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Abstract 

This paper studies effects of the leaf-extract of Morinda lucida on the corrosion-degradation of steel-reinforced concrete in 3.5% 
NaCl, simulating saline/marine environment (prevalent in offshore environments for wind-energy structures/installations). 
Electrochemical monitoring techniques and compressive-strength testing were employed for different concentrations of the leaf-
extract admixture in duplicates of steel-reinforced concrete specimens, partially immersed in the corrosive-medium. Analyses of 
the experimental test-results according to specification ASTM G16-95 R04 showed that Morinda lucida leaf-extract combined 
highly-efficient corrosion inhibition, 84.82 7.76%    95.64 1.50%, with good compressive-strength improvements in their 
admixed steel-reinforced concretes. These bear implications for corrosion-protection of wind-energy structures in saline/marine 
environments. 
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1. Introduction 

Curbing energy crisis, environmental pollutions and hazardousness of deleterious emissions from fossil fuel 
sources [1-3] and the consequent search for sustainable, abundantly available, clean and renewable energy are 
drawing attentions of energy stakeholders worldwide towards wind-power developments [4-6]. Increased demands 
from this, for increasing wind-energy capacity, have led to global growth of wind-power installations [4]. Militating 
against this growth are issues of land availability, wind turbine noise and ecological impact of wind farms to the 
natural environments all of which are driving wind-power installation from the onshore, that is closer to residential 
areas, to the coastal offshore regions prevalent with saline/marine environments [4,7]. 

In spite of its advantages, the offshore wind power installations are not without its own challenges. A major of 
these include costly construction materials, especially, for wind towers, required for ensuring wind turbines are at 
suitable heights for accessing higher wind speed to generate more power [4,7-8], and foundations, for securing 
stability and uprightness of wind-turbines [9-10]. For reducing these material costs, in the trend of growing capacity 
of offshore wind-power installations, steel-reinforced concrete has been identified as a competitive material for wind 
towers and foundations that is durable, reliable and potent with lesser maintenance requirement [4,7,9-10]. 

Installations of wind-energy structures, using steel-reinforced concretes, in aggressive chloride contaminated 
coastal, i.e. saline/marine, environments engender susceptibility of the steel-reinforced concrete to corrosion attacks. 
Chloride ingress into the concrete, from the ambient saline/marine prevalent in offshore environments, affects 
concrete durability through the destruction of the thin passive oxide layer protecting the concrete steel-reinforcement 
from corrosion degradation [11-13]. Rusts, the byproduct from chloride attacks of concrete steel-rebar, are expansive 
within the concrete structure leading to cracks, spalling, delamination and loss of structural integrity of the concrete 
[12,14]. Avoiding insidious catastrophe that could ensue from this stipulates that sustainable designs of steel- 
reinforced wind-power installations in offshore environments involve adequate corrosion protection policies [10,15]. 

The use of admixtures in concrete for wind-energy installation has been identified as a potent mean of not only 
improving strength of the concrete but for also improving its resistance to corrosion [7]. Well-known substances for 
inhibiting steel-rebar corrosion in chloride contaminated environment include compounds of chromates and of 
nitrites [12,16-18]. However, limitations on the use of these compounds are increasing in many countries due to the 
toxicity and hazardousness of the compounds to the environmental ecosystem thus leading to formulations of 
policies restricting the toxic substances [18-19]. Current research trends include the search for non-toxic and 
environmentally-friendly admixtures as alternative inhibitors of corrosion in steel-reinforced concretes for replacing 
the toxic chemicals. Although, leaf-extract of Morinda lucida has been found in recent toxicological study [20] as 
not having toxic effect on bio-functional organs, no study have been done on the effect of the leaf-extract on the 
corrosion of steel-reinforced concrete in saline/marine environment. Therefore, the objective of this paper was to 
investigate the effects of the leaf-extract of Morinda lucida on the corrosion of steel-reinforced concrete in 3.5% 
NaCl, simulating saline/marine environment (prevalent in the offshore environments) for durable and sustainable 
offshore wind-energy structures/installations. 

