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1. Introduction

We study a class of semigroup algebras which has made appearances in the moduli of point ar-
rangements on the projective line, blowups of point arrangements on projective space, moduli of
principal SL2(C) bundles on rational curves, and integrable systems of linkages in R

3. In particular
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we will decide exactly when these algebras have the Gorenstein property. As is the case with many
results in combinatorial commutative algebra, the answer to this classification problem is polyhedral
in nature.

Members of the family of semigroup algebras we study are constructed from two pieces of infor-
mation, a trivalent tree T with n labeled leaves, and a choice r of n non-negative integers. For a fixed
tree T , we let V (T ) denote the set of vertices, E(T ) denote the set of edges, L(T ) denote the set
of edges incident on a leaf, and I(T ) denote the set of internal edges E(T ) \ L(T ). For each trinode
τ ∈ V (T ) we number the three edges incident on τ in some way with {1,2,3}, and we denote the
i-th such edge by (τ , i). Our constructions do not depend on the particulars of this assignment, it is
done purely for book-keeping purposes.

Definition 1.1. The semigroup ST (r) is graded, and the k-th graded component is the set of weightings
ω : E(T ) → Z+ defined by the following conditions.

(1) For all τ ∈ V (T ) the numbers ω(τ , i) satisfy |ω(τ ,1) − ω(τ ,2)| �ω(τ ,3) � |ω(τ ,1) + ω(τ ,2)|.
(2) Σ3

i=1ω(τ , i) is even.
(3) For all vm ∈ L(T ), ω(vm) = krm .

The expressions in item 1 above are called the triangle inequalities, item 2 is referred to as the
parity condition. From now on, when three numbers A, B and C satisfy both the parity condition and
the triangle inequalities, we write �2(A, B, C). Notice that for a single trinode τ , these conditions
are symmetric in the (τ , i). The graded components of the semigroups ST (r) are subsets of the
semigroup ST of non-negative integer weightings of T which satisfy conditions (1) and (2). This
semigroup can be described as the lattice points in the convex cone PT ⊂ R

E(T ) defined by positive
real vectors satisfying (1), with respect to the lattice L2(T ) of integer vectors satisfying (2). When
T only has three leaves we denote this cone by P3. The members of the first graded piece of ST (r)
are the lattice points in a cross-section PT (r) of PT , defined by specializing the weights in L(T ) to
the entries in the vector r. In what follows, the semigroup algebra of a semigroup S P of lattice points
in a cone P will be denoted C[S P ]. For convenience and in sympathy with the symplectic uses of
semigroup algebras of weighted trees we will work over C, but our results hold over any algebraically
closed field of characteristic 0.

Presentations of these semigroups and their associated semigroup algebras were constructed by
the author in [M]. In [HMSV], Howard, Millson, Snowden, and Vakil independently constructed presen-
tations of C[ST (r)] in order to find presentations of a projective coordinate ring of the moduli space
of r-weighted points on P

1, denoted Mr . The associated embedding they studied comes from the
homeomorphism of projective varieties, Mr ∼= Gr2(C

n)//rT , where the right-hand side is the r-weight
variety of the Grassmannian variety Gr2(C

n) of 2-dimensional subspaces of C
n . They constructed a

toric degeneration of this algebra, C[Mr], to C[ST (r)] for each tree T by means of the Speyer and
Sturmfels [SpSt] toric deformations of Gr2(C

n). These degenerate the projective coordinate ring of
Gr2(C

n) given by the Plücker embedding to C[ST ], see [HMSV] and [SpSt] for details.
Sturmfels and Xu [StXu] have shown that the Cox ring Rn−1,n−2 of the blow up of P

n−3 at n − 1
points in general position is isomorphic (as a multigraded algebra) to the Plücker algebra of Gr2(C

n).
See [StXu], Theorem 3.5. The multigrading, given by the Picard group of this blow-up, corresponds
to the multigrading on C[ST ] given by specializing to the weights on elements of L(T ). This then
implies that the subring of Rn−1,n−2 obtained by taking invariants with respect to a character of the
corresponding “Picard torus” is isomorphic to one of the algebras C[Mr].

