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1. Introduction

Let A and B be unital algebras over a commutative ring R, and let M be a unital (A,B)-bimodule,

which is faithful as a left A-module and also as a right B-module. Recall that a left A-module M is

faithful if a ∈ A and aM = 0 implies that a = 0. The R-algebra

U = Tri(A,M,B) =
{(

a m

0 b

)
: a ∈ A, m ∈ M, b ∈ B

}

�
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under the usual matrix operations is called a triangular algebra. The most important examples of tri-

angular algebras are upper triangularmatrix algebras, block upper triangularmatrix algebras and nest

algebras. Cheung [4,5] described commutingmaps and Lie derivations of these algebras. Benkovič and

Eremita [2] studied commuting traces of biadditivemaps and Lie isomorphisms of triangular algebras.

Benkovič [3] investigated biderivations of triangular algebras.Wong [19] treated Jordan isomorphisms

of triangular algebras, while Zhang and Yu [20] studied Jordan derivations.

Let A be an algebra on a commutative ring R. A map δ : A → A is called an additive derivation

if it is additive and satisfies δ(xy) = δ(x)y + xδ(y) for all x, y ∈ A. If there exists an element a ∈ A
such that δ(x) = [x, a] for all x ∈ A, where [x, a] = xa − ax is the Lie product or the commutator of

the elements x, a ∈ A, then δ is said to be an inner derivation. Let ϕ : A → A be a map (without the

additivity assumption). We say that ϕ is a nonlinear Lie derivation if ϕ([x, y]) = [ϕ(x), y] + [x,ϕ(y)]
for all x, y ∈ A.

The structure of additive or linear Lie derivations on rings or algebras has been studied by many

authors. For example, see [1,11,13–18,21] and their references. Recently, ChengandZhang [6] described

nonlinear Liederivationsofupper triangularmatrix algebras. In thispaperwewill investigatenonlinear

Lie derivations of triangular algebras.

2. Main result

LetU = Tri(A,M,B)bea triangular algebra and letZ(U)be its centre. It follows from[4, Proposition

3] that

Z(U) =
{(

a 0

0 b

)
: am = mb for allm ∈ M

}
. (1)

Let us define two natural projections πA : U → A and πB : U → B by

πA :
(
a m

0 b

)
�→ a and πB :

(
a m

0 b

)
�→ b.

Then πA(Z(U)) ⊆ Z(A) and πB(Z(U)) ⊆ Z(B), and there exists a unique algebra isomorphism τ :
πA(Z(U)) → πB(Z(U)) such that am = mτ(a) for allm ∈ M.

Let 1A and 1B be identities of the algebras A and B, respectively, and let 1 be the identity of the

triangular algebra U . Throughout this paper we shall use following notation:

e1 =
(
1A 0

0 0

)
, e2 = 1 − e1 =

(
0 0

0 1B

)

and

Uij = eiUej for 1� i � j � 2.

It is clear that the triangular algebra U may be represented as

U = e1Ue1 + e1Ue2 + e2Ue2 = U11 + U12 + U22. (2)

Here U11 and U22 are subalgebras of U isomorphic to A and B, respectively, and U12 ⊆ U is a (U11, U22)-

bimodule isomorphic to the bimodule M. We also see thatπA(Z(U)) andπB(Z(U)) are isomorphic to

e1Z(U)e1 and e2Z(U)e2, respectively. Then there is an algebra isomorphism σ : e1Z(U)e1 → e2Z(U)e2
such that am = mσ(a) for allm ∈ U12.

In this section, we will prove the following theorem.

Theorem 2.1. Let U = Tri(A,M,B) be a triangular algebra and let ϕ : U → U be a nonlinear Lie

derivation. If πA(Z(U)) = Z(A) and πB(Z(U)) = Z(B), then ϕ is the sum of an additive derivation and

a map into its center Z(U) sending each commutator to zero.

NextweassumethatU = Tri(A,M,B) is a triangularalgebrawithπA(Z(U)) = Z(A)andπB(Z(U))= Z(B), and that ϕ : U → U is a nonlinear Lie derivation. From Eq. (1), we have the following lemma.

Lemma 2.1. Let x ∈ U. Then x ∈ U12 + Z(U) if and only if [x, m] = 0 for all m ∈ U12.
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Lemma 2.2. ϕ(0) = 0 and there exists n0 ∈ U such that ϕ(e1)− [e1, n0] ∈ Z(U).

