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1. Introduction

Let A and B be unital algebras over a commutative ring R, and let M be a unital (A4, B)-bimodule,
which is faithful as a left .A-module and also as a right 3-module. Recall that a left .A-module M is
faithful if a € A and am = 0 implies that a = 0. The R-algebra

a m

U = Tri(4, M, B) = {(o b

):aeA,meM,beB}
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under the usual matrix operations is called a triangular algebra. The most important examples of tri-
angular algebras are upper triangular matrix algebras, block upper triangular matrix algebras and nest
algebras. Cheung [4,5] described commuting maps and Lie derivations of these algebras. Benkovic and
Eremita [2] studied commuting traces of biadditive maps and Lie isomorphisms of triangular algebras.
Benkovi¢ [3] investigated biderivations of triangular algebras. Wong [19] treated Jordan isomorphisms
of triangular algebras, while Zhang and Yu [20] studied Jordan derivations.

Let A be an algebra on a commutative ring R. A map é : A — A is called an additive derivation
if it is additive and satisfies § (xy) = §(x)y + x5 (y) for all x, y € A. If there exists an element a € A
such that § (x) = [x, a] for all x € A, where [x, a] = xa — ax is the Lie product or the commutator of
the elements x, a € A, then § is said to be an inner derivation. Let ¢ : A — A be a map (without the
additivity assumption). We say that ¢ is a nonlinear Lie derivation if ¢ ([x, y]) = [@(X),y] + [x, ¢ (¥)]
forallx,y € A.

The structure of additive or linear Lie derivations on rings or algebras has been studied by many
authors. For example, see [1,11,13-18,21] and their references. Recently, Cheng and Zhang [6] described
nonlinear Lie derivations of upper triangular matrix algebras. In this paper we will investigate nonlinear
Lie derivations of triangular algebras.

2. Main result

Letu = Tri(A, M, B) be atriangular algebraand let Z(¢/) be its centre. It follows from [4, Proposition
3] that

Z(u):{(é 2>:am=mbforallme/\/{}. (1)

Let us define two natural projections 74 : Y — Aand s : U — Bby

. (a m d . fa m b
7T_A.0 bl—)aan 7'[[5.0 bf-)

Then 7 4(Z(U)) € Z(A) and 7 (Z(U)) € Z(B), and there exists a unique algebra isomorphism 7 :
T A(Z(U)) = mp(Z(U)) such thatam = mt(a) forallm € M.

Let 14 and 15 be identities of the algebras .A and B, respectively, and let 1 be the identity of the
triangular algebra ¢/. Throughout this paper we shall use following notation:

1 0 0 0
612(64 0), €2=]—€1=<0 1B>

Uj = eidej for 1<i<j<2.
It is clear that the triangular algebra ¢/ may be represented as
U = erller + eqley + exley = Uy + Uy + Uap. (2)

Here U411 and Uy are subalgebras of ¢/ isomorphic to .4 and B, respectively, and U1, C U is a (U1, Uaz )-
bimodule isomorphic to the bimodule M. We also see that 7 4 (Z(i/)) and 5(Z(U4)) are isomorphic to
e1Z(U)eq and eoZ(U)e,, respectively. Then there is an algebra isomorphism o : e1Z(U)e; — exZ(U)e;
such that am = mo (a) for all m € ty.

In this section, we will prove the following theorem.

and

Theorem 2.1. Let ¢/ = Tri(A, M, B) be a triangular algebra and let ¢ : U4 — U be a nonlinear Lie
derivation. If T 4(Z(U)) = Z(A) and t5(Z(U)) = Z(B), then ¢ is the sum of an additive derivation and
a map into its center Z(U) sending each commutator to zero.

Next we assume thati/ = Tri(A, M, B) isatriangularalgebrawithw 4 (Z()) = Z(A) and 5 (Z(U))
= Z(B), and that ¢ : Y — U is a nonlinear Lie derivation. From Eq. (1), we have the following lemma.