The algebras C[Mr] can also be realized as projective coordinate rings of the moduli MP1,�p(SL2(C))

of quasi-parabolic SL2(C) principal bundles on an n-marked P
1. For this construction see [M], and

[StXu]. The global sections of line bundles on this moduli problem are so-called conformal blocks
from conformal field theory. The algebra C[Mr] can be considered as a subset of these objects with a
multiplication structure. In this way, the Hilbert function of C[Mr] encodes the rule for enumerating
conformal blocks.
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The spaces Mr and the toric varieties MT
r defined by taking Proj of the semigroup algebra

C[ST (r)] are also the subject of the paper [HMM]. Here the symplectic geometry of polygonal link-
ages in R

3 is studied using the polytopes PT (r).

1.1. The Gorenstein property for semigroup algebras

Let k be a field, then a Z-graded k-algebra R is said to be Gorenstein if the Matlis Dual

Hdim(R)
m (R)∗ = Homk

(
Hdim(R)

m (R), k
)
, (1)

is isomorphic to grade-shifted copy R(−a) of R . Here m is the maximal ideal generated by elements in
R of positive degree, and Homk(−,−) is the functor of graded k-morphisms. The number a is called
the a-invariant of the graded Gorenstein algebra R . We refer the reader to the book by Bruns and
Herzog, [BH] for this and all other relevant definitions.

Gorenstein algebras are in a sense the nicest class of commutative algebras beyond complete in-
tersections. They are of finite injective dimension, and their free resolutions have a Poincare-duality
property. Combinatorial features of Gorenstein algebras are also very nicely behaved. In particular,
their Hilbert functions have a duality property expressed by the following theorem, which is essen-
tially due to Stanley, see [BH, Corollary 4.4.6].

Theorem 1.2 (Stanley). Let R = ⊕
n�0 Rn be a graded domain over C, and let the following be its Hilbert

function.

H R(t) =
∑s

i=0 hiti

∏d
j=1(1 − ta j )

. (2)

Then R is Gorenstein if and only if H R(t) = (−1)dta(R)H R(t−1).

A corollary of this theorem is that the Gorenstein property is stable over degenerations of domains.
Combining this with the results of Speyer and Sturmfels, [SpSt] and Howard, Millson, Snowden, and
Vakil, [HMSV, Section 3], we have the following useful result.

Theorem 1.3. The graded algebra C[Mr] is Gorenstein if and only if C[ST (r)] is Gorenstein, for any tree T .

Proof. Since C[ST (r)] is a flat degeneration of C[Mr], these algebras have the same Hilbert function.
Both algebras are domains, so we may apply Theorem 1.2. �

We also get the following corollary.

Corollary 1.4. C[ST (r)] is Gorenstein if and only if C[ST ′ (r)] is Gorenstein for any trivalent trees T , T ′ with
the same number of leaves.

Since we are dealing with algebras generated by the lattice points of convex cones we are able to
use the following proposition, which is a consequence of Corollary 6.3.8 in [BH].

Proposition 1.5. Let S P be the semigroup given by the lattice points in a convex cone P . Then the algebra
C[S P ] is Gorenstein if and only if there is a lattice point ω ∈ int(P ) with int(P ) = ω + S P . Furthermore, in the
presence of a grading, we have a(C[S P ]) = deg(ω).

This proposition follows from the fact that the ideal (int(P ))C[S P ] can identified with the
canonical module of the algebra C[S P ] (resp. the ∗-canonical module in the presence of a grading),
see [BH, Corollary 6.3.8]. We wish to prove this property for ST (r), seen as the lattice points in the
cone over PT (r) × {1} in R

I(T ) ×R with respect to the product lattice L2 ×Z.
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1.2. Statement of results

In order to classify which T , r give a Gorenstein semigroup algebra, we break the problem into
two parts. First, we analyze when some Minkowski sum of PT (r) contains a unique interior lattice
point, a necessary but not sufficient condition for the Gorenstein property.