Proof. It is clear that ϕ(0) = ϕ([0, 0]) = [ϕ(0), 0] + [0,ϕ(0)] = 0. For everym ∈ U12, we have

ϕ(m)= ϕ([e1, m]) = [ϕ(e1), m] + [e1,ϕ(m)]
= ϕ(e1)m − mϕ(e1)+ e1ϕ(m)− ϕ(m)e1.

It follows that e1ϕ(m)e1 = e2ϕ(m)e2 = 0. Then by Eq. (2),

ϕ(m) = e1ϕ(m)e1 + e1ϕ(m)e2 + e2ϕ(m)e2 = e1ϕ(m)e2 = [e1,ϕ(m)]. (3)

Hence [ϕ(e1), m] = 0 for all m ∈ U12. It follows from Lemma 2.1 that

ϕ(e1) = n0 + z0 ∈ U12 + Z(U) (4)

for some n0 ∈ U12 and z0 ∈ Z(U). From the fact e1z0e2 = 0 and Eq. (4), we see that n0 = e1ϕ(e1)e2 =
[e1, n0]. Thus ϕ(e1)− [e1, n0] = z0 ∈ Z(U). The proof is completed. �

Remark 2.1. Let n0 be as in Lemma 2.2, we define amapφ : U → U byφ(x) = ϕ(x)− [x, n0]. Clearly,
φ is also a nonlinear Lie derivation of U . It follows from Lemma 2.2 that φ(e1) ∈ Z(U). Therefore,
without loss of generality, we can assume that ϕ(e1) ∈ Z(U).

Lemma 2.3. (a) e1ϕ(x)e2 = 0 for all x ∈ U11 ∪ U22.
(b) e2ϕ(a)e2 ∈ e2Z(U)e2 for all a ∈ U11 and e1ϕ(b)e1 ∈ e1Z(U)e1 for all b ∈ U22.

Proof. (a) Let x ∈ U11 ∪ U22. It follows from the facts [x, e1] = 0 and ϕ(e1) ∈ Z(U) that
0 = ϕ(0) = ϕ([x, e1]) = [ϕ(x), e1] + [x,ϕ(e1)] = ϕ(x)e1 − e1ϕ(x).

This implies that e1ϕ(x)e2 = 0 for all x ∈ U11 ∪ U22.
(b) Let a ∈ U11 and b ∈ U22. It follows from (a) and Eq. (2) that

ϕ(a) = e1ϕ(a)e1 + e2ϕ(a)e2 (5)

and

ϕ(b) = e1ϕ(b)e1 + e2ϕ(b)e2. (6)

On the other hand, we have

0 = ϕ(0) = ϕ([a, b]) = [ϕ(a), b] + [a,ϕ(b)]
= ϕ(a)b − bϕ(a)+ aϕ(b)− ϕ(b)a.

This together with Eqs. (5) and (6) gives us that

e2ϕ(a)e2b − be2ϕ(a)e2 + ae1ϕ(b)e1 − e1ϕ(b)e1a = 0.

It follows that

e2ϕ(a)e2b − be2ϕ(a)e2 = 0 for all b ∈ U22

and

ae1ϕ(b)e1 − e1ϕ(b)e1a = 0 for all a ∈ U11.

By πB(Z(U)) = Z(B) and πA(Z(U)) = Z(A), then e2ϕ(a)e2 ∈ Z(U22) = e2Z(U)e2 and e1ϕ(b)e1 ∈
Z(U11) = e1Z(U)e1. The proof is completed. �

Remark 2.2. For each a ∈ U11 and b ∈ U22, we define h1(a) = e2ϕ(a)e2 and h2(b) = e1ϕ(b)e1. It
follows from Lemma 2.3(b) that h1 : U11 → e2Z(U)e2 is a map with h1([x1, y1]) = 0 for all x1, y1 ∈
U11 and h2 : U22 → e1Z(U)e1 is a map with h2([x2, y2]) = 0 for all x2, y2 ∈ U22. Let σ : e1Z(U)e1 →
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e2Z(U)e2 be the algebra isomorphism such that am = mσ(a) for all a ∈ e1Z(U)e1 and m ∈ U12. For

each x ∈ U ,we define

h(x) = h2(e2xe2)+ σ−1(h1(e1xe1))+ σ(h2(e2xe2))+ h1(e1xe1).

Then for everym ∈ U12,

(h2(e2xe2)+ σ−1(h1(e1xe1)))m = m(σ (h2(e2xe2))+ h1(e1xe1)).