Lemma 2.1. Let x € Y. Then x € Uy + Z(U) if and only if [x, m] = O for allm € Uy;.
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Lemma 2.2. ¢(0) = 0 and there exists ng € U such that ¢(e1) — [e1, ngl € Z(U).

Proof. It is clear that ¢ (0) = ¢([0,0]) = [¢(0), 0] + [0, ¢(0)] = 0. For every m € U3, we have

p(m) = @([e, m]) = [p(er), m] + [e1, p(m)]
= g(ey)m — me(e) + ej@(m) — p(me;.

It follows that e; ¢ (m)e; = ey (m)e; = 0. Then by Eq. (2),

@p(m) = erp(me; + erp(m)ez + eap(m)ex = eyp(m)e; = [eq, p(m)]. 3)
Hence [¢(e1), m] = O for all m € Uyy. It follows from Lemma 2.1 that
@(er) =no + 2o € Uhz + Z(U) (4)

for some ng € U2 and zg € Z(U/). From the fact e;zpe; = 0 and Eq. (4), we see that ng = ey@(e1)e; =
[e1, ng]. Thus ¢(eq) — [eq, ng] = zg € Z(U). The proof is completed. []

Remark 2.1. Let ng be as in Lemma 2.2, we defineamap ¢ : &/ — U by ¢ (x) = @ (x) — [x, ng]. Clearly,
¢ is also a nonlinear Lie derivation of /. It follows from Lemma 2.2 that ¢»(e1) € Z(i). Therefore,
without loss of generality, we can assume that ¢(eq) € Z(U).

Lemma 2.3. (a) e;p(x)e; = O forallx € Uy Uy
(b) expp(a)ey € exZ(U)ey forall a € Uyg and e;p(b)er € e1Z(U)eq forallb € Uy;.
Proof. (a) Let x € U7 U Uy;. It follows from the facts [x,e1] = 0 and p(e1) € Z(U) that

0=¢0) =e¢(xe]) =[pX),e1]+ [x pe1)] = p(x)er — e1p(x).

This implies that e;p(x)e; = O forall x € 1411 U L.
(b) Leta € U171 and b € Uy;. It follows from (a) and Eq. (2) that

0(@) = erp(@)e; + e20(a)e; (5)
and

@(b) = e1p(b)er + exp(b)es. (6)
On the other hand, we have

0=¢(0) = ¢([a,b]) = [¢(a), b] + [a ¢(b)]

= ¢(a)b — by(a) + ap(b) — ¢(b)a.

This together with Eqs. (5) and (6) gives us that

exp(a)esh — berp(a)es + aejp(b)e; — eq@(b)era = 0.
It follows that

esp(a)eab — beyp(a)e; =0 forallb € Uy,
and

ae1p(b)e; —eqp(b)eqa =0 foralla € Uyg.
By ms(Z(U)) = Z(B) and w4 (Z(U)) = Z(A), then exp(a)ey € Z(Uzz) = exZ(U)ey and eq@(b)e; €
Z(U11) = e1Z(U)ey. The proof is completed. []

Remark 2.2. For each a € U417 and b € Uy, we define hy(a) = exp(a)e; and hy(b) = e (b)ey. It
follows from Lemma 2.3(b) that hy : U417 — exZ(U)e;, is a map with hy([x1,y1]) = 0 for all x1,y1 €
Uy1 and hy : Uy — e1Z(U)eq is a map with hy([x2,y2]) = Oforall x5, y2 € Usy. Let o @ e1Z(U)ey —
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e;Z(U)e be the algebra isomorphism such that am = mo (a) for all a € e1Z(U)eq and m € Uy;. For
each x € U, we define

h(x) = hy(exxez) + o~ (hi(erxer)) + o (ha(eaxer)) + hy(erxer).
Then for every m € U3,

(hy(eaxe3) + 0" (h(exxer)))m = m(o (hy(exxes)) 4 hy(erxey)).
It follows from Eq. (1) that h(x) € Z(i) for all x € u. Hence h is a map from ¢/ into its centre Z(i4).
It is easy to verify that h([x,y]) = O for all x,y € &. Then the map ¢ : Y — U defined by ¥ (x) =
@(x) — h(x) is also a nonlinear Lie derivation and ¥ (e1) € Z(U).
Lemma 2.4. Let v be as in Remark 2.2. Then ¥ (Uy) < Ujj for 1 <i<j<2.