Theorem 1.6. PT (r) has a unique interior point if and only if r = �2 + �R where �R is of one of the following
types.

(1) Ri = Σ j 	=i R j for some i.
(2) �2(Ri, R j, Rk) holds for some i, j, k and R� = 0 for all � 	= i, j, k.

This will be proved in Section 3. Next, we find when every other interior point of the cone has the
unique interior point of the appropriate Minkowski sum of PT (r) as a summand. Theorem 1.6 allows
us to significantly narrow our search for PT (r) which satisfy this condition. In order to carry this out
we bring in an alternative description of the weightings ω ∈ PT (r), which can be found in [HMM]
and [HMSV]. We call this the piping model of points in PT (r).

The piping model allows us to associate a planar graph TT (ω) on n vertices to a lattice point
ω ∈ PT (r). The valences of these vertices are given by the vector r. The piping model gives a way to
compare the lattice points in the polytopes PT (r) as the tree T varies. We will describe an operation
whereby a graph TT (ω) can be placed inside a different tree T ′ to give a lattice point in PT ′ (r). This
operation can be shown to be piecewise-linear on the polytopes PT (r), and gives a combinatorial
method for comparing our semigroup algebras.

We let Nij(ω) be the multiplicity of edges between i and j in the graph TT (ω). We are now ready
to state our main theorem. From now on we denote the unique minimal degree internal weighting
for the cone on PT (r) by ωr(T ), if it exists. Also, we let 2T be the weighting which assigns 2 to
each edge of T , an example is illustrated in Fig. 2. In general, TT (2T ) is always a complete planar
cycle on the set L(T ).

Theorem 1.7. The algebra C[ST (r)] is Gorenstein if and only if the following conditions hold:

(1) ar is as in Theorem 1.6 for some a.
(2) In this degree, Nij(ωr(T ) − 2T )� n − 4 when it is nonzero.

This will be proved in Section 4. A consequence of this theorem is that the same conditions de-
termine exactly when the algebra C[Mr] is Gorenstein. Note that for a fixed a-invariant, the points r
which satisfy these conditions are solutions to inequalities and linear equations. It would be nice to
have a conceptual justification for why the classification takes this form. We finish with a theorem
which restricts the a-invariant of C[ST (r)].

Theorem 1.8.

a
(
C

[
ST (r)

]) ∣∣ 2(n − 2).

This is proved in Section 5.

2. The piping model

In this section we describe the piping model of lattice points in PT (r). We will show how to con-
struct the graph TT (ω) for ω ∈ PT (r). We start by considering a weighting ω on a single trinode, τ .
Since �2(ω(τ ,1),ω(τ ,2),ω(τ ,3)) holds for weightings in P3, we may apply the 1–1 transformation
of cones

T : P3 → R
3+ (3)
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Fig. 1. Piping model for a trinode.

Fig. 2. Piping model for a general T .

given by T (ω)(xij) = 1
2 (ω(τ , i)+ω(τ , j)−ω(τ ,k)). This is an isomorphism of semigroups when R

3 is
given the standard lattice. We represent the image of ω as a graph on the leaves of this tree, where
the number of edges (“pipes”) going from i to j is T (ω)(xij). See Fig. 1 below, and also Figs. 2 and 5.

The map T has an inverse S given by S(η)(τ , i) = η(xij) + η(xik). Using the map T we may go
from weightings on the trinode τ to planar graphs on the set {(τ , i)}. The transformation T is useful
as it clarifies divisibility issues in the semigroup of lattice points in P3: ω divides ω′ if and only if
T (ω)(xij) � T (ω′)(xij) for all i, j. For a general tree T , something similar happens for graphs on the
set L(T ). Given a graph G on the set L(T ), we may construct a simultaneous weighting of the edges
of each trinode τ ∈ V (T ) as follows. For each edge e ∈ G we consider the unique path γ in T joining
the end points of e, each trinode edge (τ , i) traversed by this path gets weight +1. This defines a
weighting of the edges of T , and we call the resulting map ST .