It follows from Eq. (1) that h(x) ∈ Z(U) for all x ∈ U . Hence h is a map from U into its centre Z(U).
It is easy to verify that h([x, y]) = 0 for all x, y ∈ U . Then the map ψ : U → U defined by ψ(x) =
ϕ(x)− h(x) is also a nonlinear Lie derivation andψ(e1) ∈ Z(U).

Lemma 2.4. Letψ be as in Remark 2.2. Thenψ(Uij) ⊆ Uij for 1� i � j � 2.

Proof. From Eq. (3), we see that ψ(U12) ⊆ U12. Let a ∈ U11. It follows from Eq. (5) and the definition

ofψ that

ψ(a)= e1ψ(a)e1 + e2ψ(a)e2 = e1ψ(a)e1 + e2ϕ(a)e2 − e2h(a)e2

= e1ψ(a)e1 + h1(a)− h1(a) = e1ψ(a)e1 ∈ U11.

Henceψ(U11) ⊆ U11. Similarly, we can show thatψ(U22) ⊆ U22. The proof is completed. �

Lemma 2.5. Letψ be as in Remark 2.2. Then

(a) ψ(am) = ψ(a)m + aψ(m) for all a ∈ U11 and m ∈ U12;
(b) ψ(nb) = ψ(n)b + nψ(b) for all n ∈ U12 and b ∈ U22.

Proof. (a) Let a ∈ U11 andm ∈ U12. Then am = [a, m], and so we have from Lemma 2.4 that

ψ(am) = [ψ(a), m] + [a,ψ(m)] = ψ(a)m + aψ(m).

Similarly, we can show that (b) holds. The proof is completed. �

Lemma 2.6. Letψ be as in Remark 2.2. Then

(a) ψ(a + m)− ψ(a)− ψ(m) ∈ Z(U) for all a ∈ U11 and m ∈ U12;
(b) ψ(n + b)− ψ(n)− ψ(b) ∈ Z(U) for all n ∈ U12 and b ∈ U22.

Proof. (a) Let a ∈ U11 andm, n ∈ U12. It follows from [a, n] = [a + m, n] and Lemma 2.4 that

[ψ(a), n] + [a,ψ(n)] = [ψ(a + m), n] + [a + m,ψ(n)] = [ψ(a + m), n] + [a,ψ(n)].

Then [ψ(a + m)− ψ(a), n] = 0 for all n ∈ U12. By Lemma 2.1,ψ(a + m)− ψ(a) ∈ U12 + Z(U). This
implies that

ψ(a + m)− ψ(a)− e1(ψ(a + m)− ψ(a))e2 ∈ Z(U). (7)

Sinceψ(e1) ∈ Z(U) and [e1, x] = e1xe2 for all x ∈ U , we have

ψ(e1xe2) = [ψ(e1), x] + [e1,ψ(x)] = [e1,ψ(x)] = e1ψ(x)e2. (8)

By Eq. (8), then

e1(ψ(a + m)− ψ(a))e2 = ψ(e1(a + m)e2)− ψ(e1ae2) = ψ(m).
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This and Eq. (7) give us that

ψ(a + m)− ψ(a)− ψ(m) ∈ Z(U)
for all a ∈ U11 and m ∈ U12. Similarly, we can show that (b) holds. The proof is completed. �

Lemma 2.7. Letψ be as in Remark 2.2. Then

(a) ψ(m + n) = ψ(m)+ ψ(n) for all m, n ∈ U12;
(b) ψ(a + m + b)− ψ(a)− ψ(m)− ψ(b) ∈ Z(U) for all a ∈ U11, m ∈ U12 and b ∈ U22.

Proof. (a) Sinceψ(e1) ∈ Z(U) and [e1, x] = [x, e2] for all x ∈ U , we have

[ψ(x), e2] = [e1,ψ(x)] = [e1,ψ(x)] + [ψ(e1), x] = ψ([e1, x])
= ψ([x, e2]) = [ψ(x), e2] + [x,ψ(e2)].

Then [x,ψ(e2)] = 0 for all x ∈ U , and soψ(e2) ∈ Z(U).
Letm, n ∈ U12. It follows from m + n = [e1 + m, n + e2] and Lemmas 2.6 and 2.4 that

ψ(m + n)= [ψ(e1 + m), n + e2] + [e1 + m,ψ(n + e2)]
= [ψ(e1)+ ψ(m), n + e2] + [e1 + m,ψ(n)+ ψ(e2)]
= [ψ(m), n + e2] + [e1 + m,ψ(n)] = ψ(m)+ ψ(n).

