demonstrate departures from general 
topology, like those the author pointed out in [8]. The purpose of the present 
paper is to remedy these drawbacks so that we can develop the theory of fuzzy 
topology in a satisfactory way. We redefine a fuzzy point in such a way that it 
takes a crisp singleton, equivalently, an ordinary point, as a special case. As for 
the neighborhood structure of such a fuzzy point, in addition to the relation 
“E” between fuzzy points and fuzzy sets and the corresponding neighborhood 
systems, we shall introduce another important relation “Q” between fuzzy 
points and fuzzy sets, called the Q-relation, and the corresponding neighborhood 
structure, called the Q-neighborhood system. In an ordinary topological space, 
as a special case of a fuzzy topological space, these concepts, neighborhood 
system and Q-neighborhood system, c-relation and Q-relation coincide respec- 
tively. 

The second problem concerns the theory of convergence. Since the concept 

* This paper was completed in 1976 and published in 1977 in an internal publication, 
Sichuan Daxue Xuebao 1 (1977), 31-50 [in Chinese]. 
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of convergence occurring in [2] and [6] ’ 1’ is imited to sequences of fuzzy sets and 
the neighborhood structure used to definejconvergence has the same character 
as the traditional neighborhood system, the conclusions thus obtained are unsatis- 
factory, to say nothing of generalizing Moore-Smith convergence of nets to 
fuzzy topological spaces. As pointed out in [6], new concepts of convergence 
and clustering are needed in order to develop the theory further in this direction. 
With the present treatment of these two problems, all the theorems concerning 
the neighborhood structure of a point and the theory of convergence in Chapters 
I and II of the celebrated book on general topology [IO] are generalized to fuzzy 
topological spaces, with the exception of at most two less important ones. This 
means that these two problems in fuzzy topology have been solved to almost 
the same degree as the corresponding problems in general topology. In the frame- 
work of the present paper, there are still many properties of fuzzy topological 
spaces which can be investigated. Further results will be given in future papers. 

1. PRELIMINARIES 

Since many concepts and statements have not yet taken their final forms, 
to begin with, let us recall some concepts occurring in the papers [2-91, which 
will be needed in the sequel. In the present paper X always denotes a non-empty 
(ordinary) set. 

DEFINITION 1.1. A function A from X to the unit interval [0, I] is called a 
fuzzy set in X. For every x E A, A(x) is called the grade of membership of x in A. 
X is called the carrier of the fuzzy set A. The set {x E X 1 A(x) > 0} is called the 
support of A and is denoted by Supp A or A, . If A takes only the values 0, 1, A is 
called a crisp set in X. From now on, we shall not dz.erentiate between a crisp set A 
in X and Supp A. Particularly, the crisp set which always takes the value 1 on X is 
denoted by X, and the crisp set which always takes the value 0 on X is denoted 
by o. 

DEFINITION 1.2. Let I be an indexed set, and let JZZ = {Au ( OL EQ be a 
family of fuzzy sets in X. Then the union u {A, 1 OL E I> or (u JZZ) and the inter- 
section n (A, 1 01~1) (or n &‘) are defined, respectively, by the following 
formulae (and hence are also fuzzy sets in X): 

(u-4 (4 = su~b%(x) I a~$ XEX, 

(r\&) (x) = inf{A,(x) ] (Y ~1}, XEX. 

DEFINITION 1.4. The complement of A, denoted by A’, is defined by the 
formula: A’(x) = 1 - A(x), x E X. 
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By means of the properties of lub and glb of real numbers, it is easy to verify 
the following De Morgan’s law: 

DEFINITION 1.5. A family F of fuzzy sets in X is called a fuzzy topology 
for Xiff (1) O, XEF, (2) AnBEFwhenever 4, BErand (3) U{A,j 
CY E I} E .7 whenever each A, E 9 (a E I). Moreover, the pair (X, F) is called a 
fuzzy topological space or fts, for short. Every member of F is called a F-open 
fuzzy set (or simply open fuzzy set). The complement of a Y-open fuzzy set is 
called a F-closed fuzzy set (or simply closed fuzzy set). 

Let .Fr and 5-a be two fuzzy topologies for X. If the inclusion relation 
Y1 C YZ holds, we say that ~?a is finer than F1 and 3, is coarser than 9-a . 

DEFINITION 1.6. Let (X, F) be a fts. A subfamily 98 of F is called a base 
for F iff, for each A E F, there exists BA C 99 such that A = (J B’a ; a subfamily 
9 of F is called a subbase for F iff the family g = {n 9 1 F is a finite subset 
of 9’} is a base for F. (X, 7) is said to satisfy the second axiom of countability 
or is said to be a Cn space iff F has a countable base. 

DEFINITION 1.7. Let A and 4, (a ~1) be fuzzy sets in X. {A, 1 (Y E r) is 
called a cover of A iff u {A, 1 01 E I} 3 A. If there exists a subset 1r of I such that 
u (A, 1 OL E Ir} 1 A, {A, I (Y E I} is called a subcover. 

(X, F) will always denote a fuzzy topological space in this paper. We remark 
that all of the following definitions and conclusions take the corresponding defini- 
tions and conclusions take the corresponding definitions and conclusions in 
general topology as special cases, respectively. In general, we shall not repeat 
this remark any more. 

2. CONCEPT OF A FUZZY POINT AND ITS NEIGHBORHOOD STRUCTURE 

DEFINITION 2.1 .l A fuzzy set in X is called a fuzzy point iff it takes the value 
0 for ally E X except one, say, x E X. If its value at x is X (0 < h < 1) we denote 
this fuzzy point by x,, , where the point x is called its support. 

DEFINITION 2.2. The fuzzy point X~ is said to be contained in a fuzzy set -4, 
or to belong to A, denoted by X~ E A, iff X < A(x). Evidently, every fuzzy set A 
can be expressed as the union of all the fuzzy points which belong to A. 

I The concept of a fuzzy point is actually the so-called crisp singleton given in section 
4 of [9]. But the very important neighborhood construction was not mentioned at all 
in [9]. 

409/76/z- 18 
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DEFINITION 2.3. Two fuzzy sets A, B in X are said to be intersecting iff there 
exists a point x E X such that (-4 n B)(x) f 0. For such a case, we say that A 
and B intersect at N. 

DEFINITION 2.4. A fuzzy set d in (X, 9) is called a neighborhood of fuzzy 
point X~ iff there exists a B E Y such that x,, E B C A; a neighborhood -4 is 
said to be open iff A is open. The family consisting of all the neighborhoods of 
.xA is called the system of neighborhoods of No . 

Corresponding to the above definitions, we introduce the following important 
concepts. 

DEFINITION 2.2’. A fuzzy point x,, is said to be quasi-coincident with d, 
denoted by .Y,&, iff h > -4’(x), or /\ + A(x) > I. 

DEFINITION 2.3’. rZ is said to be quasi-coincident with B, denoted by 
AqB, iff there exists x E X such that A(x) > B’(x), or -4(x) + B(x) > 1. If this 
is true, we also say that A and B are quasi-coincident (with each other) at x. It is 
clear that if A and B are quasi-coincident at x, both A(x) and B(x) are not zero 
and hence A and B intersect at s. 

DEFINITION 2.4’. A fuzzy set A in (X, Y) is called a Q-neighborhood of xh 
iff there exists a B E Y such that x,qB C rZ. The family consisting of all the 
Q-neighborhoods of x,, is called the system of Q-neighborhoods of X~ . 

Note. A Q-neighborhood of a fuzzy point generally does not contain the 
point itself. The neighborhood structure of a point which does not contain the 
point itself was already studied in general topology by FrCchet in 1916 [cf. M. 
Frechet, “Les espaces abstraits,” Paris, p. 1721 formed the foundation upon 
which the FrCchet (I/)-space theory has been built [cf. W. Sierpinski,” General 
Topology, Chap. I, Toronto, 19521. But the fact that a set A and its complement 
A’ should not intersect, which is true in the theory of ( I’)-spaces, is no longer true 
generally in the theory of fuzzy topological spaces. Hence our investigation of 
the Q-neighborhood structure differs from that of the Frechet (V)-space theory. 

The substitute for the fact that A and A’ do not intersect in general topology 
is the fact that A and A’ are not quasi-coincident in fuzzy topology. More general- 
ly, we have the following proposition. 

PROPOSITION 2.1. ,4 C B ifl A and B’ are not quasi-coincident; particularly, 
X~ E A iff xA is not quasi-coincident with A’. 

Proof. This follows from the fact: 

A(x) < B(x) iff .-1(x) + B’(x) = .3(x) -t 1 - B(X) < I. 
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PROPOSITION 2.2. Let ae be the family of Q-neighborhoods (resp. neighborhoods) 
of a fuzzy pornt e in (X, 9). Then we have 

(1) If U E @e , then e is quasi-coincident with (resp. belongs to) U. 

(2) If U, V/E’+Ye, then Un VE@‘, . 

(3) If UE@,and UC V, then VE&~. 

(4) Zf U E ee , then there exists V E Se such that V C U and V E +‘ld for 
ever-v fuzz_v point d which is quasi-coincident with (resp. belongs to) V. 

Conversely, for each fuzzy point e in X. JG’Je is a family of fuzzy sets in X satis- 
fying the above conditions (l)-(3), then the family .F of all the fuzzy sets U, such 
that t: E +Y7(, whenever eqU (resp. e E U) is a fuzzy topology for X. If, in addition, 
%‘/, satisfies the condition (4), mentioned above, then 9Ye is exactly the Q-neighborhood 
(resp. neighborhood) system of e relative to the fuzzy topology 9. 

The proof is straightforward (cf. [IO problem l.B]). 

