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Abstract

We introduce balleans as asymptotical counterparts of uniform topological spaces. Using
oscillating functions, for every ballean we define two compact spaces: corona and binary c
These spaces can be considered as generalizations of the Higson’s coronas of metric sp
the spaces of ends of groups, respectively. We consider some balleans related to an infinit
and prove some results concerning their coronas. At the end we apply these results to desc
compact right-zero semigroups which are continuous homomorphic images ofG∗, the reminder of
the Stone–̌Cech compactification of discrete groupG.
 2004 Elsevier B.V. All rights reserved.
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1. Ball structures and balleans

A ball structureis a tripleB = (X,P,B), whereX,P are nonempty sets and, for a
x ∈ X andα ∈ P , B(x,α) is a subset ofX which is called aball of radiusα aroundx. It is
supposed thatx ∈ B(x,α) for all x ∈ X, α ∈ P . The setX is called thesupportof B,P is
called theset of radiuses.
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Given anyx ∈ X, A ⊆ X, α ∈ P , we put

B∗(x,α) = {
y ∈ X: x ∈ B(y,α)

}
, B(A,α) =

⋃
a∈A

B(a,α).

A ball structureB = (X,P,B) is calledlower symmetricif, for anyα,β ∈ P , there exist
α′, β ′ ∈ P such that, for everyx ∈ X,

B∗(x,α′) ⊆ B(x,α), B(x,β ′) ⊆ B∗(x,β).

A ball structureB = (X,P,B) is calledupper symmetricif, for any α,β ∈ P , there
existα′, β ′ ∈ P such that, for everyx ∈ X,

B(x,α) ⊆ B∗(x,α′), B∗(x,β) ⊆ B(x,β ′).

A ball structureB = (X,P,B) is calledlower multiplicativeif, for any α, β ∈ P there
existsγ ∈ P such that, for everyx ∈ X,

B
(
B(x, γ ), γ

) ⊆ B(x,α) ∩ B(x,β).

A ball structureB = (X,P,B) is calledupper multiplicativeif, for any α,β ∈ P there
existsγ ∈ P such that, for everyx ∈ X,

B
(
B(x,α),β

) ⊆ B(x, γ ).

Let B = (X,P,B) be a lower symmetric, lower multiplicative ball structure. Then
family{⋃

x∈X

B(x,α) × B(x,α): α ∈ P

}

is a fundamental system of entourages for some (uniquely determined) uniform topo
space. On the other hand, ifX is a uniformityU ⊆ X ×X, then the ball structure(X,U,B)

is lower symmetric and lower multiplicative, whereB(x,U) = {y ∈ X: (x, y) ∈ U}. Thus,
the lower symmetric and lower multiplicative ball structures can be identified with
uniform topological spaces.

We say that a ball structure is aballeanif B is upper symmetric and upper multiplicativ
Let B1 = (X1,P1,B1), B2 = (X2,P2,B2) be balleans. A mappingf :X1 → X2 is

called a≺-mappingif, for everyα ∈ P1, there existsβ ∈ P2 such that, for everyx ∈ X1,

f
(
B1(x,α)

) ⊆ B2
(
f (x),β

)
.

A mappingf :X1 → X2 is called a�-mappingif, for everyβ ∈ P2, there existsα ∈ P1
such that, for everyx ∈ X1,

B2
(
f (x),β

) ⊆ f
(
B1(x,α)

)
.

A bijection f :X1 → X2 is called anisomorphismbetweenB1 and B2 if f is a ≺-
mapping andf is a�-mapping.

Let B1 andB2 be balleans with common supportX. We say thatB1 ≺ B2 if the identity
mapping id :X → X is a ≺-mapping ofB1 to B2. If B1 ≺ B2 andB2 ≺ B1 we say that
B1, B2 are equivalent.
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A propertyP of balleans is called aball propertyif any ballean isomorphic to a ballea
with propertyP also has that propertyP . Now we define some basic ball properties.

Let B = (X,P,B) be a ballean,x, y ∈ X. We say thatx, y areconnectedif there exists
α ∈ P such thaty ∈ B(x,α). A subsetY ⊆ X is calledconnectedif any two elements
from Y are connected. Note that connectedness is an equivalence relation onX, so X

disintegrates into connected components. A ballean is calledconnectedif its support is
connected.

A subsetY ⊆ X is calledboundedif there existsx ∈ X, α ∈ P such thatY ⊆ B(x,α).
We say thatB is boundedif its support is bounded. LetB be connected,x0 ∈ X, Y ⊆ X.
ThenY is bounded if and only if there existsα ∈ P such thatY ⊆ B(x0, α).

For an arbitrary balleanB = (X,P,B), we define a reordering� on the setP by the
rule:α � β if and only if B(x,α) ⊆ B(x,β) for everyx ∈ X.

A subsetP ′ ⊆ P is calledcofinal if, for every α ∈ P , there existsβ ∈ P ′ such that
α � β. Thecofinalitycf B of B is the minimal cardinality of cofinal subsets ofP .