There is a section to this map, TT , which is defined by the following algorithm. Given a weighting
ω of T , consider the simultaneous weighting of trinodes given by restricting ω to each τ ∈ V (T ).
Apply T to each of these weightings, and join up the ends of the resulting pipes in the unique way
such that the resulting graph is planar. We leave it to the reader to show that this is well-defined. An
example is illustrated in Fig. 2.

The map TT cannot be an inverse as there are many (non-planar) graphs that give the same
weighting under ST . We will make use of the following map.

ST ′ ◦ TT : PT (r) → PT ′(r). (4)

This operation can be shown to be piecewise linear, but that is not important for our purposes.
With reference to the term-order degenerations constructed in [SpSt] and used in [HMSV], this trans-
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Fig. 3. The edges of T receive weight equal to the length of the dual diagonal in P .

formation encodes the rule for changing which monomial in a relation on certain elements of a
spanning set of C[Mr] has highest weight. The reader will also note that a weighting ω divides an-
other weighting ω′ if and only if ω|τ divides ω′|τ for all τ ∈ V (T ), so the map T is still very useful
for questions of divisibility in the case of general T .

Note that the piping model only makes sense for a tree T ′ which has a specified embedding
into R

2, because of our need to deal with planar graphs. For this reason we restrict our attention to
trees T with such an embedding assumed. This has no effect on our results because the isomorphism
class of PT as a multigraded algebra is determined by the topological type of T , and therefore any
C[ST (r)] is isomorphic to some C[ST ′ (r′)] with T ′ planar and r′ , a permutation of the entries of r.

3. Proof of Theorem 1.6

In this section we will classify the polytopes PT (r) that have a unique interior point. Let PT
denote the cone of weightings ω on the tree T such that

�2
(
ω(τ ,1),ω(τ ,2),ω(τ ,3)

)
(5)

holds for each internal vertex τ ∈ V (T ). A weighting ω is on a face of this cone if and only if one
of these triangle inequalities is an equality for some vertex τ . Let Dn be the cone of side lengths for
n-sided polygons (so D3 = P3), there is a map of cones π : PT → Dn given by forgetting the weights
on internal edges of T . We have the following identification, see Prop. 4.4 of [HMSV].

PT (r) = π−1(r). (6)

We study the dimension of these fibers when ri 	= 0 for all i. For n = 3 there is nothing to say,
so suppose n > 3. Recall that a tree T defines a triangulation of any n-gon. If for every side length
ri < Σ j 	=ir j then we may form a planar n-gon P with side lengths r in R

2. We may find such an
n-gon where all triangles in P formed by the diagonals coming from T and the sides have non-zero
area. Let ω be the (not necessarily integer) weighting of T given by the diagonal lengths and side
lengths of P . (See Fig. 3.)

Observe that for any diagonal d of P specified by T which borders two triangles with non-zero
area, we may stretch and contract the length of d within some neighborhood ε without changing the
lengths of any other sides and specified diagonals non-zero, see Fig. 4.

This implies that there is a small neighborhood of dimension |I(T )| in PT (r) which contains ω.
On the other hand, if some entry r j of r has r j = ∑

i 	= j ri then PT (r) is a single point. Thus we
conclude that the dimension of PT (r) can be either |I(T )| or 0.

Proposition 3.1. Let ri 	= 0 for all i. A weighting ω is in the interior of PT (r) = π−1(r) only if it is in the
interior of PT .
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Fig. 4. Creating a neighborhood of ω. The case for a general polygon can be reduced to the case of a quadrilateral by excising
all but the 4 edges incident on the diagonal in question.