(b) Let a ∈ U11, m ∈ U12 and b ∈ U22. Then [a + m + b, n] = [a, n] + [b, n] for all n ∈ U12. By (a)

and Lemma 2.4, we get

[ψ(a + m + b), n] + [a + m + b,ψ(n)]
= ψ([a, n] + [b, n]) = ψ([a, n])+ ψ([b, n])
= [ψ(a), n] + [a,ψ(n)] + [ψ(b), n] + [b,ψ(n)]
= [ψ(a)+ ψ(b), n] + [a + m + b,ψ(n)],

and so [ψ(a + m + b)− ψ(a)− ψ(b), n] = 0 for all n ∈ U12. It follows from Lemma 2.1 that

ψ(a + m + b)− ψ(a)− ψ(b)− e1(ψ(a + m + b)− ψ(a)− ψ(b))e2 ∈ Z(U). (9)

On the other hand, we have from Eq. (8) that

e1(ψ(a + m + b)− ψ(a)− ψ(b))e2 = ψ(m).

This and Eq. (9) show that ψ(a + m + b)− ψ(a)− ψ(m)− ψ(b) ∈ Z(U). The proof is completed.

�

Remark 2.3. From Lemma 2.9(b), we define a map g : U → Z(U) by
g(x) = ψ(x)− ψ(e1xe1)− ψ(e1xe2)− ψ(e2xe2). (10)

Then g(x)e1 = e1g(x)e1 = e1ψ(x)e1 − ψ(e1xe1), and for every x, y ∈ U

g([x, y])e1 = e1ψ([x, y])e1 − ψ([e1xe1, e1ye1])
= [e1ψ(x)e1, e1ye1] + [e1xe1, e1ψ(y)e1]

−[ψ(e1xe1), e1ye1] − [e1xe1,ψ(e1ye1)]
= [e1ψ(x)e1 − ψ(e1xe1), e1ye1] + [e1xe1, e1ψ(y)e1 − ψ(e1ye1)]
= [g(x)e1, e1ye1] + [e1xe1, g(y)e1] = 0.

Similarly, we can show that g([x, y])e2 = 0. Thus,

g([x, y]) = g([x, y])e1 + g([x, y])e2 = 0
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for all x, y ∈ U. Now we define a map δ : U → U by

δ(x) = ψ(x)− g(x). (11)

It is clear that δ([x, y]) = [δ(x), y] + [x, δ(y)] and δ(e1) ∈ Z(U).

Lemma 2.8. Let δ be as in Remark 2.3., and let i ∈ {1, 2}. Then δ is an additive derivation on Uii.

Proof. Let a, c ∈ U11 andm ∈ U12. By Lemma 2.5(a), then

δ(acm) = δ(ac)m + acδ(m) (12)

and

δ((a + c)m) = δ(a + c)m + (a + c)δ(m). (13)

From Lemmas 2.5(a) and 2.7(a), we have

δ(acm) = δ(a)cm + aδ(cm) = δ(a)cm + aδ(c)m + acδ(m) (14)

and

δ((a + c)m) = δ(am)+ δ(cm) = δ(a)m + aδ(m)+ δ(c)m + cδ(m). (15)

It follows from Eqs. (12), (14) and (13), (15) that

(δ(ac)− δ(a)c − aδ(c))m = 0

and

(δ(a + c)− δ(a)− δ(c))m = 0

for allm ∈ U12. Note that U12 is a faithful left U11-module, we get

δ(ac) = δ(a)c + aδ(c) and δ(a + c) = δ(a)+ δ(c)

for all a, c ∈ U11. Hence δ is an additive derivation on U11. Similarly, we can show that δ is also an

additive derivation on U22. The proof is completed. �

Now we are in a position to prove our main theorem.

Proof of Theorem 2.1. It follows from the definitions ofψ and δ that

ϕ(x) = ψ(x)+ h(x) = δ(x)+ g(x)+ h(x) = δ(x)+ f (x)

for all x ∈ U , where f = g + h is a map from U into its center sending each commutator to zero.

From Eqs. (10) and (11), we see that δ(eixej) = eiδ(x)ej for all x ∈ U (1� i � j � 2). Then for every

a ∈ U11, m ∈ U12 and b ∈ U22,

δ(a + m + b) = δ(a)+ δ(m)+ δ(b). (16)

Let x, y ∈ U , then x = a + m + b and y = c + n + d where a, c ∈ U11, m, n ∈ U12 and b, d ∈ U22. By

Eq. (16) and Lemmas 2.7(a) and 2.8,

δ(x + y)= δ(a + c)+ δ(m + n)+ δ(b + d)

= δ(a)+ δ(c)+ δ(m)+ δ(n)+ δ(b)+ δ(d)

= δ(x)+ δ(y).