 
Nomenclature 

μ  mean value of dataset 
HCP   half cell potential (mV) 
CR  Corrosion rate (mm/y) 
  inhibition efficiency (%) 

blank  steel-reinforced concrete sample without (i.e. 0%) admixture 
blank in W_28 steel-reinforced concrete not used in corrosion experiment but that was cured in water for 28 days 
_Dup  the duplicate of steel-reinforced concrete sample 
K-S GoF Kolmogorov-Smirnov goodness of fit test 
K-S p-value probability of the Kolmogorov-Smirnov goodness of fit test 
_hom  homoscedastic (equal variance) of the student’s t-test assumption 
_het  heteroscedastic (unequal variance) of the student’s t-test assumption 
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2. Experimental materials and methods 

2.1. Experimental Materials 

Leaves of Morinda lucida (M. lucida) Rubiaceae were collected fresh from the Forestry Research Institute, 
Nigeria. The leaves were identified at the Herbarium of the institute where a sample had been deposited with the 
voucher FHI. No. 109500. Methanolic extract from the blended dried leaves were varied from 0%, for blank 
concrete samples, in increments of 0.0833% (i.e. a part by weight of M. lucida in 1200 parts by weight of cement) up 
to 0.4167% and admixed in duplicates of steel reinforced concrete samples, of size 100 mm × 100 mm × 200 mm. 
These constitute six duplicated (i.e. twelve, in total) steel-reinforced concrete blocks. Centrally embedded, in each 
block, was 150mm of Ø12mm by 190 mm rod of reinforcing-steel, leaving the remaining 40 mm protrusion for 
electrochemical monitoring connections. The steel-reinforced concrete blocks were prepared according to standard 
procedures prescribed in literature [21-22] and in the specifications of [23-24]. 

2.2. Experimental Methods 

Each steel-reinforced concrete specimen was partially immersed, longitudinally, in plastic bowls containing test-
solution of 3.5% NaCl, which was made up to just below, but without touching the embedded steel-rebar. 
Electrochemical measurements [13,25-26] were taken from these, in five days interval for 40 days, then in seven 
days interval for eight weeks. These constitute 17-point measurements in 96 days. The electrochemical 
measurements taken from each specimen of steel-reinforced concrete block include: 
 Half-cell potential, HCP, versus Cu/CuSO4 electrode, CSE (Tinker & Rasor®) using high impedance 

multimeter (Mastech®) [16] according to ASTM C876-91 R99 [27]; and 
 Corrosion rate, CR, using 3-electrode LPR Data Logger (Metal Samples®) [28], with direct instrument read-out 

of mpy [29], and which was connected to the concrete test-system as had been described in [14,17,25]. 
After the ninety-six day electrochemical measurement, compressive-strength testing of each block of steel-

reinforced concrete was done [30] using hydraulically powered, Compression Testing Machine, Model YES 2000 
(Eccles Technical Engineering Ltd, England) [14]. By this, compressive-strength from the M. lucida admixed 
concretes, including the blank concrete samples, were compared with the compressive-strength of three additionally 
cast blank steel-reinforced concretes, that were cured in water for 28 days [14] as per the specifications of ASTM 
C39/C39M-03 [11,31] and ASTM C267-01 [32]. 

2.3. Data Analyses 

For detailing performance of the M. lucida admixtures, experimental dataset of the electrochemical monitoring 
methods from each specimen were subjected to the statistical analyses of the Normal and the Weibull probability 
distribution functions, pdf’s [14,25,33-34]. Also, the Kolmogorov-Smirnov goodness-of-fit test-statistics [35-36] 
was used for ascertaining compatibility of each dataset to each distribution function, while the student’s t-test 
statistics, of the homoscedastic and the heteroscedastic assumptions, was used for studying significance of between-
duplicate differences in test-data response. These statistical tests were at  = 0.05 level of significance. According to 
specifications of ASTM G16-95 R04 [37], the compatibility test of dataset with the distribution functions were done 
for avoiding grossly erroneous conclusions, while the between-duplicate test of significant difference in corrosion 
test-data were done for studying repeatability, of the performance of M. lucida admixture in the corrosive medium. 

Mean values, , from the probability distribution function that fits the of corrosion rate datasets better find 
usefulness for estimating inhibition efficiency, , using the formula [14,17-18,25]: 

 
100blank admixed

blank         

(1)

 
Compressive strength change factor, CSCF(%), was estimated, for each M. lucida admixed concentration in 

concrete, using relationship described in [14] as per ASTM C267-01 [32]: 
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3. Results and discussion 

3.1. Analysed  corrosion test-results 

Fig. 1 showed the results from the analyses of the corrosion test-data by the Normal and the Weibull distribution 
functions. Also shown in the figure were linear plots for directly interpreting HCP according to specification ASTM 
C876-91 R99 [27] in Fig. 1(a), and for directly classifying CR according to [38-39] in Fig. 1(b). Notable from these 
include the fact that electrochemical test-results from the blank samples without admixture ranged well into the 
severe condition of corrosive test-systems from both interpretation criteria of the electrochemical monitoring 
methods. By this, it could be inferred that the test-system represent severe corrosive condition. This followed the 
preferred practice prescribed by [34] for reducing the time for effects to be observed such that the dominant factor 
could be used as the rank ordering factor for detailing M. lucida performance in the corrosive test-medium. 