PROPOSITION 2.3. Let {da} be a fami~ ff o uzz se s in X. Then a fuzzy point e y t 
is quasi-coincident with USZ? #there exists some -4, E ~2 such that eqA, . 

Proof. If eqA, , it is evident that eqUA, . That the condition is necessary is 
easily proved by means of the properties of lub and the concept of being 
“quasi-coincident with.” 

PROPOSITION 2.4. A subfamily S? of a fuzzy topology F for X is a base for F 
@for each fuzzy point e in (X, F) and for each open Q-neighborhood U of e, there 
exists a member B E S9 such that eqB C A. 

Proof. The necessity of the condition follows directly from the definition of 
a base and the necessary condition of Proposition 2.3. We shall now show its 
sufficiency. If 9 is not a base for 5, then there exists a member, 9 E F, such 
that G = {B E S? 1 B C A} # A, and hence there is an x such that G(x) < A(x). 
L,et h = 1 - G(x), which is obviously positive; we obtain a fuzzy point e = x,, . 
Since I-l(.r) + /\ > G(x) + h = 1, eqA. But since any member B E S? which is 
contained in A is contained in G, we have B(x) + X < G(x) + h = 1; that is, 
e :-= .‘c,\ is not quasi-coincident with B. This contradicts the assumption. 

3. LOCAL BASE. A COUNTEREXAMPLE 

DEFINITION 3.1. Let @eo (resp. U,) be a Q-neighborhood system (resp. 
neighrohood system) of a fuzzy point e in (X, F). A subfamily sea (resp. 9?,) 
of “7/,, (resp. @,) is called a Q-neighborhood base (resp. neighborhood base) of 
%Yco (resp. @,)iff for each A E eeQ (resp. A E 9,)there exists a memberB E Be@, 
(resp. B E .S?@) such that B C A. A fts (X, F) is said to satisfy the Q-first axiom 
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of countability (resp. first axiom of countability) or to be Q-C,) iff every fuzzy 
point in (X, Y) has a countable Q-neighborhood base (resp. neighborhood 
base). 

PROPOSITION 3.1. If (X, LT) is a C,-space, then it is a Q-C,-space. 

Proof. Let e = x1 be an arbitrary fuzzy point. Consider a sequence (P,$,,~ 
in (1 - A, l] converging to 1 - X and let x+ = e, . For each n E IV, there exists 
a countable open neighborhood base gn of e, (there is evidently no loss of general- 
ity in assuming,the openness of each member of g’,). Each member B of B, satis- 
fies B(x) > pn > 1 - X and hence is a Q-neighborhood of e. The collection g 
consisting of all the members of all gn is a family of open Q-neighborhoods of e. 
Let A be an arbitrary Q-neighborhood of e, hence A(x) > 1 - A. Since pCLn 
1 - A, there exists m E N such that A(x) 3 pCLm > 1 - A, i.e., e,,, E d and A is 
an open neighborhood of e, . Therefore there exists a member B ES’,, C 9 
such that B C A, B(x) 3 p,,, > 1 - A. This shows that a is a countable Q- 
neighborhood base of e. 

PROPOSITION 3.2. If (X, F) is C,, , then it is also Q-C, . 

Proof. Let B be a countable base for Y. Let e be a fuzzy point in (X, Y). 
For any U E Y such that eqU, by Proposition 2.4, there exists B E .%? such that 
eqB C U. Let & be the family of all those members B of 9 thus obtained. It is 
easy to show that d is a countable Q-neighborhood of e. 

The converse of Proposition 3.1 is generally not true. We shall construct, in 
the following, a Cn-space, which is of course Q-C, , but is not C, . 

DEFINITION 3.2 [6, 51. Let (X, %) b e an ordinary topological space. Let 
F(@) = {f E [0, 11” / f is lower semi-continuous}; (X, F(@)) is called the induced 
fuzzy topological space of (X, G?): 

LEMMA 3.1. Let (X, 92) be a completely regular (crisp) topological space. For 

every h E F(e), there exists a family 9 C [0, llx each member of which is continuous 
with respect to 42, such that h = sup{ f 1 f E F}. In o&r words, the family S? = 
(f 1 fi(X, +Y) + [0, l] is continuous} forms a base for the induced fuzzy topology. 

For the proof of this lemma, refer to the proof of Proposition 5 in [l 1 Chap. 9, 
Sect. I]. 

In the following, let (X, @‘I) be the subspace [0, l] ofjthe real axis. Let T 
denote the totality of all rationals in (-co, 11. For each positive integer n, 
subdivide X into 2” equal parts. The 2” + 1 points of subdivision are successive- 
ly denoted by x,I; (k = 0, l,..., 2”). For a fixed n, let 8, = {f j f (x.,k) = fk E T, 
f is linear in A, = [.lcnk, xi+l 1, for each k E (0, I,..., 2n)). Each f is obviously 
continuous and .@‘, is countable. For each f E a’, , let f+(x) = max{f(x), 0}, 
then f+: X+ [0, l] is obviously continuous. Let B’n = {f+ [f E 8,}, A? = 
(J,“=, g!n , For this countable family &? of continuous functions, we have 
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LEMMA 3.2. Let g: X-+ [0, I] be continuous and < > 0; then there exists 
f+ E .5? such that 

g(x) - E -=c f”w < g(4 x E x 

and hence g can be expressed as the least upper bound of a countable member of 
functions in B. 

Proof. For E > 0, since g is uniformly continuous on -71, there exists a posi- 
tive integer rz, such that on each of 2” equally subdivided intervals, the difference 
between the greatest value of g and the least value of g (that is the oscillation) is 
less than e/S. For each x,~, take fk E T such that g(x,“) - c/S > fk > g(x,“) - 
c/4. Let f denote the function which takes the value fk at xnb and is linear in each 
of the equally subdivided parts. Then f+ is the required function. In fact, con- 
sider an arbitrary interval A, = [xnk, x?l] and we may assume fk >fk+r 
without loss of generality, then fk is the greatest value off on A, . Noting that the 
oscillation of g on A, is less than E/S, for each x E A, , we have 

g(x) > g&t”) - 43 >fk > f (x). 

Hence for x E X, g(x) > f (x). On the other hand, the oscillation off on A, is 
fk - fk+l < (g(x,“) - c/S) - (g(x;+l) - c/4) = g(x,“) - g(x:++‘) + c/8 < c/4, 
and hence, for x E A,, we have 

I f(x) - g(x)1 < I f(x) - fk I + I fk - g(x,“)l + I &n”> - g@)l 

It follows that for x E X, g(x) - E <f(x) < g(x). Since g(x) > 0, it is clear that 
g(x) - E < ff(x) < g(x). 

In order to prove the later part of the lemma, it suffices to take E = l/n and 
denote the corresponding f+ by fn+ E B. Then g is easily seen to be sup{ fn+ I 
fnf E 9q. 

THEOREM 3.1. Let (X, @) be the subspace [0, l] of the real axis, and let 
9 = F(S) be the induced fuzzy topology for Q. Then (X, F(@)) is C’,, , but is not 
c I . 

Proof. From Lemmas 3.1 and 3.2 the countable family B C Y, given in 
Lemma 3.2, obviously forms a countable base; that is, (X, Y) is C,, . We now 
take any point x E X and may assume x to be 0 E [0, l] without loss of generality. 
Consider the crisp singleton e = x1 i.e., the value of e at x is 1. If a countable 
member of open sets B, E .Y (n = 1, 2,...) forms a neighborhood base of e, 
since e E B, , we have B,(x) = 1. From the lower semi-continuity, for E = 1 /n, 
there exists a @-open neighborhood G, of x such that for y E G, , we always 
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have B,(y) > 1 - E = 1 - l/n. Therefore for positive integer n, we can 
inductively take yn E X such that 0 < yn E G, and y,, < y,,-r/2 (with the 
convention y0 = 2). Now let us construct a fuzzy set B in X as follows: 

B(y) = 1 - l/n, 
a linear function, 

= 0, 
= 1, 

for Y = yn, 
for YE [yn p Y~,-A 
for y>l, 
for y =x(=0). 

Evidently B is continuous and takes values in [0, I] and hence B E Y. Since 
B(x) = 1, B is an open neighborhood of e. But since B,( yn) > 1 - l/n = 
B( y,J, any B, is not contained in B. This contradicts the fact that {Bn} is a 
neighborhood base of e and hence (X, 5) is not a Cr space. 

4. CLOSURE AND KURATOWSKI’S THEOREM ON 14 SETS 

DEFINITION 4.1. Let A be a fuzzy set in (X, Y) and the union of all the 
Y-open sets contained in A is called the interior of A, denoted by A0 or by 
IntyA. Evidently A0 is the largest open set contained in A and (AO)O = A”. 

DEFINITION 4.1’. The intersection of all the Y-closed sets containing A is 
called the closure of A, denoted by A, or by clrA. Obviously A is the smallest 
Y-closed set containing A and (A) = A. 

THEOREM 4.1. A fuzzy point e E A0 i# e has a neighborhood contained in -4. 
The proof, being straightforward, is omitted. 

THEOREM 4.1’. A fuzzy point e = x,, E 2 12 each Q-neighborhood of e is 
quasi-coincident with A. 

Proof. X~ E A iff, for every closed set F 3 A, x* EF, or F(x) > X. By taking 
complement, this fact can be stated as follows: xA E A iff, for every open set 
B C A’, B(x) < 1 - h. In other words, for every open set B satisfying B(x) > 
1 - X, B is not contained in i4’. From Proposition 2.1, B is not contained in A’ 
iff B is quasi-coincident with (A’)’ = A. We have thus proved that N, E -4 iff 
every open Q-neighborhood B of x, is quasi-coincident with A, which is evi- 
dently equivalent to what we want to prove. 

