
JOURNAL OF ALGFJSRA 14, 341-349 (1970) 

Dominant Modules 

TOYONORI KATO 

College of General Education, Tbhoku University, Sendai, Japan 

Submitted 6y P. M. Cohn 

Received February 28, 1969 

At the spring meeting of the Mathematical Society of Japan, in 1968, 
professors K. Morita and H. Tachikawa gave a lecture entitled “On semi- 
primary QF-3 rings,” in which they have given a new equivalence between 
module categories (see Kato [3], Theorem 2). Successively, Tachiiawa [12] 
has generalized and refined this type of equivalences and has communicated 
orally to the author an outline of his results [12], such that, the above 
equivalences are free from the “QF-3”-ness of rings and the self-injective 
dimension [E(R,)-dominant dimension in our terms] of rings plays a vital 
role in the double centralizer property not only for faithful injective modules 
but also for faithful projective modules. These results are the origin of the 
present work. 

Let R be a ring, xP a faithful, finitely generated projective left R module, 
Q = End(,P) th e endomorphism ring of RP. In case PO contains a copy of 
each simple right Q module, s P is called a dominant module. Denote by 
do {respectively, S?[E(R,)]} th e category of right Q modules (respectively, 
of right R modules having E(R,)-d ominant dimension 22, where E(R,) 
is the injective hull of RR), and let H = Hom(Po , )s be a functor do --+ AR . 
Then our main Theorem 1 states that RP is a dominant module if, and only if, 
H is an equivalence do -+ 9[E(RR)]. As an interesting byproduct of 
Proof of Theorem 1, we have the following: if E(R,)/R C+ n E(R,), then 
every faithful, finitely generated projective left R module has the double 
centralizer property. Moreover, in case R has a left dominant module, the 
converse holds. Section 3 is devoted to examples of dominant modules. We 
show in Example 3 that, R has a left dominant module and domi. dim RR > 2 
if, and only if, R is the endomorphism ring of a generator-cogenerator in the 
category of right modules. The final Example 4 states that each semiperfect 
ring R, for which every nonzero right ideal has a nonzero socle, always has 
a left dominant module of the form Re, e = $ E R. 

Throughout this paper, rings will have a unit element and modules will be 
unital. We adopt the notational device of writing homomorphisms of modules 
on the side opposite the scalars. 
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1. PRELIMINARIES 

Let R be a ring, and .A$ the category of right R modules. A, (or A, E J&) 
will denote the fact that A is a right R module. Now let X, and U, be 
modules. In case X, C+ n U, , where n U, is a direct product of copies of 
U, , X, is called U torsionless. If A, has an injective resolution 

0 -+ A, -+ X, -+ X2 -+ .a. + X, 

with the Xi all U torsionless, then we shall say that A, has U-dominant 
dimension >n (denoted by U-domi. dim AR > n). In case U, = RR, 
“ U-torsionless” is “torsionless”, and U-domi. dim A, = domi. dim A,. 
We shall denote by Z( U,) the category of right R modules having U dominant 
dimension 22. 

Let RP be faithful and finitely generated projective, and Q = End(,P) 
the endomorphism ring of RP. Suppose that P, contains a copy of each simple 
right Q module. Let us call such a faithful, finitely generated projective left 
R module RP a dominant module. It is obvious that each left S ring (for 
definition, see Kato [2], p. 236, or Onodera [9], p. 404) has a left dominant 
module. On the other hand, a commutative ring R has a dominant module if, 
and only if, R is an S ring (see Morita [6]). 

Let B, C A, be modules. We denote by A, ‘1 B, the fact that AR is an 
essential extension of BR and by E(B,) the injective hull of BR . A, = E(B,) 
means that A, is injective and A, ‘1 B, . We must distinguish A, = E(B,) 
from A, M E(B,) (A, w E(B,) does not necessarily imply A’, 3 BJ. 
We shall have need of the following criterion for essential extensions. 

LEMMA 1. Let B, C A, be modules. Then the following statements are 
equivalent: 

(1) A, ‘3 B, . 