(a)  (b)  

Fig. 1. Results from the analyses of corrosion test-data by the Normal and Weibull distributions (a) HCP with 
corrosion risks interpreting linear plots according to ASTM C876-91 R99 [27]; (b) CR with classifying linear plot 

according to [38-39].

3.2. Results of statistical tests of significance 

Results of the K-S GoF test-statistics, on the scattering of measured corrosion test-data like the pdf’s, were 
presented in Fig. 2(a) while the student’s t-test results on the  significance of differences between test-data of 
duplicate samples were presented in Fig. 2(b). Both of these include the linear plot of  = 0.05 for direct 
interpretations of distribution function compatibility and significance of differences, as appropriate. 

All the datasets of HCP scattered like the Normal and the Weibull distributions, according to the K-S GoF 
criteria, Fig. 2(a). However, eleven datasets of corrosion rate, out of the twelve corrosion rate datasets, were not 
distributed like the Normal pdf, whereas all the twelve datasets of corrosion rate distributed like the Weibull pdf 
according to the K-S GoF test-statistics. These, and the consideration from literature, on the use of CR rather than 
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HCP for indicating absolute corrosion activities [13,40], support the use of the Weibull pdf as the descriptive 
statistics for detailing M. lucida performance in the saline/marine simulating test-medium. 

With the exception of the HCP test-data of the 0.1667% M. lucida duplicates, all the differences encountered 
between the corrosion test-data of the steel-reinforced concrete duplicates studied were just due to chance but were 
not significant as per the student t-test statistics, at  = 0.05 level significance. The HCP datasets from the duplicate 
samples admixed with 0.1667% M. lucida exhibited differences that were not due to chance but that were significant 
by both the homoscedastic and the heteroscedastic student’s t-test statistics. 

  
(a)  (b)  

Fig. 2. Testing statistical significance of corrosion test-data (a) K-S GoF test of test-data scatter like the Normal 
and the Weibull pdf’s (b) student’s t-test of significance of differences between test-data of duplicate samples. 

3.3. Inhibition efficiency performance 

The corrosion rate test-data of concrete samples exhibited no significant difference in the test-results from 
duplicate samples. This fosters estimations of averaged inhibition efficiency of M. lucida on steel-reinforced 
concrete in the 3.5% NaCl corrosive test-medium. Graphical plots of the results of these averaged inhibition 
efficiencies were presented in Fig. 3, in ranking order of performance by the concentrations of M. lucida admixtures. 

 

Fig. 3. Ranking order of inhibition efficiency performance by M. lucida on concrete steel-reinforcement corrosion. 
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From the figure, the 0.1667% M. lucida admixture exhibited optimal inhibition efficiency,  = 95.64 1.50%. 
This, according to the efficiency model classification criteria in [41], indicates “excellent” efficiency at inhibiting 
concrete steel reinforcement corrosion in the corrosive test-system. Also, both 0.4167% M. lucida and 0.0833% M. 
lucida admixtures exhibited excellent models of efficiencies at inhibiting concrete steel-reinforcement corrosion by 
exhibiting  = 92.68 0.74% and  = 90.36 4.61% respectively. The 0.25% M. lucida admixture exhibited  = 
87.39 7.01% while the least effective 0.333% M. lucida admixture exhibited  = 84.82 7.76%. These latter 
efficiencies both translate to “very good” model of efficiency at inhibiting concrete steel reinforcement corrosion in 
the 3.5% NaCl, simulating saline/marine environment, as per the efficiency model classifications from [41]. 