Proof. From Eq. (3), we see that ¢ (1412) C Uyy. Let a € Uyy. It follows from Eq. (5) and the definition
of Y that

Y(a) = er¥(a)er + exf(a)ex = ey (a)er + exp(a)e; — exh(a)e;
= ey (a)e; + hi(a) — hi(a) = ery(a)e; € Uy1.

Hence ¥ (111) C Uyq;. Similarly, we can show that v (1422) C Us;. The proof is completed. [
Lemma 2.5. Let i be as in Remark 2.2. Then

(a) Y (am) = Yy (a)ym + ayy(m) foralla € Uy and m € Uyy;
(b) ¥ (nb) = Y (n)b 4+ nyr(b) foralln € Uy and b € Uy;.

Proof. (a) Let a € U411 and m € U;. Then am = [a, m], and so we have from Lemma 2.4 that

Y (am) = [y (a), m] + [a, ¥ (m)] = ¢ (@)m + ay (m).
Similarly, we can show that (b) holds. The proof is completed. [

Lemma 2.6. Let v be as in Remark 2.2. Then

(@) Y(a+m) —Y(a) —¥(m) € ZU) foralla € Uy and m € Uyz;
(b) y(n+b) —r(n) —Y(b) € ZW) foralln € Uz and b € Uy;.

Proof. (a) Let a € U417 and m, n € Uyy. It follows from [a, n] = [a + m, n] and Lemma 2.4 that

[Y(a),n] + [a, ¥y ()] = [¥(a+ m),n] + [a+m Y ()] = [¥(a+ m),n] + [a ()]

Then [y (a + m) — ¥ (a),n] = Oforalln € /1. By Lemma2.1,¥ (a + m) — ¥ (a) € U1 + Z(U).This
implies that

Y(a+m)—y(a) —er(Y(a+m) —y(a)ex € Z(U). (7)
Since ¥ (e1) € Z(U) and [e1, x] = e1xe, for all x € U, we have
Y (e1xez) = [ (er), x] + [e1, ¥ ()] = [e1, ¥ ()] = e1yy (X)ea. (8)

By Eq. (8), then
e1(Y(a+m) —y(a)ey = Y(er(a+ mey) — Yejaez) = Y (m).
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This and Eq. (7) give us that
Y(a+m)—y(a) —y(m) € ZW)

for alla € u17 and m € Uy,. Similarly, we can show that (b) holds. The proof is completed. [
Lemma 2.7. Let v be as in Remark 2.2. Then

(a) y(m+n) = Y (m) + Y (n) forallm,n € Uy;
(b) Y(a+m—+b) —Y(a) — y(m) — (b)) € ZWU) foralla € Uy, m € Uz and b € Uy;.

Proof. (a) Since Y (e1) € Z(U) and [eq, x] = [x, e2] for all x € U/, we have

[¥ (%), e2] = [e1, ¥ ()] = [e1, Y ()] + [V (e1), x] = ¥ ([eq, X])
=¥ ([x e2]) = [V (), e2] + [x ¥ (e2)].

Then [x, Y (e2)] = O for all x € 4, and so ¥ (ex) € Z(U).
Let m,n € Uyy. It follows fromm + n = [e; + m, n + e;] and Lemmas 2.6 and 2.4 that