DEFINITION 4.2. A fuzzy point e is called an adherence point of a fuzzy 
set A iff, every Q-neighborhood of e is quasi-coincident with A. 

COROLLARY. A is the union of all the adherence points of A. 
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- 
THEOREM 4.2. A0 = ((A’))‘, ii = ((A’)O)‘, (A)’ = (A’)O, (A’) = (AO)’ 

Proof. Let &’ = {A, 1 A, E Y and A, C -4); then Aa = lJ JZ!. Evidently, 
&’ = {A’ 1 A, E &} is the family of all the closed sets containing A’ and 

hence A” = n (J&“). From De Morgan’s law, we have ((A’)) = (0 (-01’))’ = 
lJ ((-4’)‘) = U d’ = A”. The first f ormula is thus obtained. The other three 
can be similarly derived or from the first formula. 

THEOREM 4.3. (The 1Cset theorem). If ,4 is a fuzzy set in (X, F), then at 
most 13 fuzzy sets can be constructedfrom A by successive applications, in any order, 
of interior, closure and complementation. Moreover, there is a crisp set A in a 
crisp topological space from which 14 di.erent sets can be constructed by these 
three operations. 

Proof. The last part of the theorem is well known in general topology. The 
first part can also be proved in a manner similar to that in general topology, since 
in the original proof, (A’)’ = A, (A) = 2, (Ao)O = A0 and only the formulae in 
Theorem 4.2 are used (cf. [lo, note on p. 45, Problem l.E]. 

DEFINITION 4.3. A mapping f: [0, 11” - [0, l]r is called a fuzzy closure 
operator on X iff f satisfies the following Kuratowski closure axioms: (1) 
f (120 = @, (2) ACf (A), (3)f (f (A)) =f (A), (4)f (A u B) =f(A) uf(B). 

In a fuzzy topological space, it is easily seen that A u B= 2 u B (cf. [lo, 
pp. 42-431) and hence the mapping g: [0, llX + [0, llx defined by g(A) = A 
is a fuzzy closure operator on X. Conversely, any fuzzy closure operator on X 
can determine some fuzzy topology for X. For this, we have 

THEOREM 4.4. Letf be afuzzy closure operator on X, let F = {A 1 A E [0, llx 
such that f (A) = A} and let F = (A’ 1 A E 91, then F is a fuzzy topology for 
X and for every B E [0, llx, c1r-B = f (B). The topology Sr thus determined as. 
above will be called the fuzzy topology associated with a fuzzy closure operator 

The proof may be carried out by repeating verbatim the proof of Theorem 1.8 in 
[IO, p. 431 with the corresponding modtfzcations of symbols. But the simple fact 
“when A C B, f(A) C f (B),” used in the proof, has to be proved as follows: from 
ACB, we have B=AuB and hence f(B)=f(.4uB)=f(A)uf(B)3 

f(A). 

DEFINITION 4.4. A fuzzy point e is called a boundary point of a fuzzy set A 
iff e E An A’. The union of all the boundary points of Z4 is called a boundary 
of A, denoted by b(A). 

It is clear that b(A) = .$ n A’. 

PROPOSITION 4.1. 2 3 A u b(A), where the inclusion symbol cannot be 
replaced by an equality. 
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The first part of the proposition is obvious from the definition of b(A). The 
last part will be shown by an example. It should be noticed that in general 
topology, we have 2 = A u b(A), which is a departure from fuzzy topology. 

EXAMPLE. Let x E X, 5 = {X, @, .a+,), rZ = ~s,s, and e = xsjA ; then the 
Q-neighborhood of e in (X, F) are X and 31’r.s , which are all quasi-coincident 
with A. Hence, by Theorem 4.1’, e E 2, On the other hand e #A and the 
Q-neighborhood of (~~,a} is not quasi-coincident with A’, i.e., e $ b(A) and hence 
e $ A u b(A). 

5. ACCUMULATION POITS: GENERALIZATION OF C. T. YANG’S THEOREM 

DEFINITION 5.1. A fuzzy point e is called an accumulation point of a fuzzy 
set A iff e is an adherence point of A and every Q-neighborhood of e and A are 
quasi-coincident at some point different from supp(e), whenever e E A. The 
union of all the accumulation points of -4 is called the derived set of -4, denoted 
by Ad. It is evident that Ad C 2. 

THEOREM 5.1. 2 = A u Ad, where Ad is the derived set of A. 

Proof. Let SJ = {e 1 e is an adherence point of rZ}. Then, from Theorem 4.1’, 
2 = u Sz. On the other hand, e E a is either “e E A” or “e $ -4;” for the latter 
case, by Definition 5.1, e E P, hence 3 = u Sz C A u Ad. The inverse inclu- 
sion relation is obvious. 

COROLLARY. A fuzzy set A is closed iJf A contains all the accumulation points 
of A. 

Noting that A is closed iff A = 2, we obtain the corollary by Theorem 5.1. 

LEMMA 5.1. In (X, F), let A = X~ ; then (I) for y # x, ii( y) = Ad( y). (2) 
If &c(x) > A, &c(x) = Ad(x). (3) &z(x) = h z$ Ad(x) = 0. 

Proof. The conclusions of (I), (2) and the sufficiency of (3) follow from 
Theorem 5.1. Now let A(x) = h. We claim that any fuzzy point x, is not an 
accumulation point of A and hence Ad(x) = 0. In fact, when p > h, s, $ A 
and hence N, $ Ad; when p < X, x’, E A. But then any Q-neighborhood of x, 
and -4 can not be quasi-coincident at a point different from R. Therefore .t,, is 
not an accumulation point of -4. 

PROPOSITION 5.1. In (X, F), let A = {x,,}; then (1) when Ad(x) > 0, Ad = d 
is closed. (2) when Ad(x) = 0, Ad is closed ifJ’ there exists an open set B* such that 
B*(x) = 1 and for y # X, B*(y) = (a)‘(y) = (A”)‘(y). (3) ,qd(x) = 0 #there 
exists an open set B such that B(x) = 1 - k 
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Proof. (1) From (3) of Lemma 5.1 and the fact that 2(*x(x) > A(X) = A, we 
have J(X) > A. It follows from (2) and (1) of Lemma 5.1 that A = Ad. (2) Ad is 
closed iff (=2d)’ is open. When Ad(x) = 0, in view of (1) and (3) of Lemma 5.1, 
it follows that (Ad)’ is the required B *. The proof is thus completed. (3) From 
(3) of Lemma 5.1, Ad(.x) = 0 iff A(X) = h = A(X). This implies that there exists 
a closed F such that F(x) = A, or equivalently, there exists an open B such that 
B(s) = 1 - A. 

The following is a generalization of Yang’s result [IO, p. 561, the proof of 
which in fuzzy topology is more complicated than usual. 

THEOREM 5.2. The derived set of each fuzzy set is closed $f the derived set of 
each point is closed. 

Proof. The necessity is obvious. We shall now show its sufficiency. Let H 
be an arbitrary fuzzy set. In the light of the corollary of Theorem 5.1, in order 
to show that Hd = D is closed, it suffices to show that for an arbitrary accumula- 

tion point x,, of D, xA E D. Since x,, E D = (Hd) C (a) = fi, by Theorem 4.1’, 
x,, is an adherence point of H. If xA $ H then .‘cA is an accumulation point of H, 
i.e., sA E D. We may assume that .vA E H, i.e., X < H(x) = p without loss of 
generality. Consider the fuzzy point X, = A and the two possibilities concerning 
Ad: (I) Let Ad(x) = pr > 0. From Lemma 5.1, pr > A(x) = H(x), and hence 
s,,~ $ H. But since x,~ E Ad C KC B, .rol is an accumulation point of H, .x,+ E D. 
Moreover, h < H(x) < p1 , i.e., xA E D. (II) Let A”(X) = 0. Let B be an arbitrary 
open Q-neighborhood of xA . We shall show that B and Hare quasi-coincident 
at some point different from x and hence we know that .v, E D. In view of (2) of 
Proposition 5.1, there exists an open set B* such that B*(x) = 1 and for y + N, 
B*(y) = (-‘2)‘(y). Let C = B n B*; then C(X) = B(s) > 1 - A, and C is 
also an open Q-neighborhood of xA . Because .vA is an accumulation point of D, 
C is quasi-coincident with D at some point u”, i.e., D(z) + C(z) > 1. Owing 
to the fact that D is the union of all the accumulation points of H, there is an 
accumulation point Z, such that p + C(x) > 1. Therefore C is also an open 
Q-neighborhood of Z, . The proof will be carried out, according to the three 
possible cases concerning sv , as follows: (1) When z = x and p < p, then 
Z, E H. But since c, is an accumulation point of H, the Q-neighborhood of s, 
(and hence B) and Hare quasi-coincident at some point different from u” = x. (2) 
When B = x and p > p, then Z, $ H. From (3) of Proposition 5.1, there is an 
open set B such that B(s) = 1 - p > 1 - p. Therefore G = C u B is also 
an open Q-neighborhood of Z, and G and Hare quasi-coincident at some point 
w. Since G(s) < R(x) = 1 - p = 1 - H( .) .a , zc + m, i.e., G (and hence C and B) 
and H are quasi-coincident at some point different from s, (3) Wnen a + x, 
by (2) of Proposition 5.1, B*(z) = (A)‘(a). But (,q)’ = (A’)O (Theorem 4.2). 
Since (-4’)“(z) = B*(z) .> C(Z) > 1 - p, by Definition 4.1, there exists an open 
set B Cd’ such that (d’)O(s) > B(z) > I - p. Therefore B n B is also an 
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open Q-neighborhood, which is quasi-coincident with H at some point w. Since 
B C 4’, B(x) < 1 - -4(x) = 1 - H(x), w # x, we have thus proved that 
B n B (and hence B) is quasi-coincident with Hat some point different from x. 