Proof. First note that if r has some entry equal to the sum of the other entries, then PT (r) is a fiber
over a point in a facet of Dn , therefore the unique point of PT (r) is on a facet of PT , so suppose this
is not the case. If ω is an interior point of PT (r) then there is a |I(T )|-dimensional neighborhood
of ω in PT (r), this implies that the weighting ω(e) of each edge e ∈ E(T ) can be expanded and
contracted while keeping the weight in PT (r) without changing the other weights on the members
of L(T ). If some triangle inequality is an equality, then some triangle τ in the polygon defined by
ω is degenerate. Let e be the edge of T dual to the longest edge in τ , by the degeneracy of τ , the
length of this edge cannot be increased without also increasing the lengths of one of the other two
edges in τ . This implies that all triangle inequalities must be strict on ω, so this weight is an internal
point in PT . �

The content of this proposition can also be found in [KM]. The following gives an algebraic char-
acterization of the interior lattice points of PT and PT (r).

Proposition 3.2. A non-negative integer weighting ω ∈ PT is in the interior if and only if ω = η + 2T for
some η ∈ PT .

Proof. If ω is in the interior of PT then all inequalities defined by the condition �2 are strict. After
converting to the piping model, we must have TT (ω)(xij(τ )) � 1, for each trinode τ ∈ V (T ). This
implies that ω has 2T as a factor. Running this argument in reverse gives the converse. �
Corollary 3.3. If ω ∈ PT (r) is an interior point, then ω = 2T + η for some η ∈ PT (r − �2)

Corollary 3.4. The toric algebra C[PT ] is Gorenstein.

This second corollary also follows from the same theory that gave us Theorem 1.3, and the fact that
the algebra of the Plücker embedding of Gr2(C

n) is Gorenstein. As a consequence of Proposition 3.2
and Corollary 3.3 we get the following proposition.

Proposition 3.5. PT (r) has a unique interior point if and only if r = �2 + �R such that PT (�R) is a single point.

The next proposition classifies all �R which have this property.

Proposition 3.6. PT (�R) is exactly one point if and only if �R satisfies one of the following:

(1) Ri = Σi 	= j R j for some i.
(2) �2(Ri, R j, Rk) holds for some i, j, k and R� = 0 for all � 	= i, j, k.
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Fig. 5. Creating another weighting.

Fig. 6. Associated graphs for �R from the proof of Proposition 3.6.

Proof. For sufficiency, note that there is exactly one polygon fitting the description given by both
cases above. For necessity, we consider the piping model TT (ω) of the tree weighting. We suppose
PT (r) is a single point and classify the pipe arrangements allowed for weightings of T . Suppose we
were allowed an arrangement of pipes where two edges do not share any common vertex. Then we
may swap pipes while maintaining the edge weights, as in Fig. 5. This implies that any pair of pipes
must share a common vertex. There are exactly two ways for this to happen, the reader can verify
that ST ◦ TT (ω) = ω must satisfy the edge weight conditions in the statement of the theorem. �

Corollary 3.7. PT (r) has a unique interior lattice point if and only if PT ′ (r) has a unique interior lattice point,
for all T ′ .

When we convert the above weighting conditions to their graphical representation on the set
L(T ), we get the possibilities represented below in Fig. 6. One possibility is a graph where every
pipe shares a common incident vertex, the second possibility has exactly three vertices with incident
pipes. Propositions 3.5 and 3.6 then prove Theorem 1.6.

4. Proof of Theorem 1.7

Theorem 1.6 gives a necessary condition for C[ST (r)] to be Gorenstein. Now we see what must be
added in order to ensure that all interior lattice points carry the unique interior lattice point ωr(T ) as
a summand. We will make use of the piping model for most of this section. For the cases presented
in the statement of Theorem 1.6, the first case has Nij(ωr(T ) − 2T ) = R j and Nkj(ωr(T ) − 2T ) = 0
for all k, j 	= i, and the second case has Nij(ωr(T )− 2T ) = 1

2 (Ri + R j − Rk) and Nm�(ωr(T )− 2T ) = 0
for � or m 	= i, j, k.

Proposition 4.1. Let r = �2 + �R, where �R satisfies the conditions of Proposition 3.6. C[ST (r)] is Gorenstein if
and only if there is no interior weighting ω in degree k � a such that Nij(ω − 2T ) < Nij(ωr(T ) − 2T ) for all
i, j.