This and Lemmas 2.4, 2.5 and 2.8 give us that

δ(xy)= δ(ac)+ δ(an)+ δ(md)+ δ(bd)

= δ(a)c + aδ(c)+ δ(a)n + aδ(n)+ δ(m)d + mδ(d)+ δ(b)d + bδ(d)

= (δ(a)+ δ(m)+ δ(b))y + x(δ(c)+ δ(n)+ δ(d))

= δ(x)y + xδ(y).



W. Yu, J. Zhang / Linear Algebra and its Applications 432 (2010) 2953–2960 2959

We conclude that ϕ = δ + f is the sum of an additive derivation δ and a center-valued map f sending

commutators to zero. The proof is completed. �
Next we give an application of Theorem 2.1 to certain special classes of triangular algebras, such as

block upper triangular matrix algebras and nest algebras.

Let R be a commutative ring with identity and letMn×k(R) be the set of all n × kmatrices over R.

For n� 2 and m� n, The block upper triangular matrix algebra Tk̄
n(R) is a subalgebra of Mn(R) of the

form ⎛
⎜⎜⎜⎝

Mk1(R) Mk1×k2(R) · · · Mk1×km(R)
0 Mk2(R) · · · Mk2×km(R)
...

...
. . .

...
0 0 · · · Mkm(R)

⎞
⎟⎟⎟⎠

where k̄ = (k1, k2, . . . , km) is an orderedm-vector of positive integers such that k1 + k2 + · · · + km =
n.

Let X be a Banach space over the real or complex fieldF. Recall that a nest on X is a chainN of closed

subspaces of X containing {0} and X which is closed under arbitrary intersection and closed span. The

nest algebra associated to N , denoted by τ(N ), is the weakly closed operator algebra consisting of all

bounded linear operators that leave N invariant, i.e.,

τ(N ) = {T ∈ B(X) : TN ⊆ N for all N ∈ N }.
A nest N is called trivial if N = {0, X}. If X is a Hilbert space, then every nontrivial nest algebra is

a triangular algebra. However, it is not always the case for a nest N on a general Banach space X as

N ∈ N may be not complemented. We also refer the reader to [8] for the theory of nest algebras.

It is clear that every nontrivial nest algebra on a finite dimensional space is isomorphic to a block

upper triangular matrix algebra. From Theorem 2.1 and the result of [7,12], we have the following

corollary.

Corollary 2.1. Let Tk̄
n(R) be a block upper triangularmatrix algebra andϕ : Tk̄

n(R) → Tk̄
n(R) be a nonlin-

ear Lie derivation. Then there exist T ∈ Tk̄
n(R), an additive derivationα : R → R and amap f : Tk̄

n(R) →
R sending commutators to zero such that ϕ(A) = AT − TA + Aα + f (A)In for all A = (aij) ∈ Tk̄

n(R),
where Aα = (α(aij)) and In is the identity of T k̄

n(R).

For the infinite dimensional case, we have the following corollary.

Corollary 2.2. Let X be an infinite dimensional Banach space over the real or complex field F, and let N be

a nest on X which contains a nontrivial element complemented in X. Assume that ϕ : τ(N ) → τ(N ) is
a nonlinear Lie derivation. Then there exist T ∈ τ(N ) and a functional f : τ(N ) → F with f ([A, B]) = 0

for every A, B ∈ τ(N ) such that ϕ(A) = AT − TA + f (A)I for all A ∈ τ(N ).
Proof. Let N ∈ N be the complemented element. Then X = N�M for some closed subspace M. Let

N1 = {N′ ∩ N : N′ ∈ N } and N2 = {N′ ∩ M : N′ ∈ N }. It follows that

τ(N ) =
(
τ(N1) B(M, N)

0 τ(N2)

)

is a triangular algebra satisfying the conditions of Theorem2.1, and so there exist an additive derivation

δ of τ(N ) and a functional f : τ(N ) → F sending commutators to zero such thatϕ(A) = δ(A)+ f (A)I
for all A ∈ τ(N ). By the results of [9,10], δ is a linear derivation. Then there exists T ∈ τ(N ) such
that δ(A) = AT − TA for all A ∈ τ(N ). Hence ϕ(A) = AT − TA + f (A)I for all A ∈ τ(N ). The proof is

completed. �
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