Let (X,d) be a metric space,R+ = {α ∈ R: α � 0}. Given anyx ∈ X, r ∈ R
+, we put

Bd(x, r) = {
y ∈ X: d(x, y) � r

}
.

The balleanB(X,d) = (X,R
+,Bd) is called ametricballean. We say that a balleanB

is metrizable ifB is isomorphic toB(X,d) for some metric space(X,d). By [9], a ballean
B is metrizable if and only ifB is connected and cfB � ℵ0.

Formally, the notion of ballean is an asymptotic duplicate of the notion of unif
topological space. It is well known [3, Chapter 8] that every uniform topological s
can be approximated by metric spaces. Now we describe the ballean analogue of
approximation.

Let {Bλ = (Xλ,P,Bλ): λ ∈ I } be a family of balleans with pairwise disjoint suppo
and common set of radiuses and letX = ⋃

λ∈I Xλ. For everyx ∈ X, x ∈ Xλ and every
α ∈ P , we putB(x,α) = Bλ(x,α). The balleansB = (X,P,B) is called adisjoint union
of the family {Bλ: λ ∈ I }. A ballean is calledpseudometrizableif it is a disjoint union of
metrizable balleans.

Let {Bλ = (X,Pλ,Bλ): λ ∈ I } be a family of balleans with common support. Supp
that, for anyλ1, λ2 ∈ I , there existsλ ∈ I such thatBλ1 ≺ Bλ, Bλ2 ≺ Bλs . For everyλ ∈ I ,
we choose a copyP ′

λ = fλ(Pλ) such that the family{P ′
λ: λ ∈ I } if disjoint. Put P =⋃

λ∈I P ′
λ. For anyx ∈ X, β ∈ P , β ∈ Pλ, we putB(x,β) = Bλ(x,f −1

λ (β)). The ballean
B = (X,P,B) is called aninductive limitof the family{Bλ: λ ∈ I }.

By [10], every ballean is isomorphic to the inductive limit of some family
pseudometrizable balleans.

Now we describe a ballean analogue of normality. LetB = (X,P,B) be a ballean. We
say that the subsetsY,Z of X areasymptotically disjoint(and writeY ⊥ Z) if, for every
α ∈ P , there exists a bounded subsetUα ⊆ X such that

B(Y \ Uα,α) ∩ B(Z \ Uα,α) = ∅.

We say thatY,Z areasymptotically separated(and writeY � Z) if, for every α ∈ P ,
there exists a bounded subsetUα ⊆ X such that, for everyβ ∈ P ,

B(Y\Uα,α) ∩ B(Z\Uβ,β) = ∅.
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A balleanB is callednormal if, for all subsetsY,Z of X, Y ⊥ Z impliesY � Z.

To formulate the balleans counterparts of Urysohn’s lemma and the Tietze–Ur
theorem we need the following definition.

Let B = (X,P,B) be a ballean and let(Y,U) be a uniform topological space. A ma
pingh :X → Y is calledslowly oscillatingif, for every entourageU ∈ U and everyα ∈ P ,
there exists a bounded subsetV of X such that, for everyx ∈ X \ V ,

h
(
B(x,α)

) × h
(
B(x,α)

) ⊆ U.

If Y = R with the uniformity determined by standard metric, thenh :X → R is slowly
oscillating if and only if, for everyε > 0 and everyα ∈ P , there exists a bounded subsetV

of X such that, for everyx ∈ X \ V ,

diamh
(
B(x,α)

)
< ε,

where diamA = sup{|a − b|: a, b ∈ A}.
Let B = (X,P,B) be a normal ballean and letY0, Y1 be disjoint and asymptoticall

disjoint subset ofX. By [11, Theorem 2.1], there exists a slowly oscillating funct
h :X → [0,1] such thath|Y0 ≡ 0, h|Y1 ≡ 1.

By [11, Theorem 2.2], a balleanB is normal if and only if, for every subsetY ⊆ X

and every bounded slowly oscillating functionh :Y → R, there exists a bounded slow
oscillating functiong :X → R such thatg|Y = h.

The notion of ball structures and balleans were motivated by combinatorics [1]. S
notions were defined and investigated in asymptotic topology [2]. We describe the
general of them.

A setX is called acoarse space[8] if there is a distinguished collectionE of subsets of
productX × X calledentouragessuch that:

• Any finite union of entourages is contained in an entourage.
• The union of all entourages is the entire spaceX × X.
• The inverseof an entourageM

M−1 = {
(y, x) ∈ X × X: (x, y) ∈ M

}

is contained in an entourage.
• Thecompositionof entouragesM1 andM2

M1M2 = {
(x, z) ∈ X × X: (x, y) ∈ M1, (y, z) ∈ M2 for somey ∈ X

}

is contained in an entourage.