6. SEPARATION AXIOMS 

DEFINITION 6.1. (X, Y) is called a fuzzy quasi-T,-space iff for every 
x E X, and A # p, A, p E [0, 11, either x,+ $ X, or x, $ -?A . 

Since when TV < A, .‘c, E %,, , we have: (2, 3) is a quasi-T,, space iff, for every 
~6.5, and0 <CL <A< 1, x~Ex,,. 

DEFINITION 6.2. (X, 9) is called a fuzzy T,, space iff, for any two fuzzy 
points e and d such that e # d, either e $ a or d # 2. 

DEFINITION 6.3. (X, Y) is called a fuzzy Tr space iff every fuzzy point is a 
closed set. 

The following implications are obvious: Tl 2 T,, => quasi-T,, . Every ordinary 
(crisp) topological space vacuously satisfies condition of being quasi-T,, and 
hence the quasi-To-separation is a particularity in fuzzy topology. 

Let (X, Y) b ea q uasi-T,,space,letxEXandd =(pt,ps)(O <pi <pa < 1); 
then there exists B E Y such that B(x) E A. In fact, let h = 1 - pr , p = 1 - pz ; 
then X > p > 0. Since (X, 9) is a quasi-T,, space, xA $ X; and hence there exists 
some open Q-neighborhood 6 (B(x) > 1 - X = pl) which is not quasi-coin- 
cident with x, , i.e., B(x) < 1 - p = p% . Hence B(x) E A. 

The following property concerning quasi-T,, spaces can be sharpened as 
follows. 

THEOREM 6.1. (X, F) is a quasi-T,, space oflfor every x E X and p E [0, 11, 
there exists a B E Y such that B(x) = p. 

Proof. Necessity. When p = 0, it suffices to take B = @; when 0 < p < 1, 
take a strictly monotonic increasing sequence of positive real numbers converging 
to p. Let A, = (Pn I Pn+11 (n = 1, 2,-h f rom the property just proved above 
there exist B, E Y such that Bt) E A, for each II. Therefore B = uz=, B, is 
open and B(x) = p. 

Su@iciency. For two fuzzy points .r,, and .x, with TV < A, there exists from 
hypothesis an open set B such that B(x) = 1 - p > 1 - A. It is evident that 
B is an open Q-neighborhood of P,, but is not quasi-coincident with {x,}. Hence 
it follows from Theorem 4.1’ that .v,, 4 .?U . 

THEOREM 6.2. (X, F) is a T, space $f (X, r) is quasi-T, and for any two 
distinct points x, y in X and for any p, v E [0, 11; then there exists B E F such that 
B(x) = p and B(y) > Y, OY B(x) > p and B(y) = v. 
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Proof. Necessity. When (X, Y) is T,, , it is also quasi-T,, . For x # y and 
p, v E [0, I), putting h = 1 - p and p = 1 - v, we obtain two distinct fuzzy 
points xA and y,, . If x, $jjU, there exists an open Q-neighborhood B, (B,(x) > 
1 - A = p) which is not quasi-coincident with (yU}, i.e., B,(y) < 1 - p = Y. 
In view of Theorem 6.1, there is B, EY such that B,(y) = v. Then the fuzzy 
open set B = B, u B, is the required one. If y,, $ {gA}, the argument can be 
carried out in a similar way. 

Suficiency. Since (X, 9) is quasi-T,, , it suffices to consider the separation 
of two fuzzy points xA and yU with x # y. Putting p = 1 - A, v = 1 - CL, from 
the hypothesis, we may assume that there exists BE Y such that B(x) = p 
and B(y) > v. Then B is a Q-neighborhood of yU which is not quasi-coincident 
with {x3. Hence y,, # %A . 

THEOREM 6.3. (X, F) is a Tl space #, for each x E X and each h E [0, 11, 
there exists B E F such that B(x) = 1 - h and B(y) = 1 for y # s. 

Proof. Necessity. When h = 0, it suffices to take B = X. When A > 0, 
xA being a fuzzy point is a closed set by hypothesis, then B = 1 - xA is the 
required open set. 

Sujiciency. Let xA be an arbitrary fuzzy point. Then, by hypothesis, there 
exists a BE 7 such that B(x) = 1 - X and B(y) = 1 for y # x. It follows 
that .x,, = B’ is closed. 

DEFINITION 6.4. (X, Y) is fuzzy T, (Hausdortf) space iff, for any two fuzzy 
points e and d satisfying supp e # supp d, there exist Q-neighborhoods B and C 
of e and d, respectively, such that B n C = @. 

PROPOSITION 6.1. Let (X, F) be a T2 space, then any accumulation of a fuzzy 
point yu in (X, F) is of the form yn (A > p). 

Proof. When h < TV, y,, E yU , but since any Q-neighborhood of yA can be 
quasi-coincident with yU at most at y, yA is not an accumulation point of yp . 
When IC + y, from the property of being fuzzy T2, there exist Q-neighborhoods 
B and Bl of xA and yI1 , respectively, such that B n B, = @. But since BJ y) > 
I - p 3 0, B(y) = 0, i.e., B is not quasi-coincident with yp at y and hence yA 
is not an accumulation point of yU . We have thus proved that the only possible 
form of an accumulation point of y,, is of the type yn with A > CL. 

Since the separation axiom, T2 is concerned only with those fuzzy points with 
different supports, it is possible, as the following example shows, that a T, 
space need not be quasi-T,, , to say nothing of being Tl . 

EXAMPLE. Let X = {y, a}, when y # a. Let 9+ be the fuzzy topology on X 
which has d = {yA 1 A E (2/3, l]} u {z,+ 1 h E (0, l]} u (@} as a base. Obviously, 
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(X, Y) is a fuzzy T2 space. But since there is no Y-open set which takes the 
value 4 at y, in view of Theorem 6.1’ (X, Y) is not quasi-T, . 

THEOREM 6.4. If (X, 9) is both T2 and quasi-T,, , then it is also TI . 

Proof. Let yU be an arbitrary fuzzy point. From Proposition 6.1, an accumu- 
lation point, if any, of y,, is of the form y,, (A > p). In the light of the property 
of (X, Y) being TO and Theorem 6.1, there exists a B E Y such that B(y) = 
1 - TV > 1 - A, i.e., B is a Q-neighborhood of yA and is not quasi-coincident 
with yU . Hence yA (h > p) cannot be an accumulation point of yU and therefore 
y,, has no accumulation point. Owing to the corollary of Theorem 5.1, yU is 
closed. This means that (x, Y) is TI . 

Since the derived set of every fuzzy point in a TI space is obviously @, we 
obtain from Theorem 5.2 the following. 

THEOREM 6.5. The derived set of every fuzzy set on a TI space is closed. 

7. S2-ACCUMULATION POINTS: LINDEL~F PROPERTY 

DEFINITION 7.1. A fuzzy set A in X is said to be uncountable iff supp A is 
an uncountable subset of X. 

PROPOSITION 7.1. Every uncountable fuzzy set on a C,, space has an uncount- 
able number of accumulation points the supports of which are mutually dij%rent. 

This proposition is a corollary of Theorem 7. I, below. 

DEFINITION 7.2. A fuzzy point e is called an J&accumulation point of A iff 
the set consisting of all the points at each of which every Q-neighborhood of e 
and A are quasi-coincident is uncountable. 

DEFINITION 7.3. A fuzzy set D in (X, Y) is said to have the Lindelof 
property iff every open cover of D has a countable subcover. (X, Y) is called a 
hereditarily Lindelijf space iff every fuzzy set in X has the Lindelof property. 
(X, Y) is called a Lindeliif space iff X has the Lindekf property. 

PROPOSITION 7.2. Every C,, space is a hereditarily Lindelof space. 

The proof is similar to that of Theorem 1.15 of [IO], p. 491. 

THEOREM 7.1. Let (X, F) be a hereditarily Lindelof space. Let A be an 
uncountable fuzzy set on X. Let B = U { e e is an Q-accumulation point of A 1 
such that e E A}. Then XI = supp A - supp B is a countable subset of X7. 
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Proof. If X1 is non-empty, taking any pointy E X, , and putting h = A(y) > 
0, we know the fuzzy pointy,, E A. Since y 6 supp B, yh is not an Q-accumulation 
point of A. Then there exists some open Q-neighborhood B, such that the set 
of all points at each of which B, is quasi-coincident with A is at most countable, 
i.e., the set (a 1 z E X such that B,(z) > 1 - A(z)} is at most countable. Now 
put .B = (B, j y E X1} and define D as follows: 

4 Y) = 44 ~11 for yEXr, 

= 0, for y$X,, 

It is clear that 54? is an open cover of D. Since D has the Lindelof property, there 
are a countable number of B,, E W, i = 1, 2 ,..., such that W = U,“=, BYE r) D. 
The set {Z E X 1 W(z) > 1 - A(z)} is evidently at most countable. On the other 
hand, for every y E X, , ?V( y) > D(y), and B, is a Q-neighborhood of y,, , i.e., 
B,(y) > 1 - h = 1 - A(y). Therefore W(y) > 1 - A(y) and X, is at most 
countable. 