(2) If BR -+ A, -+ X, is a monomorphism, then AR -+ X, is a mono- 
morphism, where BR -+ A, is the inclusion map and A, -+ X, is arbitrary. 

2. DOMINANT MODULES 

Throughout this section, let R be a ring, aP a faithful, finitely generated 
projective left R module, Q = End(,P) the endomorphism ring of RP, and 
R’ = End(P,) the double centralizer of RP. We shall regard R as a subring of 
R’ by virtue of the faithfulness of RP. We now define two covariant morphism 
functors H and H* which play an important role in this work. 

W%) = Hom(PQ, B& for BQ~.&&, 

H*(4) = HomLP)*R ,4& for AReME, 
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where ($)* = oHom(,P, RR)R . It is worth noting that H(B,) also acquires 
the structure of a right R’ module by virtue of the bimodule structure of 
R,P, . Motivated mainly by the new equivalence introduced by Morita and 
Tachikawa, we are now in a position to establish the following theorem. 

THEOREM 1. Let R, RP, Q, R’, and H, H* be as above. Then we have 

(1) H*H is natural equivalent to the identity functor on .k& . 

(2) HbWbll~ = JWWRI for each BQ E 4 . 
(3) RIR is an essential extension of RR , consequently, E(R’,) = E(R,) and 

E(R’& = E(R;p). 

(4) HH*(A,) M A, for each A, E T[E(RJ]. 

(5) H*[E(A,)] = E[H*(A,)] for each E(Rx)-torsionless A, E J& . 

(6) If RR E 9[E(RR)], then R’ = R. 

(7) His an equivulence 2Z[E(P,)] -+ g[E(R,)]. 

(8) RP is a dominant module ;f, and only ;f, H is an equivalence MO -+ 
9[E(RR)]. If such is the case, then Rx, E 9[E(Ri,)]. 

Remark. Since P, is a generator in do , by C. L. Walker and E. A. Walker 
([13], Corollary 3.3), we have 

(2’) WW,IIR~ = ~FW&l f or each B, E do , which is an immediate 
consequence of (2) above. 

Proof. First of all, we introduce a natural transformation qR for each 
ARE&R, 

m : AR + HH*(A,) = HomVQ, Hom[(RP)*R, 4&h 

by h&M f  = 4Pf 1 for a E AR , P E RPQ 9 mdf E Q(RP)*R - 

(1) For each B, E dQ we have isomorphisms H*H(B,) = HOm[(RP)*R, 

Hom(pQ,B,)~l, = HO&P)* @RPQyB~lQ M Hom[Hom(RP, J')Q, BQ]Q 

( since RP is finitely generated projective) M Hom(QQ , Bo)o m Bo . A 
routine varification shows that each of the above isomorphisms is natural. 

(2) Since RP is projective, H[E(BQ)]R is injective for B, E .JZQ (see Cartan 
and Eilenberg [l], Proposition 1.4, p. 107). Moreover, H[E(BQ)]R ‘I H(BQ)R . 
To see this, let H(BQ)R + H[E(BQ)]R + XR be a monomorphism. Then 
H*H(BQ) -+ H*H[E(BQ)] -+ H*(XR) is also a monomorphism. But the 
following commutative diagram 

H*WQ) --+ fJ*HbW~ll 

n a 

BQ _____+ WQ) 
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implies H*H[E(B,)] ‘1 H*H(B,). Consequently, the above map 

fJ*wvo)I - H*vR) 
must be a monomorphism by Lemma 1 and it leads to a commutative diagram 

HH*H[E(B,)] L HH*(x,) 

d t “X 

wvo)I ----+x,7 

concluding that H[E(B,)] --f Xa is a monomorphism. Thus in view of 
Lemma 1, we have H[E(B,)], ‘3 H(B,), . Therefore, 

HIE(BO)lR = EIH(BOhl* 

(3) Note that, for Aa E AR AR w H(B,) for some B, E A0 if, and only if, 
7)” is an isomorphism. This is verified making use of the natural equivalence 
B, e H*H(B,) given in (1). Therefore, since R'R = H(P,), r]R' : R'R --c 
HH*(R'R) is an isomorphism. NOW the inclusion map RR + R'R induces an 
isomorphism H*(R,) --+ H*(R',), for the composition map 