Proof. After converting ω to the piping model and removing the complete cycle on L(T ) correspond-
ing to 2T we get the graph of ω − 2T . It is clear that if Nij(ω − 2T ) � Nij(ωr(T ) − 2T ) for all i, j
then ωr(T ) is a summand of ω.
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Fig. 7. Proof of Theorem 1.7.

For the converse, suppose Nij(ω − 2T ) < Nij(ωr(T ) − 2T ) for some i, j ∈ L(T ). We find a weight-
ing ω′ on a new tree T ′ which has a pair of leaves i′ and j′ connected to a common trinode τ , with
the number of pipes between i′ and j′ in the trinode equal to Nij(ω). To do this, simply exchange
members of L(T ) with a permutation σ so that σ(i) = i′ and σ( j) = j′ are next to each other, and
choose a T ′ such that these leaves are now incident on a common internal vertex τ . Carrying the
graph corresponding to ω along with the permutation σ produces a new graph which may have
crossings, but this does not matter, as no crossings can be introduced between i′ and j′ .

We consider the weighting ST ′ ◦ σ ◦ TT (ω) = ω′ . By Corollary 3.7, there exists a unique internal
lattice point ωσ(r)(T ′) in the polytope PT ′ (σ (r)) with Ni′ j′ (ωσ(r)(T ′)) = Nij(ωr(T )). By construction
Ni′ j′ (ω′ − 2T ′ ) < Ni′ j′ (ωσ(r)(T ′) − 2T ′ ), this implies ωσ(r)(T ′)|τ cannot divide ω′|τ . It follows that
ωσ(r)(T ′) cannot divide ω′ , and that C[ST ′ (σ (r))] is not Gorenstein.

The permutation group Sn acts on the algebra of global sections of Gr2(C
n) given by the Plücker

embedding by permuting the entries of the multigrading, so we get C[Mr] ∼= C[Mσ(r)]. Now by The-
orem 1.3 and Corollary 1.4, C[ST (r)] cannot be Gorenstein either. �

Now we are ready to prove Theorem 1.7, this is accomplished with the next proposition. (It is
shown in Fig. 7.)

Proposition 4.2. For any C[ST (r)] such that some multiple of r satisfies the criteria of Theorem 1.6, there is
a weighting ω which has Nij(ω − 2T ) < Nij(ωr(T ) − 2T ) if and only if Nij(ωr(T ) − 2T ) is less than n − 4
when it is nonzero.

Proof. We must show that a weighting ω can be created with Nij(ω − 2T ) < Nij(ωr(T ) − 2T ) if and
only if Nij(ωr(T ) − 2T ) is less than n − 4. First we note that it is necessary to have

∑
�	=i, j

[
k

a
(R� + 2) − 2

]
−

[
k

a
(Ri + 2) − 2

]
−

[
k

a
(R j + 2) − 2

]
+ 2Nij

(
ωr(T ) − 2T

)
> 0, (7)
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where a is the degree of ωr(T ) and k is the degree of ω. To see this, note that the ω − 2T weight on
the �-th leaf of T must be

kr� = k

a
ar� − 2 =

[
k

a
(R� + 2) − 2

]
. (8)

It then follows that the sum of the ω − 2T weights on i and j,

[
k

a
(Ri + 2) − 2

]
+

[
k

a
(R j + 2) − 2

]
(9)

must be less than or equal to the doubled count of edges between i and j, 2Nij(ω − 2T ), plus the
sum of valences of the other vertices,

∑
� 	=i, j[ k

a (R� + 2) − 2]. Since we assumed Nij(ω�r(T ) − 2T ) >

Nij(ω − 2T ), we obtain the inequality (7).
It remains to show how this inequality reduces to Nij(ωr(T ) − 2T ) < n − 4. In the case where

R1 = ∑
j 	=1 R j , we have R j = N1 j(ωT (r) − 2T ), so the inequality reduces to