3.4. Compressive strength change effect 

Fig. 4 showed the compressive strength change effect, in ranking order of steel-reinforced concrete load-bearing 
performance, by the M. lucida admixture. This identified 0.1667% M. lucida as combining optimal inhibition 
efficiency with optimal compressive strength improvement advantage on steel-reinforced concrete in the 
saline/marine test-environment. The 0.1667% M. lucida, 0.4167% M. lucida and the 0.0833% M. lucida admixtures 
exhibited compressive-strength improvement in their admixed steel-reinforced concrete samples that surpassed that 
of the blank samples that were not part of the 96 days corrosion immersion testing but that were only cured in water 
for 28 days. Even the 0.3333% M. lucida admixture exhibited compressive-strength improvement that surpassed that 
of the 0% M. lucida blank samples which were part of the 96 days corrosion immersion testing. These bear 
implications that these admixtures combined their effectiveness at inhibiting steel-reinforcement corrosion with 
load-bearing/compressive-strength improvement in the concretes of their admixtures. Thus, only the 0.25% M. 
lucida admixture exhibited compressive-strength reduction relative to the 0% M. lucida blank samples in the study. 

 

 
Fig. 4. Compressive-strength change in ranking order of steel-reinforced concrete 

load-bearing improvement performance by Morinda lucida admixtures. 

These bear implications on the corrosion-protection wind-energy structures utilising steel-reinforced concrete for 
the wind-power installations in saline/marine (prevalent in offshore) environments, which include: 
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 Application of non-toxic, environmentally-friendly M. lucida admixture in steel-reinforced concrete, at suitable 
concentration, is potent for attaining excellent inhibition on the corrosion of the concrete steel-reinforcement in 
saline/marine service environments, i.e. the prevalent environments in offshore wind-power installations; 

 Such application of suitable concentration of the non-toxic, environmentally-friendly M. lucida admixture is 
also potent for attaining load-bearing/compressive-strength improvement in the steel-reinforced concrete for 
wind-power installation in offshore saline/marine environment; 

 While all the concentrations in wt% of cement studied in this work were efficient at inhibiting steel-
reinforcement corrosion, choice of suitable concentration, e.g. the 0.1667% M. lucida, the 0.41667% M. lucida 
and the 0.0833% M. lucida, still remain of high importance for avoiding M. lucida admixture concentration that 
will engender compressive-strength reduction in the steel-reinforced concrete for durable and sustainable wind-
power installations in the offshore, saline/marine, service-environment. 

4. Conclusion 

Morinda lucida effects on the corrosion-degradation of steel-reinforced concrete in 3.5% NaCl, simulating 
saline/marine environment (prevalent in offshore environments for wind-energy structures/installations) has been 
studied. From this, the following conclusions could be drawn: 
 Analyses of the scatter of corrosion test-data, according to the K-S GoF statistics, showed that the HCP test-data 

distributed like both the Normal and the Weibull distribution but the fitting of the corrosion rate test-data by the 
Normal pdf was very poor for almost all the CR datasets, rather, the corrosion rate test-data scattered like the 
Weibull distribution for all the CR datasets of the steel-reinforced concretes studied; 

 Except for the HCP test-data of the 0.1667% M. lucida admixture that exhibited between-duplicate  difference 
that was significant, the monitored corrosion test-data exhibited between-duplicate sample differences that were 
only due to chance but that were not significant, according to the student’s t-test statistics; 

 The 0.1667% Morinda lucida admixture exhibited optimal inhibition efficiency,  = 95.64 1.50%, which 
classifies as “excellent” efficiency model with the inhibition efficiencies by the 0.4167% M. lucida and the 
0.0833% M. lucida admixtures, while the 0.25% M. lucida and the 0.3333% M. lucida admixtures exhibited 
“very good” efficiencies at inhibiting reinforcing-steel corrosion in the 3.5% NaCl (saline/marine) environment; 

 The 0.1667% M. lucida combined optimal corrosion inhibition effectiveness with optimal compressive-strength 
improvement in concretes of its admixture in the study, the 0.4167% M. lucida, and the 0.0833% M. lucida also 
exhibited similar manner of compressive-strength improvement that surpassed that of the blank samples cured 
in water for 28 days (but not part of the corrosion immersion testing), while only the 0.25% M. lucida exhibited 
compressive strength reduction relative to the 0% M. lucida blank samples of the corrosion immersion testing; 

 Implications from these identify potency of attaining efficient inhibition of steel-reinforcement corrosion 
combined with improved compressive-strength advantage through suitable application of environmentally-
friendly M. lucida leaf-extract admixture in steel-reinforced concrete for saline/marine environment, for durable 
and sustainable wind-energy structures/installations in the offshore environments. 