PO w H*(RR)+H*(R'R)= H*H(Po)m PO 

is identical. We are now ready to prove R', 'I RR . Keeping Lemma 1 in mind, 
if RR -+ R’, + X, is a monomorphism, SO is H*(R,) m H*(R'R) -+ H*(XR). 
We have thus a commutative diagram 

HH*(R'R) - HH*(x,) 

n 
t 9X 

R' RFXR 

with the upper horizontal map a monomorphism. It follows that R’, + X, is a 
monomorphism. It is now clear that E(R’,) = E(R,) since E(R',) 'I R', 'I RR. 
It remains to show that E(R'R)R, = E(Ri#). InfactE(R’,)w E[HH*(R',)] = 
fWIff*(R’Rll>R* is R' injective (RP is finitely generated projective =- PO is 
a generator in ,rU, =S R,P is finitely generated projective by Morita [!$ 
Lemma 3.3) and E(R'R)R* 'I RXa(E(R',)'I RIR). Thus, E(R',),e = E(Rit). 

(4) S&e H[JWOIIR = E[WPOM = E(FR) = E(RJ by (2) and (3), 
7 : E(RR) - HH*[JWRII is an isomorphism, and hence, we have an iso- 
morphism 

fl E@R) w n HH*[E(RRII * HH* [ME]. 
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It should be remarked that this isomorphism is nothing else but the T]. In 
case C, is E(R,) torsionless, qc is a monomorphism by the commutativity of 
the following diagram with exact rows 

o-c,- n E(RR) 

WC 1 a 

0 - HH*(c,) - MY* [ fl E(RR)]. 

In case A, is injective and E(R,) torsionless, 7A is an isomorphism, for we 
have an exact commutative diagram 

O-A,- n E(RR) -CR-o 

‘)A 1 a 1 1C 

0 - HH*(AJ __c WI* [n EPR)] ---+ Hff*(c,) - 0 

with r)= a monomorphism. Finally, let E(R,)-domi. dim A, > 2. Then we 
have an exact sequence 0 -+ A, + E(A,) + CR -+ 0 with both E(A,) and 
CR of E(R,) torsionless. This yields an exact commutative diagram 

O-AR -E(AR)-CR-0 

0 __+ HII* - HH*[E(AR)I - Hff*(c,) 

with vc a monomorphism. Hence, 7” : A, w  HH*(A,) for each 
AR E 9P[E(RR)l* 

(5) Let A, be E(R,) torsionless. Then A, 6 n E(R,) and hence, 
A, C E(A,) C+ n E(R,) by virtue of the injectivity of n E(R,). Thus 
7 : E(A,) m ZfH*[E(A,)] by the above (4). Now, H*[E(A,)] is injective, for 
H(E{H*[E(AR)]o}) = E{HH*[E(AR)]R} w  qE(AR)] = E(AJ and hence, 

EW*[E(AhI m ~*WE{~*[E(AR)I~) M H*[E(ARII. 
To show H*[E(A,)J ‘3 H*(A,), let H*(A,) + H*[E(A,)] + X, be a 
monomorphism. We must show that H*[E(A,)] + Xo is also a monomor- 
phism. Keeping the results in (4) above in mind, we have the following 
commutative diagram 

HH*(AR) - HH*[E(AR)I - fwo) 

MJ n 

AR- EVR) 
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with HII* - HH*[E(A,)] - H(X,) a monomorphism. but, since 
E(A,) ‘1 A, , we conclude that HH*[E(A,)] + N(Xo) is a monomorphism. 
Thus we have an exact commutative diagram 

0 - H*HH*[E(A,)] - H*H(Xo) 

a u 

H*[W,)I *XC?, 

which shows that H*[E(A,)] --* X, is a monomorphism. In view of Lemma 1, 
we have thus proved H*[E(A,)] = E[H*(A,)]. 