Y(m+n)=[¥(er +m),n+ e+ [e1 +mP(n+ el
= [y (e1) + Y (m),n+ e2] + [e1 +m, ¥ (n) + Y (e2)]
= [y (m),n+e2] +[ey +m Y (m)] = ¥ (m) + ¢ (n).
(b) Leta € U117, m € Uyp and b € Uy;. Then [a + m + b, n] = [a,n] + [b, n] for all n € Uy,. By (a)
and Lemma 2.4, we get
[Y(@a+m+b),n]l+[a+m-+ Db y(n)]
= ¥ ([a,n] + [b,n]) = ¥ ([a,n]) + ¢ ([b n])
= [y (a),n] + [a, ¥ (M)] + [¥(b), n] + [b, ¥ (n)]
= [y (a) + ¥ (b),n] + [a+ m+ b, Yy (n)],
and so [ (a +m + b) — ¥ (a) — Y (b),n] = Oforalln € U. It follows from Lemma 2.1 that
Y(a+m+b)—y(a)— () —er(Y(a+m+Db)—y(a) — ¥(b)ex € ZU). 9)
On the other hand, we have from Eq. (8) that
er(Y(a+m+b) —y(a) — Yy (b))ex = ¢ (m).
This and Eq. (9) show that ¢ (a + m + b) — ¥ (a) — ¥ (m) — r(b) € Z(). The proof is completed.
[

Remark 2.3. From Lemma 2.9(b), we defineamap g : 4 — Z(U/) by

g(x) = Y (x) — Y(erxer) — Y(e1xez) — Y (exxes). (10)
Then g(x)e; = e1g(x)e; = e (x)e; — W(ejxeq), and for everyx,y € U

g([x yDer = ery ([x, yl)er — ¥ ([e1xeq, e1yer])
= [e1yr (x)er, eryer] + [erxer, ery (v)eq]
—[¥ (e1xeq), eryer] — [erxer, ¥ (e1yer)]
= [e1 (¥)er — Y (e1xeq), eryer] + [erxer, e1y (y)er — ¥ (eryer)]
= [g(x)e1, e1ye1] + [erxer, g(y)e1] = 0.

Similarly, we can show that g([x, y])e; = 0. Thus,
g(x.yD) = g(x yDer +g([x.yDes =0
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forallx,y € U/. Now we defineamap é : i/ — U by
§(x) =y (x) —gk). (11)
It is clear that §([x,y]) = [6(x),y] + [x,8(y)] and & (eq1) € Z(U).

Lemma 2.8. Let § be as in Remark 2.3., and leti € {1,2}. Then & is an additive derivation on U;;.

Proof. Let a, ¢ € U171 and m € U;,. By Lemma 2.5(a), then

8(acm) = §(ac)m + acd(m) (12)
and

8((a+cym) = 8(a+ c)ym+ (a + ¢)d(m). (13)
From Lemmas 2.5(a) and 2.7(a), we have

§(acm) = §(a)cm + ad(cm) = §(a)cm + ad(c)m + acd(m) (14)
and

§((a+ cym) = §(am) 4+ 6(cm) = §(a)ym + ad(m) + §(c)m + c§(m). (15)

It follows from Eqgs. (12), (14) and (13), (15) that
(8(ac) — 8(a)c —ad(c))m=20

and
(b(a+c)—36(a) —6(c)m=0

for all m € u4. Note that i41 is a faithful left 241-module, we get
S(ac) = 8(a)c+ ad(c) and S(a+c) = 8(a) +8(c)

for all a, c € U41. Hence § is an additive derivation on 2411. Similarly, we can show that § is also an
additive derivation on 4;. The proof is completed. [

Now we are in a position to prove our main theorem.
Proof of Theorem 2.1. It follows from the definitions of s and § that

P(x) = ¥ (x) + h(x) = 8(x) + g(x) + h(x) =) + f(x)
for all x € U, where f = g + h is a map from ¢/ into its center sending each commutator to zero.
From Egs. (10) and (11), we see that §(ejxe;) = e;d(x)e; for all x € ¢/ (1 <i<j<2). Then for every
ac€ Uy, meupandb € Uy,

8(a+ m—+b) =45(a) + 8(m) + §(b). (16)

Letx,y e U,thenx =a+ m+bandy = c+ n+ d where a,c € U11,m,n € Uyp and b, d € Uyy. By
Eq. (16) and Lemmas 2.7(a) and 2.8,

Sx+y)=68(@+c)+8(m+n)+35(b+d
=d(a) +38(c) +8(m) + 8(n) + 3(b) + 6(d)
=45(x)+4561).
This and Lemmas 2.4, 2.5 and 2.8 give us that
S(xy) = 8(ac) + &(an) + §(md) + §(bd)
= d(a)c + ad(c) 4+ §(a)yn + ad(n) 4+ §(m)d + md(d) + §(b)d + bs(d)
= (8(a) + 8(m) + 8(b))y + x(8(c) + 5(n) + 5(d))
=5x)y +x5().