2

[
k

a
− 1

]
(n − 4) > 2

[
k

a
− 1

](
N1 j

(
ωT (r) − 2T

))
(10)

for any of the non-zero nonzero N1 j(ωT (r) − 2T ). This clearly impliesN1 j(ωT (r) − 2T ) < n − 4.
Conversely, if N1 j(ωT (r) − 2T ) < n − 4 then we can recover this inequality for k = 2a, and con-

struct a graph G with the desired properties as follows. We assume without loss of generality that
j = 2, and between the leaves 1 and 2 we put R2 edges, note that this is less than the required
R2 + 1 for ωT (r) to divide ω(G). Between 1 and j 	= 2 we put 2R j edges, and we add a complete
planar cycle. The resulting graph requires 2 more edges at each vertex 	= 1,2 and R2 + 2 more edges
at vertices 1 and 2 to have the correct multi-degree. We have assumed that R2 < n − 4, so it follows
that 2R2 + 4 < 2n − 4 = 2(n − 2). This ensures that there are enough spots left to assign edges to G
in order to obtain the correct multidegree.

In the second case, where we have that �2(R1, R2, R3) holds with all other R� = 0, we may
assume without loss of generality that a = 1. Assuming i = 2, j = 3, the above inequality becomes

2k
(R1 − R2 − R3)

2
+ 2(k − 1)(n − 4) + 2N23

(
ωT (r) − 2T

)
> 0. (11)

We use the identity (R1−R2−R3)
2 = −N23(ωT (r) − 2T ) to obtain

2[k − 1](n − 4) > 2[k − 1]N23
(
ωT (r) − 2T

)
. (12)

Since k must be greater than 1, this implies the inequality.
Conversely, if N23(ωT (r) − 2T ) < n − 4 then we may recover the inequality above for k = 2,

and construct a graph H with the desired properties as follows. Between 2 and 3 we place
N23(ωT (r) − 2T ) edges, note that this is less than the number needed for ω(H) to carry ωT (r) as a
divisor. We complete this to a cycle by adding a single edge between each consecutive pair (3,4), . . . ,

(n −1,n), (n,1), (1,2). Now we add 2N12(ωT (r)−2T )+1, and 2N12(ωT (r)−2T )+1 edges between
1,2 and 1,3 respectively. To finish, we must place edges in such a way that 2 and 3 each receive
N23(ωT (r) − 2T ) + 4 � n − 1 more edges. There are 2(n − 2) spots left to fill from the remaining
vertices, so this is always possible. �
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Since the polytopes PT (r) are the fibers of π , a morphism of convex cones induced by ambient
linear map, we get PT (kr) = kPT (r). This allows us to prove Theorem 1.8. This theorem is implied by
the following proposition.

Proposition 5.1. If PT (kr) has a unique internal lattice point then k must divide 2(n − 2).

Proof. If n � 3 then the semigroup algebra is isomorphic to C[x]. Furthermore, if any kri = 2 then
k = 1 or 2. This takes care of all cases except when Ri = Σi 	= j R j and all R j > 0. In this case, k must
divide the expression

Σi 	= j(R j + 2) − (Ri + 2) = Ri + 2(n − 1) − Ri − 2 = 2(n − 2). � (13)

Example 5.2. (Gorenstein property first shown by B. Howard and M. Herring, [HH].) Consider the case
r = (1, . . . ,1) = �1. This case satisfies all the conditions of theorem 1.7, with the unique interior point
occurring in the polytope PT (�2), the lattice points of which give the degree 2 part of the algebra.
Therefore C[ST (�1)] and C[M�1] are Gorenstein, with a-invariant equal to 2. The latter algebra is of
particular importance in [HMSV].

Example 5.3. In order to see the range of possible a-invariants, we’ll look at a small example. Consider
the weights (1,1,2,4,6), the third graded component of C[M(1,1,2,4,6)] has weights (3,3,6,12,18) =
(2,2,2,2,2)+ (1,1,4,10,16). Since 16 = 1 + 1 + 4 + 10, and each number is greater than or equal to
5 − 4 = 1, this algebra is Gorenstein with the generator of the canonical module in degree 3.
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