8. SUBSPACES 

DEFINITION 8.1. Let (X, r) be a fuzzy topological space, and Y C X; 
then we call the family %, defined by % = {A ] Y 1 A E 7}, which is obviously a 
fuzzy topology for Y, the relative fuzzy topology, or the relativization of r to Y. 
Such a fuzzy topological space (Y, @) is called a subspace of (X, r). More 
formally, a fuzzy topological space (Y, a’) is called a subspace of another fuzzy 
topological space (X, r) iff Y C X and @ is the relativization of r to I’. A 
@-open (resp. %-closed) set is also called a relative open (resp. @-closed) set 
on Y. 

Since the terms “space” and “subspace” often occur simultaneously in an 
argument, in order to simplify the exposition, we shall adopt the following 
conventions under conditions such that no confusion can arise: (1) For a subspace 
(Y, &) we often omit the relative topology @ and simply say the subspace Y. 
(2) A fuzzy set A on Y is automatically considered as a fuzzy set on X in the 
sense that A takes the value 0 on X\Y. And conversely, any fuzzy set on X, 
taking value 0 on X\Y, can also be considered a fuzzy set on Y. (3) For a fuzzy 
set A on the subspace (Y, @), the closures of A with respect to % and r are 
respectively denoted by cl,A and cl,(A). 

PROPOSITION 8.1. Let (I’, @) be a subspace of (X, F), and A E [0, l]r; 
then (1) A is %-closed $f there is a F-closed set B such that A = B / Y. (2) d 
fuzzy point yA in Y is an accumulation point of A with respect to +T/ iffy* is an 
accumulation point of A with respect to F. (3) cl,.-4 = Y n cl,.s2. 
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Proof. Property (1) follows directly from the definition of the relative 
topology and the operation of complementation. 

(2) Since the Q-neighborhood system of yn with respect to (/7 is obtained from 
that of yA with respect to r by restriction to Y, noting that A is a fuzzy set on 
Y, we can directly obtain the result from the definition of accumulation point. 

Property (3) follows directly from Theorem 5. I, (2), and the definition of 
derived set. 

9. SEPARATION 

DEFINITION 9.1. Two fuzzy sets A, and A, in (X, 9) are said to be separated 
iff there exist U, E F (i = 1,2) such that ZJ, r) Ai (; = 1,2) and Ui r\ A, = @ = 
CT, n A, . 

DEFINITION 9.1’. Two fuzzy sets A, and A, in a fuzzy topological space 
(X, F) are said to be Q-separated iff there exist F-closed sets H, (i = I, 2) 
such that H, r> -4, (i = 1, 2) and HI n A, = CI = H, n A,. It is obvious 
that A, and A, are Q-separated iff -4, n 4, = @ = .%a n A, . 

PROPOSITION 9.1. Separatzon and Q-separation do not imply each other. 

This is obvious by observing the following example. 

EXAMPLE I. Let X = Xi u X, , where Xi and Xs are (crisp) non-empty 
sets such that Xi n X, is empty. Let A, E [0, I] and define 

Obviously, C,,,,\, is a fuzzy set on X. 

(1) Let 9 = {X, @, Gs,, , Cs,a,a}, let 9-r be the topology for X, which takes 
B as a base, and let -41 = C,,,,, and A, = C&,s . Then A, and A, are separated 
with respect to F1 . But Ai = C1.i,s and A, n A, # @, -4, and 9, are not 
Q-separated. 

(2) Let J%= 1-K @G,,, , Cm,,} and let Fs be the topology for X, which takes 
A71 as a base, then A, and A, are Fs-closed, do not intersect and hence are, of 
course, Q-separated. But they are obviously not separated. 

Separation and Q-separation coincide in (crisp) general topology. Moreover, 
we have 

PROPOSITION 9.2. Let D, and D, be two crisp sets of a fuzzy topological space 
(X, F). Then D, and D, are separated $f they are Q-separated. 
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Proof. Let D, and D, be Q-separated, then, by definition, there exist closed 
sets Hz r) Di and Hi TS Dj = 0 (i # j, i, j = 1, 2). Therefore Hi has to take the 
value 1 on the subset Di of X, and the value 0 on the subset D, of X. And hence 
H,’ = Gi takes the value 0 on Di, and the value 1 on D, . Then we have G, r) Dj 
and G, I? Dj = 0. This shows that D, and D, are separated. In order to show 
that separation of D, and D, implies their Q-separation, it suffices to interchange 
the positions of the two terms “open sets” and “closed sets” occurring in the 
above argument. 

We recall that A, = supp A. 

THEOREM 9.1. Two fuzzy sets A and B al-e Q-separated iff A,, n B, = 0, 
Cl +,a,, .4 = CL& 4,ue, B = 4$. 

Proof. Necessity. Let A and B be Q-separated, then B n cl,d = a. Then 
A,nB, = r; and B,ncl,,4 = 5. From (3) of Proposition 8.1, we have 

cl AOuBu .-1 = (A0 u B,) n cl, A = -4,, n cl, -4 = clA,, A. 

Similarly we can prove that clAovB B = cleOB. 0 

Sz@cz&zcy. From the hypotheses and Proposition 8.1, it follows that 
B n cl AOUBO 4 = B n cl,04 C B, n A, = c . Therefore 

B n cl, -4 = B n (B, u A,) n clx A = B n cIAouB,,, A = ,-. 

Similarly, d n cl,B = o . That is, A and B are Q-separated. 

PROPOSITION 9.3. Two fuzzy sets A and B are Q-separated $ clAOuBOA and 
Cl a,ue,B are Q-separated. 

Proof. The sufficiency holds obviously. We shall now show its necessity. 
Let C = ~1,~“~ A, D = ~1,~“~ 
and hence C,, “= A, , 

OB. From Theorem 9.1, C = cI,,A, D = cle,B, 
D, = B, . 

cl C,“D,C 

Then C,, n D, = a. Moreover, clcOC C 

= cLO”DO(cl~O”B04 = cL,“e, A = cIAoA = clcoA C cl,-C, i.e., 
c~,~C = c~~,~J. Similarly, we have clDOD = clc,vo D. It follows from 0 
Theorem 9.1 that C and D are Q-separated. 

DEFINITION 9.2. Let A and B be two fuzzy sets in X. The operation -4 - B 
is defined as follows: 

(A - B)(x) = A(x), for .~~YEXIA(Y) >B(y)), 
= 0, otherwise. 

The operation “b” defined above reduces evidently to the difference “-I’ 
between two ordinary sets in ordinary set theory. In general topology, there is a 
theorem concerning separation of sets, which says as follows: If Y and Z are 
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subsets of a topological space X and both Y and 2 are closed or both are open, 
then Y\Z is separated from Z\Y (cf. [lo p. 52. Theorem 1.171). This result is 
no longer true in fuzzy topology, as is shown by the following example. This is 
the only theorem in [IO, Chap. I], which cannot be generalized in fuzzy 
topology. 

EXAMPLE 2. Let X = X, u X2, Xi and Xa being non-empty sets with 
empty intersection. The fuzzy set C, ,A in X is defined as in Example 1. Let 
9- = {C,,, 1 X, p E [0, t]} U {X>, which is obviously a fuzzy topology for X. Let 

Y = cm,, > z = c1.m . Then both Y and Z are y-closed, but Y N Z = C,,, 
and Z N Y = C,,, are not separated, since the only open set containing Y N Z 

is X. They are also not Q-separated, because (Y y Z) = C&i , which intersects 
z - I’. 

PROPOSITION 9.4. Let A and B be tzoo fuzzy sets in X such that A u B = X; 
then(l)AwBandBm -4 are crisp sets on X; and (2) A w B and B N A are 
separated $f they are Q-separated. 

Proof. (1) Suppose that (A N B)(x) > 0. By the definition of A - B, 
A(x) > B(x). But max(A(x), B(x)) = 1 and hence A(x) = 1 = (A N B)(x). 
Therefore A N B takes only the value 0 and 1 on X. By definition, A N B is a 
crisp set in X. Similarly, B N A can be proved to be crisp. 

(2) Noting Proposition 9.2, we see at once the equivalence of separation and 
Q-separation between the crisp sets A -B and B w A. 

THEOREM 9.2. Let A, B and D be fuzzy sets in a fts. (X, F) such that A u B = 
X,andANBandBwA are Q-separated (or separated); then 

~1, D = ~l.,p n A) u cl,(D n B). 

Proof. In view of Proposition 9.4, we need only consider the case in which 
A N B and B w A are Q-separated. 

It is evident that cl,D 3 clAO(D n A) u clBO(D n B). We shall now show that 
cl,D C clAO(D n A) u &(D n B). From A u B = X, we have -4 u (B b A) = 
X. Then D = (D n -4) u (D n (B N ,4)), A n cl,D = (A n cl,(D n A)) u 
(A n cl,(D n (B N A))). The first term of the right side is obviously contained 
in A, n cl,(D n A) = clAO(D n a); We shall now show that the second term 
of this side is contained in cl,“(A n D). In fact, cl,(B N A) and A N B do not 
intersect. Then for every x E Xsuch A(x) > B(x), cl,(B -v A) takes the value 0. 
Therefore it may take the non-zero value only at those points .‘c, where B(x) > 
A(x). But when B(x) > A(x), it is easily seen that B(x) = 1, because A u B = 2. 
This means that cl,(B N A) may take non-zero values at points x, where 
(Bx) = 1, and hence cl,(B y A) C B, . 
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Then we have 
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cl@ n (B - A)) c cl,(D n B) n B, = cl,(D n B), 

A n cl, D C cl,&D n A) u cl&I n B). 

Similarly we can prove 

B n cl, D C cl,&D n A) u cl,&D n B), 

consequently, 

cl, D = (A n cl, D) u (B n cl, D) C cI,&D n A) u cl,,,(D n B). 