W. Yu, J. Zhang / Linear Algebra and its Applications 432 (2010) 2953-2960 2959

We conclude that ¢ = § + f is the sum of an additive derivation § and a center-valued map f sending
commutators to zero. The proof is completed. []

Next we give an application of Theorem 2.1 to certain special classes of triangular algebras, such as
block upper triangular matrix algebras and nest algebras.

Let R be a commutative ring with identity and let My, x(R) be the set of alln x k matrices over R.

For n > 2 and m < n, The block upper triangular matrix algebra T,’l‘ (R) is a subalgebra of M, (R) of the
form

Mg, (R)  Miyxk,(R) -+ Mgy xk,, (R)
0 Mkz (R) T Mkz Xkm (R)
0 0 s My, (R)
where k = (kq1, ko, . . ., km) is an ordered m-vector of positive integers such thatky + ky + - - - + kp, =

n.

Let X be a Banach space over the real or complex field [F. Recall that a nest on X is a chain A/ of closed
subspaces of X containing {0} and X which is closed under arbitrary intersection and closed span. The
nest algebra associated to A/, denoted by T (), is the weakly closed operator algebra consisting of all
bounded linear operators that leave A/ invariant, i.e.,

T(N) ={T € B(X) : TN C NforallN € N}.

A nest NV is called trivial if A" = {0, X}. If X is a Hilbert space, then every nontrivial nest algebra is
a triangular algebra. However, it is not always the case for a nest A/ on a general Banach space X as
N € N may be not complemented. We also refer the reader to [8] for the theory of nest algebras.

It is clear that every nontrivial nest algebra on a finite dimensional space is isomorphic to a block
upper triangular matrix algebra. From Theorem 2.1 and the result of [7,12], we have the following
corollary.

Corollary 2.1. Let T,’;‘ (R) be a block upper triangular matrix algebra and ¢ : T,’;‘ (R) — T,’l_‘ (R) be anonlin-
ear Lie derivation. Then there exist T € T,’;‘ (R), an additive derivation« : R — Randamapf : T,’;‘(R) —
R sending commutators to zero such that ¢(A) = AT — TA + Ay + f(A)I, for all A = (a;) € T,’.,_‘(R),
where A, = (a(ajj)) and I, is the identity ofT,’;‘ (R).

For the infinite dimensional case, we have the following corollary.

Corollary 2.2. Let X be an infinite dimensional Banach space over the real or complex field [, and let N be
a nest on X which contains a nontrivial element complemented in X. Assume that ¢ : T(N) — T(N) is
a nonlinear Lie derivation. Then there exist T € T(N) and a functional f : T(N) — Fwithf([A,B]) =0
forevery A,B € T(N) such that ¢(A) = AT — TA + f(A)l forallA € T(N).

Proof. Let N € N be the complemented element. Then X = N+M for some closed subspace M. Let
N ={NNN:N eN}and N, = {N'NM : N € N}. It follows that

T(N) B(M, N)
TW) = < 0 r(A@))

isa triangular algebra satisfying the conditions of Theorem 2.1, and so there exist an additive derivation
S of T (V) and a functionalf : (V) — [ sending commutators to zero such that ¢ (A) = 8(A) + f(A)I
for all A € T(N). By the results of [9,10], § is a linear derivation. Then there exists T € T(A\") such
that 6(A) = AT — TAforall A € T(W). Hence ¢(A) = AT — TA + f(A)l for all A € T(N). The proof is
completed. [J
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