References 

[1] Okeniyi JO, Anwan EU, Okeniyi ET. Waste characterisation and recoverable energy potential using waste generated in a model community 
in Nigeria. J Environ Sci Technol 2012;5:232–240. 

[2] Singh AK, Parida SK. Evaluation of current status and future directions of wind energy in India. Clean Technol Environ Policy 2013;15: 643-
655. 

[3] Ajayi OO, Fagbenle RO, Katende J, Okeniyi JO, Omotosho OA. Wind energy potential for power generation of a local site in Gusau, Nigeria 
Int J Energ Clean Environ 2010;11: 99–116. 

[4] Sun X, Huang D, Wu G. The current state of offshore wind energy technology development. Energy 2012;41:298–312. 
[5] Ajayi OO, Fagbenle RO, Katende J, Okeniyi JO. Availability of wind energy resource potential for power generation at Jos, Nigeria. Front 

Energ 2011;5:376–385. 
[6] Al-Badi AH. Wind power potential in Oman. Int J Sustain Energ 2011;30:110–118. 
[7] Singh AN. Concrete construction for wind energy towers. The Indian Concr J–Point of View 2007:43–49. 
[8] Okeniyi JO, Moses IF, Okeniyi ET. Wind characteristics and energy potential assessment in Akure, South West Nigeria: econometrics and 

policy implications. Int J Ambient Energ 2013; http://dx.doi.org/10.1080/01430750.2013.864586 



428   Joshua Olusegun Okeniyi et al.  /  Energy Procedia   50  ( 2014 )  421 – 428 

[9] Masters GM. Renewable and efficient electric power system. New Jersey: John Wiley & Sons; 2004. 
[10] Berndt ML. Sustainable concrete for wind turbine foundations. Brookhaven National Laboratory–Energy Resources Division technical 

report; 2004. 
[11] Yao Y, Gong JK, Cui Z. Anti-corrosion performance and microstructure analysis on a marine concrete utilizing coal combustion byproducts 

and blast furnace slag. Clean Technol Environ Policy 2013. doi:10.1007/s10098-013-0654-y 
[12] Okeniyi JO, Omotosho OA, Ajayi OO, James OO, Loto CA. Modelling the performance of sodium nitrite and aniline as inhibitors in the 

corrosion of steel-reinforced concrete, Asian J Appl Sci 2012;5:132–143. 
[13] Song H–W, Saraswathy V. Corrosion monitoring of reinforced concrete structures: A review. Int J Electrochem Sci 2007; 2:1–28. 
[14] Okeniyi JO, Omoniyi OM, Okpala SO, Loto CA, Popoola API. Effect of ethylenediaminetetraacetic disodium dihydrate and sodium nitrite 

admixtures on steel-rebar corrosion in concrete. Euro J Environ Civ Eng 2013;17:398–416. 
[15] LaNier MW. LWST Phase I project conceptual design study: Evaluation of design and construction approaches for economical hybrid 

steel/concrete wind turbine towers; June 28, 2002 – July 31, 2004. NREL Report No. SR-500-36777; 2005. 
[16] Okeniyi JO, Omotosho OA, Ajayi OO, Loto CA. Effect of potassium-chromate and sodium-nitrite on concrete steel-rebar degradation in 

sulphate and saline media. Construct Build Mater 2014;50:448–456. 
[17] Okeniyi JO, Oladele IO, Ambrose IJ, Okpala SO, Omoniyi OM, Loto CA, Popoola API. Analysis of inhibition of concrete steel-rebar 

corrosion by Na2Cr2O7 concentrations: Implications for conflicting reports on inhibitor effectiveness. J Cent South Univ 2013;20:3697–3714. 
[18] Fu J–J, Li S–N, Cao L–H, Wang Y, Yan L–H, Lu L–D. L-Tryptophan as green corrosion inhibitor for low carbon steel in hydrochloric acid 

solution, J Mater Sci 2010;45:979–986. 
[19] Mennucci MM, Banczek EP, Rodrigues PRP, Costa I. Evaluation of benzotriazole as corrosion inhibitor for carbon steel in simulated pore 

solution Cem Concr Compos 2009;31:418–424. 
[20] Oduola T, Bello I, Adeosun G, Ademosun A–W, Raheem G, Avwioro G. Hepatotoxicity and nephrotoxicity evaluation in Wistar albino rats 

exposed to Morinda lucida leaf extract. N Am J Med Sci 2010;2:230–233. 
[21] Muralidharan S, Saraswathy V, Merlin Nima SP, Palaniswamy N. Evaluation of a composite corrosion inhibiting admixtures and its 

performance in Portland pozzolana cement. Mater Chem Phy 2004;86:298–306. 
[22] Ormellese M, Berra M, Bolzoni F, Pastore T. Corrosion inhibitors for chlorides induced corrosion in reinforced concrete structures, Cem 