THEOREM 9.3. Let A and B be two fuzzy sets in (2, F) such that A u B = Z 
and A N B and B N A are Q-separated or separated. Let D be a fuzzy set in 
(Z, F) such that D n A and D n B are relative closed (open) in the subspace A,, 
and B, , respectively; then D is F-closed (resp. Jr-open). 

Proof. The closedness of D follows directly from Theorem 9.2. Since the 
lattice [0, llx is not a Boolean Algebra, especially because A n A’ need not be 
O, A u A’ need not be X, the openness of D can hardly be derived from the 
closedness of D’ by taking complements. The following is a proof of the openness 
of D, which has some features of lattice theory. Let X, = {x E X 1 B(x) = 0}, 
X2 = {x E X ] 1 = A(Y) > B(s) > 0}, X8 = {x E X 1 1 = B(x) = A(r)}, X4 = 
{.Y E X 1 1 = B(r) > A(x) > 0} and X5 = {.v E X / A(x) = 0} since A u B = X, 
at least one of A(x) and B(x) is 1. Moreover, it is obvious that X = ue, , X, , 
and {Xr , X-, , Xs , X4, X5) is a pairwise disjoint collection (some Xi may be 
empty). Letf be a fuzzy set in X. Let the restriction off to Xi be denoted by fz . 
Then f may be also denoted by ( fi , fi , f3 , f4 , f5). For a fuzzy set f which takes 
the value 0 or I on X, , the corresponding component in the above representation 
off will be directly written as 0 or 1. Using this representation and noting the 
definition of S, , we see easily that A = (I, 1, I, a, 0), B = (0, b, 1, I,), where 
a and b are restrictions of rl and B to X, and to ‘Ys, respectively (u and b need 
not be constant). Let D = (dI , d2 , d3, d4, d5); then D n A = (dI , d2, d3, a n 
d4 , 0), D n B = (0, d2 n b, d3, d4, d5). By hypothesis, D n A and D n B are 
relative open sets on A, = ‘Yr u Xs u Xs u X4 and B, = X2 u X3 u X4 u S,, 

respectively, and hence there exist F-open sets f; and k’s such that VI n D, = 
D n A, respectively. Let g denote the restriction of VI to X-s , and let h denote 
the restriction of F’S to X, then we have l’r = (dI , d2, d3, a n d4, g), rY2 = 
(II, b n d2 , 11s , d4 , d&. On the other hand, from Proposition 9.4, we may assume 
that B -B and B - A are separated. Then there exist Y-open sets G, , G, 
such that Gr 3 A wB,G2r)BmAandG,n(B-A)== o =G,n(A-B). 
ButitiseasilyseenthatA~B=(l,l,0,0,0),B~~4=(0,0,0,1,1)and 
therefore G, = (I, I, s, 0, 0) and G, = (0, 0, t, 1, 1). We have thus reduced 
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our problem to a problem concerning only lattice operations: Given V, , Z’, , 
G, , G, and D as above, express D in terms of a combination of unions and 
intersections V of those VL’s and G,‘s. This can be done as follows. Let V = 
k;u V2 -(d,uh,d,,d,,d,,d,ug),F, =G,u V, =(I, I,swd3,d4,d5), 
F, =G,u VI =(d,,d,,tud,, I, 1)FrnFa =(d,,d,,d,u(snt),d,,d,); 
finally, we have the required expression: 

(Fl n F2) n V = (4 , 4 , 4, 4, 4) = D. 

By replacing “open sets” by “closed sets” and separation by Q-separation, 
in the foregoing argument, a similar proof for the closedness of D is obtained. 

10. CONNECTEDNESS 

DEFINITION 10.1. A fuzzy set D in (X, 9) is called disconnected iff; there 
exist two non-empty sets A and B in the subspace D, (i.e., supp D) such that 
A and B are Q-separated and D = A u B. A fuzzy set is called connected iff it is 
not disconnected. 

LEMMA 10. I. A fuzzy set D is disconnected z# there are relatiwe closed sets 
in the subspace D, such that A n D f @, B n D f 0, -4 n B = @ and 
AvB3D. 

Proof. The necessity can be obtained by means of D, = R, u B, and 
Proposition 9.3. We shall now show its sufficiency as follows. For the given 
closed sets A and B, let A’ = A n D, B = B n D; it is evident that ‘$ u B = 
(A u B) n D = D, /i f @, B # @, since it is easily seen that -1 and B are 
Q-separated and AC A, B C B, A and B are also Q-separated in the subspace 
D 0' 

THEOREM 10.1. Let D be a connected set in (-Y, 9); then cl,D and cI,~D 
are also connected. 

Proof. Suppose cl,D = E is disconnected. Then, from Lemma IO. I, 
there are relative closed set A and B in the subspace I$ such that ‘-1 u B 3 E, 
A n E # 0, B n E # 0, A n B == 0. Obviously, .-1 u B3 D. From the 
connectedness of D, we may assume -4 n D = @ (for the case where B n D = 
@, a similar argument holds). That is, D C B. It follows that E = En E,, = 
(cl,D) n E, = clEOD C cloOB = B, but since A n B z= 0, A n E = @, which 
is a contradiction. 

The connectnesness of cloOD can be proved analogously by indirect method. 
(At this time take E = cloOD and note that E, = (cloOD), = Do .) 

THEOREM 10.2. Let .d be a family of connected fuzzy sets in a fts (S, Y). 
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If no two members of &’ are Q-separated in the subspace (u G?),, , then (J & is 
connected. 

Proof. For simplicity, let D = (J &. Suppose D is disconnected. From 
Lemma IO. 1, there are relative closed sets A and B in D, such that A u B 3 D, 
rlnD#@,BnD#@,AnB=@.LetHbeanymemberof~?.SinceBis 
connected and -4 u B 3 H, we may assume that A n H = @ (For the case in 
which H n B = @, the argument can be carried out in a similar way.) Then 
H C B. We have thus proved that any member of & is contained either in ,4 or 
in B. Moreover, since A n D # @ and B n D # @, we may suppose H, E S? 
(z’ = 1, 2) such that HI C A, H2 C B. In view of cloOHI C clnOd = II, cI,~H, C B, 
it is obvious that HI and H2 are Q-separated in D, , which is a contradiction. 

DEFINITION 10.2. Let D be a fuzzy set on (X, .7). The maximal connected 
fuzzy set contained in D is called a component of D. 

THEOREM 10.3. Let D be a fuzzy set on (X, F), each connected fuzzy set 
contained in D is contained in some component of D, and any two distinct components 
oj’ D are Q-separated in the subspace D,, . 

Proof. The last part of the theorem is a direct consequence of Theorem 10.2 
and the maximality of a component. We shall now prove the first part of the 
theorem. When D = @, the case is trivial. Suppose D # 0, and -4 is a connected 
set contained in D. First suppose A # a. Let 3? = (B 1 B is connected such 
that ,4 C B C D}. Any two members of 5Y contain a non-empty set rZ and hence 
are not Q-separated. By Theorem 10.2, u 3? = E is connected. It is obvious 
that E is a component of D. For the case where A = @, since D # @, take any 
fuzzy point e E D; from the definition of a connected set, it is evident that e is 
connected. According to this proof, e and hence @ is contained in a component 
of D. 

A component of a fuzzy set D need not be relative closed on D, , which is 
another departure from general topology. 

EXAMPLE. Suppose X is composed of a single point r. Let 9 = {X, @, x1/a}. 
Let D = x1,3 ; then D is of course a component of D but is not a closed set in 
D0 = -Y. 

PROPOSITION 10. I. If D is a closed fuzzy set in (X, F), then eoery component 
of D is a closed set on X. 

Proof. Let A be a component of D. In view of Theorem 10.1, cl,A is con- 
nected. From A C cl,A C cl,D = D and the maximality of a component, we 
have A =: cl,A; i.e., A is closed in X. 

At the end of this section we shall point out that the theorem on separation 
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sets (cf. [ 10, p. 60, Problem 1 .Q]) can be generalized to fuzzy topological spaces. 
The proof of this generalization, though a little longer, is straightforward and 
hence is left for the readers. 

THEOREM 10.4 (Theorem on Q-separated sets). Let A and B be connected 
fuzzy sets and A 3 B. If A N B = C u D, and C and D are Q-separated in 
(X, F), then B v C and B v D are connected. 

11. NETS 

From this section on, we turn to the investigation of Moore-Smith conver- 
gence in the fuzzy topological spaces. All the theorems in [IO; Chap. II] have 
been generalized to fuzzy topology in the following pages. 

DEFINITION 11.1. Let D be a non-void set. Let > be a semi-order on D. 
The pair (D, 2) is called a directed set, directed by 2, iff, for every pair m, 
n E D, there exists a p E D such that p > m and p > n. 

DEFINITION 11.2. Let (D, 3) be a directed set. Let X be an ordinary set. 
Let f be the collection of all the fuzzy points in X. The function S: D -+ f 
is called a fuzzy net in X. In other words, a fuzzy net is a pair (S, >,) such that 
S is a function: D ---f f and > directs the domain of S. For n E D, S(n) is often 
denoted by S, and hence a net S is often denoted by {S, , n E D}. 

DEFINITION 11.3. Let S = {S, , n E D} be a fuzzy net in X. S is said to be 
quasi-coincident with A iff, for each n E D, S, is quasi-coincident with J. S is 
said to be eventually quasi-coincident with A iff there is an element m of D 
such that, if n E D and n 3 m, then S, is quasi-coincident with d. S is said to be 
frequently quasi-coincident with A iff for each m in D there is an n in D such that 
n > m and S, is quasi-coincident with .tl. S is said to be in J, iff for each n E D, 
s, EA. 

DEFINITION 1 I .4. A net S in a fts (X, r) 1s said to converge to a point e in 
X relative to Y iff S is eventually quasi-coincident with each Q-neighborhood 
of e. 