(6) Suppose E(R,)-domi. dim R, 3 2. Then nR : RR + HH*(R,) is an 
isomorphism by (4). Consequently we have an isomorphism 

R, & HH*(R,) w H(P,) = R’, 

which is the inclusion map R, C R’, . Hence, R’ = R. 

(7) Since we have proved (1) and (4), it suffices to show that 

for each B, E Z’[E(P,)] and H*(A,) E Y[E(P,)J for each AR E Y[E(R,)]. 
In case X, is E(R,) torsionless, H*(X,) is E(P,) torsionless. In fact, since 
X, C+ n E(R,), we have H*(X,) c+ H*[n E(R,)] w n H*[E(R,)] = 
l-I H*bV’,N = l-I JW*(R’R)I = I-I W*W’,)l - l-I W’,) by (lh (3) 
and (5). Now let AR E 9[E(RR)] and let 0 --f AR -+ Xi + Xa be an exact 
sequence with Xi injective and E(R,) torsionless. This yields an exact 
sequence 

0 + H*(A,) + H*(X,) + H*(X,), 

where H*(Xi) is injecti\-e by (5) and E(P,) torsionless by the above. Thus, 

H*(4) E ~W’dl- 1 n a similar manner, we have H(B,) ES?‘[E(RJ] for 
B, E L?[E(P,,)], noting that H[E(P,)] = EIH(Po)] = E(R’,) = E(R,) by 
(2) and (3). 

(8) Suppose that RP is a dominant module. Then P, contains a copy of 
each simple right Q module and hence, E(P,) is a cogenerator in A0 (see 
Osofsky [IO], Lemma 1). Therefore, 9[E(Po)] = .A?~ and His an equivalence 

4 + ~WUI by (7). C onversely, assume that H gives an equivalence 
A’$ + LZ’[E(R,)]. Then, since E(R,) is a cogenerator in Ji?[E(R,)], E(P,) is 
a cogenerator in Ao , or equivalently, P, contains a copy of each simple right 
Q module. Thus, R P is a dominant module. Finally, let 0 -+ P, -+ A’, -+ X2 
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be an injective resolution of P, with the Xi all E(P,) torsionless. This leads to 
an injective resolution of H(P& = R’,# , 

0 + Rk -+ H(X,),, + H(X,),* , 

where the H(X,),, is E(Ri,) torsionless. Thus we have shown 

RX* E .Y[E(R;r)]. 

Remark. In view of Tachikawa [12], it is just the core of Theorem 1 that 

WW’Q~I = Wd 

COROLLARY. If E(R,)/R L n E(R,), then every faithful, finitely generated 
projective left R module has the double centralizer property. In case R has a left 
dominant module, the converse holds good. 

It may be interesting to compare the above corollary with a result in Kato 
([4], Corollary to Theorem 2) which states that each finitely-faithful, injective 
right R module has the double centralizer property if, and only if, 

WWR =+ I-I WG-t). 

3. EXAMPLES 

We are now ready to consider examples of dominant modules. 

EXAMPLE 1 (Wedderbum). Let R be a simple Artinian ring, BP a 
minimal left ideal of R. Then RP is a dominant module, Q = End(RP) is a 
division ring, and R’ = End(P,) = R. In this case the functor H : AQ -+ 
Y[E(R,)] = A’ is the Morita equivalence. 

EXAMPLE 2. Let R be a commutative ring. Then the following statements 
are equivalent: 

(1) R has a dominant module. 

(2) R is an S ring. 

The following is closely related to Kato ([3], Theorem 2) and Mueller 
([7], Lemma 9) and ([8], Theorem 2). 

EXAMPLE 3. The following conditions on a ring R are equivalent: 

(1) R has a left dominant module and domi. dim RR > 2. 

(2) R is the endomorphism ring of a generator-cogenerator in the category 
of right modules. 