Concr Res 2006;36:536–547. 
[23] ASTM G109-99a. Standard test method for determining the effects of chemical admixtures on the corrosion of embedded steel reinforcement 

in concrete exposed to chloride environments. ASTM International, West Conshohocken, PA. 
[24] ASTM C192/192M-02. Standard practice for making and curing concrete test specimens in the laboratory. ASTM International, West 

Conshohocken, PA. 
[25] Okeniyi JO, Ambrose IJ, Oladele IO, Loto CA, Popoola PAI. Electrochemical performance of sodium dichromate partial replacement models 

by triethanolamine admixtures on steel-rebar corrosion in concretes.  Int J Electrochem Sci 2013;8:10758–10771. 
[26] Broomfield JP. Corrosion of steel in concrete: Understanding, investigation and repair. New York: Taylor & Francis; 2003. 
[27] ASTM C876-91 R99. Standard test method for half-cell potentials of uncoated reinforcing steel in concrete. ASTM International, West 

Conshohocken, PA. 
[28] Sastri VS. Green corrosion inhibitors: theory and practice. Hoboken, New Jersey: John Wiley & Sons, Inc; 2011. 
[29] Abosrra L, Ashour AF, Youseffi M. Corrosion of steel reinforcement in concrete of different compressive strengths. Construct Build Mater 

2011;25: 3915–3925. 
[30] Omotosho OA, Loto CA, Ajayi OO, Okeniyi JO. Aniline effect on concrete steel rebar degradation in saline and sulfate media. Agric Eng 

Int: CIGR J 2011;13:1–17. 
[31] ASTM C39/C39M–03. Standard test method for compressive strength of cylindrical concrete specimens. ASTM International, West 

Conshohocken, PA. 
[32] ASTM C267–01. Standard Test Methods for Chemical Resistance of Mortars, Grouts, and Monolithic Surfacings and Polymer Concretes. 

ASTM International, West Conshohocken, PA. 
[33] Izquierdo D, Alonso C, Andrade C, Castellote M. Potentiostatic determination of chloride threshold values for rebar depassivation 

Experimental and statistical study. Electrochim Acta 2004;49:2731–2739. 
[34] Roberge PR. Statistical interpretation of corrosion test results. In: Cramer SD, Covino Jr BS, editors. ASM handbook, Vol 13A – Corrosion: 

fundamentals, testing, and protection. Materials Park, OH: ASM International; 2003. p. 425–429. 
[35] Okeniyi JO, Obiajulu UE, Ogunsanwo AO, Odiase NW, Okeniyi ET. CH4 emission model from the waste of Sus domesticus and Gallus 

domesticus in Nigerian local farms: Environmental implications and prospects. Mitig Adapt Strateg Glob Chang 2013;18:325–335. 
[36] Okeniyi JO, Okeniyi ET. Implementation of Kolmogorov-Smirnov p-value computation in Visual Basic®: implication for Microsoft Excel® 

library function. J Stat Comput Simul 2012;82:1727–1741. 
[37] ASTM G16-95 R04. Standard guide for applying statistics to analysis of corrosion data. ASTM International, West Conshohocken PA. 
[38] Söylev TA, Richardson MG. Corrosion inhibitors for steel in concrete: State-of-the-art report. Construct Build Mater 2008;22:609–622. 
[39] Millard SG, Law D, Bungey JH, Cairns J. Environmental influences on linear polarisation corrosion rate measurement in reinforced concrete. 

NDT&E Int 2001;34: 409–417. 
[40] Berke NS, Hicks MC. Predicting long-term durability of steel reinforced concrete with calcium nitrite corrosion inhibitor. Cem Concr 

Compos 2004 ;26:191–198. 
[41] Coffey R, Dorai-Raj S, O'Flaherty V, Cormican M, Cummins E. Modeling of pathogen indicator organisms in a small-scale agricultural 

catchment using SWAT. Hum Ecol Risk Assess: An Int J 2013;19:232–253. 