THEOREM 11 .l. In a fts (X, F), a f uzzy pomt e E A $7 there is a fuzzy net S 
in A such that S converges to e. 

Proof. Necessity. Let D = {BE [0, I]” 1 there exists 0 E Y such that eq. 
0 C B}. Then (D, C} is a directed set (cf. Proposition 2.2, (2)). For each B E D, 
since e E A, by Theorem 4.1’, there exists a point z E S such that B(z) 1 .-1(z) > 
1. Hence A(z) = TV > 0, and fuzzy point Z, E d and z,qB. Now wt: have the 
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function S: D + {fuzzy points e in A} such that for every B E D, S(B) = z,, E A. 
Then the net (S, ; B E D) is the required one. 

Sufticiency. If there is a fuzzy net S in A converging to e, then, by Definition 
11.4, for every Q-neighborhood B of e, S is eventually quasi-coincident with B. 
Hence there is some S, = Z, such that z,~A and Z, E B., i.e., B(z) + p > 1 and 
p < A(z). It follows that B(z) + A(z) > 1. Hence B and A are quasi-coincident. 
From Theorem 4.1’, e E 2. 

THEOREM 11.2. A fuzzy subset A in a fuzzy topological space (X, F) is 
closed ifjevery fuzzy net Sin A cannot converge to a fuzzy point not belonging to A. 

Noting that A is closed ~3 A = A, we see that this is a direct consequence of 
Theorem 11.1. 

In Definition 9.2, we introduced the operation A -B as a generalization of 
difference between sets in the ordinary set theory. We shall now introduce the 
operation A - B between two fuzzy sets A and B, which is another generaliza- 
tion. 

DEFINITION 11.4. Let A and B be two fuzzy sets in X. Then A - B is 
defined as follows. 

(A - B)(x) = 0, for xe(y~Xj A(y) 3 B(y) > 0) 

= 4.4, otherwise. 

Intuitively speaking, for x E X, when the fuzzy point x,(,) exists (i.e., B(x) > 
0) and belongs to A (i.e., A(x) 3 B(x)), then the value of A at x is reduced to 0 
and remains unchanged otherwise. 

Evidently, when A(x) < h, A - X~ = A; when A(x) 2 h, supp(A - .x~) = 
supp A - {x}. 

THEOREM 11.3. In a fuzzy topological space (X, F), xA is an accumulation 
point of A # there is a fuzzy net in A - xA converging to x,, . 

Proof. When A(x) < X, A - xA = A and .Y~ $ -4. Hence JC~ is an accumula- 
tion point of A iff x,, E 2. In view of Theorem 11. I, this is also equivalent to the 
fact that there is a fuzzy net in A = A - JC~ which converges to xA . 

When L4(.~) > A, xI E A. At this time, X~ is an accumulation point of A iff 
every Q-neighborhood B of .v~ is quasi-coincident with A at a point different 
from X, i.e., B and H = -4 - s,, are quasi-coincident. In other words, x,+ is an 
accumulation point of A iff So E il. From Theorem 1 I. 1, this is equivalent to the 
fact that there is a fuzzy net in H = A - xA converging to .T~ . 



594 PU AND LIU 

12. UNIQUENESS OF CONVERGENCE THEOREM ON ITERATED LIMITS 

As the following proposition shows, the set of fuzzy points to which a fuzzy 
net converges is, in general, infinite. But if we put certain restrictions on the sup- 
ports, we can obtain some appropriate result concerning the uniqueness of 
convergence. 

PROPOSITION 12. I. In a fuzzy topological space (X, F), if a fuzzy net S 
converges to a fuzzy point xA , then, for every t.~ E (0, A], S converges also to x, . 

Proof. Since p < X, then 1 - TV > 1 - X, and hence any Q-neighborhood of 
.rrr is also a Q-neighborhood of X~ . From this fact, it is evident that S converges 
to x, . 

DEFINITION 12.1. Suppose for each (Y. E I, (D, , >,) be a directed set. Recall 
that the Cartesian product D = x {Da : CY E I} is the set of all functions d on I 
such that d, (= d(a)) E D, for each a E I. The product order > on D is defined 
as follows: for d, f E D, d > f iff, for each cx E 1, d, >a fu . The product directed 
set of the collection of directed sets {(Da , >,) / cx ~1) is defined as the pair 
(D, >), where D is the Cartesian product of (0, 1 LY E I} and > is the product 
order on D. (It is easily verified that > directs D.) 

THEOREM 12.1. In a fuzzy topological space (X, F), every fuzzy net does not 
converges to two fuzzy points with difknt supports iff (X, .F) is a fuzzy T2 space. 

Proof. If there is a fuzzy net S = (S, , n E D) in X converging to two fuzzy 
points e, , ea with supp e, + supp ea. For any Q-neibhborhood B, of e, 
(i = 1, 2), in view of Definition 11.4, there is some S, which is quasi-coincident 
with both B, and B, . Let supp S,, = Z. obviously B,(z) > 0, B,(z) > 0. Hence 
B, and B, intersect. This contradicts the fact that (X, Y) is T2. The sufficiency 
is thus proved. M’e shall now show the necessity. If (X, 9) is not T, , then there 
are fuzzy points e, and es with different supports such that for any Q-neighbor- 
hoods, d, of e, (i = 1, 2) -3, n -4, # @, therefore, there exists z E X such that 
A,(z) > 0, 1$(.z) > 0. Let h = min(A,(z), Aa(z then the fuzzy point .~r-~,s 
is quasi-coincident with both A, and il, . Denote this fuzzy point by S(il, , Aa). 
Let +Ye, be the Q-neighborhood system of e, , . then both C?lel and se2 are directed 
by C and then we construct the product directed set we, x %Ye,, a-) according 
to the above definition. To each number il, x 8, E @/ll,l x +Ye2 corresponds the 
fuzzy point S(A, , &) described above. This correspondence gives a fuzzy net 
S in X. It is evident that S converges to both e, and ea whose supports are differ- 
ent. contradiction. 

The following theorem on iterated limits concerning the convergence of nets 
has its own interest in mathematical analysis. To give the generalized form of 
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this theorem here is to make a preparation for investigating the relationship 
between topologies and convergence classes. 

DEFINITION 12.2. Let D and E,, , m E D be directed sets. If, corresponding 
to each m E D and each II E E, , there exists a fuzzy point S(m, n), we call the 
function S an iterated fuzzy net in X: {S(m, n) 1 m E D, n E E,,,}, If in a fts 
(LY, F), for a given m E D, the fuzzy net {S(m, n) n E E,} converges to a fuzzy 
point S,, in X, then we have a fuzzy net {S,,, , m E D}. If {S,, , m E Dj converges 
to a fuzzy point e in X, we say that the iterated limit e of the iterated fuzzy net 
exists, or we simply say that S converges to e. 

THEOREM 12.2 (Iterated limit theorem). If, in a fts (X, Y), QTZ iterated 
fuzzy net (S(m, n), m E D, n E E,,J converges to e, let F denote the product order 
D x ( x {E,, / m E D}). A function R with domain F is defined as follows: for each 
(m, f) E F, R(m, f) = (m, f (m)). Then S 0 R is a fuzzy net with domain F and 
converges to e. 

Proof. S 0 R is obviously a fuzzy net with domain F. For any Q-neighborhood 
B of e, since Sconverges to e, there is an rnE Dsuch that for every pi Dand p 13 m, 
S, is quasi-coincident with B. Let x8 denote the support of S, . Then B(s,) + 
S,(x,) > 1 and hence B is also an open Q-neighborhood of S, . Since by hypo- 
thesis, {S( p, n), n E E,} converges to S, (cf. Definition 12.2), there corresponds 
an f ( p) E E, such that for every n E E, and n > f ( p), S( p, U) is quasi-coinci- 
dent with B. For eachp > m, we have thus defined f ( p) E E, . If p E D, which 
does not follow m, let f ( p) be an arbitrary member of E, , then we obtain f E s 
{E,,p~D}and(m,f)~F.When(p~q)~Fand(p,q)~(tn,f),w~havep~ttz, 
g(p) 3 f(p). In view of the foregoing construction, we know that S( p, g(p)) 

qB, and hence S 0 R ( p, q) = S( p, g( p)) qB, i.e., S 0 R is eventually quasi- 
coincident with B. Hence S 0 R converges to e. 

13. SUBNETS AND SUBSEQUENCES 

DEFINITION 13. I. A fuzzy net 7’ =:- (T,,, , m E I$ in S is called a fuzzy subset 
of a fuzzy net S = {S, , n E D) in S iff there is a function i\-: fG+ D such that 

(1) T=SoN,thatis,foreachiEE, T, ~=S,,,cr). 

(2) For each n E D, there exists some m E B such that, if B 3p ‘-: IN, 
N(p) 3 n. 

THEOREM 13.1. Let S = {A’, , n E D) be a fuzz_\ net in S and let .d be n 
family of fuzzy sets in x such that the intersection of any two members of .d 
contains a member of &, and such that S is frequently quasi-coincident with each 
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member of z?. Then there is a subnet T of S which is eventually quasi-coincident 
with each member of ~2. 