4W4/3-4 
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Proof. (1) implies (2). Let RP be a dominant module, and domi. dim 
Ii, > 2. Let Q = End (RP), R’ = End(Po). Then PO is a generator in &, 
R’ = R by Theorem 1, (6). Since E(R,) C+ n R, , Theorem 1, (5) yields 

E(Po) M E[H*(R,)] = H*[E(R,)] C+ H* (n RR) - n. H*(R,) * n P, . 

This shows that PO is a cogenerator in .-&” since P, contains a copy of each 
simple right Q module (see Sugano [l I], Lemma 1). Thus R = R’ = End(Po) 
for a generator-cogenerator PO in Ao . 

(2) implies (1). Assume R = End( U,) f or a generator-cogenerator Uo in 
&‘o . Then domi. dim RR > 2 by Kato ([3], Theorem 2). Next, since U, is a 
generator in ./& , z U is faithful, finitely generated projective and End(z U) = Q 
by the Morita Theorem. Thus, s U is a dominant module, since U, is a 
cogenerator in .& . 

The final example tells us that each left perfect ring has a left dominant 
module. 

EXAMPLE! 4. Let R be a semiperfect ring for which each nonzero right 
ideal has nonzero socle. Pick out orthogonal idempotents e, , es ,..., e, in R 
such that e,R/e, J, e,Rle,J,..., e,,R/e,J is one of each isomorphism type of 
simple right ideals of R, where J is the Jacobson radical of R. Let 
e = e, + e, + -a- + en, then Re is a dominant module and the equivalence 
H is &zs + O[E(R,)]. 

Proof. We first show that .Re is faithful. To see this, let 0 # a E A. Since 
aR contains a simple right ideal isomorphic to eiR/ei J for some i, aRei # 0. 
Therefore, aRe # 0, and thus .Re is faithful. Next we show that Re, contains 
a copy of each simple right Q module, where Q = End(&) = eRe. Note 
that e,Re/ei Je is a typical simple right Q module and that Z( J)et # 0 since 
Z( J)ei - Hom(ejR/ei J, RR) # 0, w h ere I( ) is the left annihilator in R. Thus, 

HomWWiJe)~ , Red # 0 for each i = 1,2 ,..., tl. 

It follows that Re is a dominant module. 

ACKNOWLEDGMENT 

The author is indebted to Professor H. Tachikawa for valuable suggestions and 
comments on the subject of this paper. 



DOMINANT MODULES 349 

h?FERENCIS 

1. H. CARTAN AND S. EILENBERG, “Homological Algebra,” Princeton Univ. Press, 

Princeton, N. J., 1956. 
2. T. KATO, Torsionleas modules, TGhoku Math. /. 20 (1968), 233-242. 

3. T. KATO, Rings of dominant dimension > 1, Pmt. /@an. Acad. 44 (1968), 
579-584. 

4. T. I(AT0, Rings of U-dominant dimension > 1, TGhoku Moth. J. 21 (1969), 

321-327. 
5. K. MORITA, Duality for modules and its applications to the theory of rings with 

minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A 6, No. 150 (1958), 

83-142. 
6. K. MORITA, On S-rings in the sense of F. Kaach, Nagoya Math. 1. 27 (1966), 

687-695. 
7. B. J. ‘MUELLER, Dominant dimension of semiprimary rings, CreUes I., Bd. 232 

(1968), 173-179. 
8. B. J. MUELLER, The classification of algebras by dominant dimension, Cunud. /. 

Math. 20 (1968), 398-409. 
9. T. ONODBRA, Uber Kogeneratoren, Arck. Math. 19 (1968), 402-410. 

10. B. L. OSOFSKY, A generalization of quasi-Frobeniua rings, I. Algebra 4 (1966), 

373-387. 
11. K. SUCANO, A note on Azumaya’s theorem, Osaka J, Math. 4 (1967), 157-160. 
12. H. TACHIKAWA, On splitting of module categories, Muth. Z. 111 (1969), 149-150. 

13. C. L. WALKER AND E. A. WNXER, “Quotient Categories of Modules,” in “Proceed- 
ings of the La Jolla Conference on Categorical Algebra,” pp. 404-420, Springer- 

Verlag, Berlin, 1966. 