Proof. The intersection of any two members of ZZZ contains a member of JX? 
and therefore d is directed by C. Let D, = {A, C} and E, the set of all pairs 
(m, A) such that m E D, -4 E ~8, and S,qA. Since S is frequently quasicoincident 
with each member of -02, E is evidently nonvoid. It is clear that E is a subset of 
D x D, . The product order for D x D, restricted on E1 gives a semi-order 3 
for E. Then E is directed by 2. In fact, for members (m, A) and (n, B) of E, 
there is G E .JA? such that G C A n B. Moreover, since S is frequently quasi- 
coincident with G, there is p E D such that p > m, p > n and S,qG and hence 
(p, G) E E and (p, G) follows both (m, A) and (n, B). In the directed set 
(E, a), define a function N: E --+ D such that N(m, A) = m. It is easily seen that 
condition (2) of Definition 13.1 is satisfied. Therefore T = S 0 N is a fuzzy sub- 
net of S. Finally, if A is a member of &, since S is frequently quasi-coincident 
with A, there is some m E D such that S,,,qA, and hence (m, A) E E. For (n, B) E 
E and (n, B) 3 (m, A) = S 0 N(n, B) = S, , S,qB and hence S,qA. Therefore 
T is eventually quasi-coincident with A. 

DEFINITION 13.2. In a fts (X, Y), a fuzzy point e is called a cluster point of a 
fuzzy net S iff for every Q-neighborhood B of e, S is frequently quasi-coincident 
with B. 

THEOREM 13.2. In a fts (X, Y) a fuzzy point e is a cluster point of a fuzzy net 
S iJ S has a fuzzy subnet T converging to e. 

Proof. The sufficiency follows directly from Definitions 13.2 and 13.1. 
Suppose e is a cluster point of S. In view of the fact that the Q-neighborhood 
system of e satisfies the conditions concerning the family d in Theorem 13.1, 
the necessity follows directly. 

THEOREM 13.3. Let S = {S, , n E D} be a fuzzy net on X. For each n E D, 
let A, be the union of all fuzzy points S,,, (m > n): A, = urn<” S, , then in the 
fts (X, .Y), a fuzzy point e is a cluster point of S iffe E J,, for each n E D. 

Proof. If e is cluster point of S, from Definition 13.2, for each n, A, is quasi- 
coincident with each Q-neighborhood of e because S is frequently quasi-coinci- 
dent with each Q-neighborhood of e. Therefore e E A,, for each n. Conversely, 
let e E & for each n. Take any Q-neighborhood B of e and any m E D. Since 
e E A; , by Theorem 4.1’, B and A, are quasi-coincident at some point Z, i.e., 
B(z) + A,(z) > 1. By the definition of A,, , A,,, = upsm S, , we have sup9sm 
S,(Z) > 1 - B(z). Hence there is n > m such that Am(z) > S,(s) > 1 - B(z), 
i.e., B(z) + S,(Z) > 1, that is to say, S,qB. Hence S is frequently quasi- 
coincident with B. It follows that e is a cluster point of S. 
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When the domain of a fuzzy net {S, , n E D} in X consists of the positive 
integers, with the natural order between positive integers as semi-order, we call 
this net a fuzzy sequence. Similar to the definition of subnets, we may define 
the concept of fuzzy subsequences. 

THEOREM 13.4. Let (X, y) be a fuzzy c, space OY Q-C, space. A fuzzy set 
in X, and e a fuzzy point in X. Then 

(I ) e E a iJ there is a fuzzy sequence converging to e. 

(2) A is closed it every fuzzy sequence cannot converge to a fuzzy point not 
belonging to A. 

(3) e is an accumulation point of A $7 there is a fuzzy sequence in A - e 
converging to e. 

(4) e is a cluster point of a fuzzy sequence t$ S has a subsequence converging 
to e. 

Proof. In view of Proposition 3.1, it suffices to suppose (X, Y) to be a Q - C, 
space. Let e be an arbitrary fuzzy point and 9? = {B,} (n = 1, 2,...) a countable 
open Q-neighborhoods of e. By taking appropriate intersections, we may assume 

Bn 3 Bntl without loss of generality. The Q-neighborhood base satisfying the 
above condition is said to be monotonic. We shall use the monotonic Q-neighbor- 
hood system instead of the Q-neighborhood system of a fuzzy point. condition (1) 
may be proved by a method similar to that of Theorem 11.1; (2) can be obtained 
from (1) following the proof of Theorem 1 I .3; (3) can be similarly proved (use 
(I) just obtained to replace Theorem 11.1 in the proof of Theorem 11.3). The 
proof of (4) may be simpler than that of Theorem 13.2, which is given as follows: 
IfS={S,, n E D} has a subsequence converging to a fuzzy point e, e is obvious- 
ly a cluster point of S. C’onversely, if S has e as a cluster point, let {B,} (i = I, 
2,...) be a monotonic open Q-neighborhood base of e. Evidently, we can induc- 
tively take SnZ , for each B, , such that Sn, is quasi-coincident with B, and n, > 
n,-1 (n, is understood as 0, and n, may be arbitrarily taken, only requiring that 
Snl, be quasi-coincident with B,). Then {SnZ}, i = I, 2,... is the required fuzzy 
subsequence converging to e. 

14. A ONE-TO-ONE CORRESPONDENCE BETWEEN 

CONVERGENCE CLASSES AND FUZZY TOPOLOGIES 

DEFINITION 14. I. Let 9 be a class consisting of pairs (S, e). where S is a 
fuzzy net in X and e a fuzzy point in S. We say that !g is a convergence class 
for X iff it satisfies the four conditions listed below. For convenience, WC also 
say that S converges (5’) to c or that lim, S,, = P(%) iff (S, e) 
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(I) IfS=(S,, n E D) is a fuzzy net such that S, = e, a fuzzy point, for 
each n, then (S, e) E 9. 

(2) If S converges (%‘) to e, then so does each fuzzy subnet of S. 

(3) If S does not converge ((9) to e, then there is a fuzzy subnet T of S, 
no fuzzy subnet of which converges (Y) to e. 

(4) Let D be a directed set, and for each m E D, let E,n be a directed set. Let 
S = {S(m, n): m E D, n E E,,} (cf. Definition 12.2) be the iterated fuzzy net in 
X. For each m E D, let the fuzzy net {S( m, n), n E ENI} converge (Y) to some fuzzy 
point S,,, and let the fuzzy net {S,,, , m E D} thus obtained, converge (%) to a 
to a fuzzy point e. Let F be product directed set D x (X (E, , m E D}) For 
each (m, f ) E F, let R(m, f ) = (m, f(m)). Then S c R is a fuzzy net with domain 
F and converges (Y) to e. 

PROPOSITION 14.1. In a fts (X, CT), if a fuzzy net S = {S, , n E D} fails 
to conrerge to a fuzzy point e. Then there exists an open Q-neighborhood B and a 
fuzzy subnet T = {T,,l , m E E) of S such that T,,, is not quasi-coincident with B 
for each m E E and hence any fuzzy subnet of T does not converge to e. 

Proof. Since S does not converge to e, by Definition 11.4, there exists an 
open n-neighborhood B such that for any n E D, there exists m E D such that 
m >, n, and S,,, is not quasi-coincident with B. Let E = {m E D 1 S, is not 
quasi-coincident with B}, E is a cofinal subset of D. Let N denote the identity 
mapping IV: E - D. It is evident that S 0 IV = T is a subnet of S, which satis- 
fies the requirements. 

It has previously been proved that convergence in a fts (X, 9) satisfies (I), 
(2) (3) and (4) (especially cf. Theorem 12.2 and Proposition 14.1). Hence the 
class consisting of all pairs (S, e), where S is a fuzzy net converging to e, relative 
to Y, is actually a convergence class. This convergence class is determined by 
the fuzzy tkpology 9 and is hence denoted by y,(Y). Conversely, as the follow- 
ing theorem shows, every convergence class Y for A’ can also determine a fuzzy 
topology #(Y) for S. 

THEOREM 14. I. Let Y be a conz3ergence class for a set X, and for each fuzzy 
set A in S let AC denote the union of all the fuzz?, points e such that, for some fuzz) 
net in A, S converges (9) to e. Then c is u closure operator for X. (cf. Definition 4.3) 
and (S, e) E 57 18 S converges to e relative to the fuzzy topology (cl(S) associated 
wzth the closure operator c. 

Proof. That c is a closure operator and that if S converges to e relative to 
I/(??), then (S, e) E <% can be proved by repeating the corresponding arguments 
in the proof of Theorem 9 in [IO] with a slight modification in terminology. We 
shall now show that if (S, e) E 3, then S converges to e relative to the fuzzy 
topology #(5’) associated with c. Suppose S fails to converge to e relative to 



FUZZY TOPOLOGY I 599 

I/J(~), from Proposition 14. I, there exists an open Q-neighborhood of e and sub- 
net T = {T,,,: m E E} of S such that each T,,, is not quasi-coincident with B. 
From Proposition 2.1; T,,, C B’ for each m E E, i.e., T = {T,,i , m E E} is in B’. 
From property (2) of convergence class, (T, e) E 3, and hence, by definition, 
e E (B’)‘. Since B’ is closed, (B’)” = B’ and e E B’. By using Proposition 2.1, e 
is not quasi-coincident with (B’)’ = B, which contradicts the fact that B is a 

Q-neighborhood of e. 
Theorem 14. I not only establishes the fact that to every convergence class %’ 

for X, there corresponds a fuzzy topology $(8) for X, but also proves that the 
convergence class x($(Y)) determin .d by the fuzzy topology 4(Y) is exactly Y, 
that is, x# = I. Then the correspondence x is a surjection (“onto” mapping). 
From Theorem I I. I, it is easily seen that for distinct topologies Y-, (i = I, 2), 
the corresponding convergence classes x(5-,) (i = 1, 2) are also distinct, i.e., 
x is injective. Hence x is a bijection between the family of fuzzy topologies 
for S and that of the convergence classes for X and x-l = 4. It is also evident 
that the correspondence x is order inverting, i.e., if YI 3 .YT:! , ~(9~) C x(9-,). 
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