Every coarse space(X,E) can be considered as the connected ballean(X,E,B), where
B(x,E) = {y: (x, y) ∈ E} ∪ {x}, E ∈ E . On the other hand, every connected balle
(X,P,B) can be considered as the coarse space(X,E), whereE = {⋃x∈X B(x,α) ×
B(x,α): α ∈ P }.
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Fix a balleanB = (X,P,B), endowX with the discrete topology and consider t
Stone–̌Cech compactificationβX of X. We take the points ofβX to be the ultrafilters
onX with the points ofX identified with the principal ultrafilters. For every subsetA ⊆ X,
we putA = {q ∈ βX: A ∈ q}. The topology ofβX can be defined by stating that the fam
{A: A ⊆ X} is a base for the open sets. For every filterϕ onX, the subsetϕ = ⋂{A: A ∈ ϕ}
is closed inβX, and, for every nonempty closed subsetK ⊆ βX, there exists a filterϕ onX

such thatK = ϕ. Let Y be a compact Hausdorff space. For every mappingf :X → Y ,
denote byf β the Stone–̌Cech extension off ontoβX.

Denote byX� the set of all ultrafiltersr onX such that everyR ∈ r is unbounded inB,
and putX� = βX \ X�. Clearly,X� is a closed subspace ofβX.

Given anyr, q ∈ X�, we say thatr, q areparallel (and writer ‖ q) if there existsα ∈ P

such that, for everyR ∈ r , we haveB(R,α) ∈ q. By [11, Lemma 4.1],‖ is an equivalence
onX�. We denote by∼ the minimal (by inclusion) closed (inX� ×X�) equivalence onX�

such that‖ ⊆ ∼. By [3, Theorem 3.2.11], the quotientX�/∼ is compact Hausdorff spac
It is called thecoronaof B and is denoted byν(B). To clarify the virtual equivalence∼,
we use the following two observations.

• If r, q ∈ X� andr‖q, then, for every slowly oscillating functionh :X → [0,1], we have
hβ(r) = hβ(q).

Indeed, pickα ∈ P such that, for everyR ∈ r , we haveB(R,α) ∈ q. Let ε be an arbi-
trary positive real number. We put

Rε = {
x ∈ X:

∣∣h(x) − hβ(r)
∣∣ < ε

}
and note thatRε ∈ r . Sinceh is slowly oscillating, there exists a bounded subseV

of X such that, for everyx ∈ X\V , we have diamh(B(x,α)) < ε. Then Rε\V ∈ r,

B(Rε\V,α) ∈ q and|h(x) − hβ(r)| < 2ε. It follows thathβ(q) = hβ(r).

• Let B be connected and leth :X → [0,1] be a function such thathβ(r) = hβ(q) for
any two parallel ultrafiltersr, q. Thenh is slowly oscillating.

Suppose the contrary. SinceB is connected, the family� of all bounded subsets ofX
is closed under finite unions, so� is directed by inclusion. Chooseα ∈ P andε > 0 such
that, for everyF ∈ �, there existsx(F ) ∈ X \ F such that, diamh(B(x(F ),α)) > ε. For
everyF ∈ �, we takey(F ) ∈ B(x(F ),α)) such that|h(x(F )) − h(y(F ))| > ε. Then we
get two nets{x(F ): F ∈ �} and{y(F ): F ∈ �}.

Endow� with the discrete topology and fix an arbitrary ultrafilterp ∈ β� such that
{H ∈ �: F ⊆ H } ∈ p for every F ∈ �. Let f1 :� → X, f2 :� → X be the mappings
defined byf1(F ) = x(F ), f2(F ) = y(F ). We put r = f

β

1 (p), q = f
β

2 (p). Then r ‖ q

but |hβ(r) − hβ(q)| � ε, a contradiction.
The following example, suggested by the referee, shows that the connectedness a

tion cannot be omitted in the second observation.
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Let B1 = (X1,P ,B1), B2 = (X2,P ,B2) be connected balleans such thatB1 is bounded,
B2 is unbounded,|X1| > 1 andX1 ∩ X2 = ∅. Let B = (X,P,B) be the disjoint union o
B1 andB2. We take two pointsx1 ∈ X1, x2 ∈ X2 and define the functionh :X → [0,1] by
the rule:h(x1) = h(x2) = 1 andh(x) = 0 for everyx ∈ X \ {x1, x2}. Since every bounde
subset ofX is contained either inX1 or in X2, h is not slowly oscillating. On the othe
hand,X� = X

�
1. It follows that, for anyr, q ∈ X� (in particular, for any parallel ultrafilter

r, q ∈ X�), we havehβ(r) = 0, hβ(q) = 0 sohβ(r) = hβ(q).

Proposition 1. Let B = (X,P,B) be a connected ballean,q, r ∈ X�. Thenq ∼ r if and
only if hβ(q) = hβ(r) for every slowly oscillating functionh :X → [0,1].

Proof. Let us consider the closed equivalence∼[0,1] on X� defined by the rule:r ∼[0,1] q

if and only if hβ(r) = hβ(q) for every slowly oscillating functionh :X → [0,1]. We have
to prove that∼ = ∼[0,1]. By the above observations,‖ ⊆ ∼[0,1], so∼ ⊆ ∼[0,1].

To show the reverse inclusion we putY = X� ∪ ν(B) and define the topology onY as
follows. If y ∈ X� then a subsetU ⊆ Y is a neighborhood ofy if and only if U contains
a neighborhood ofy in X� as a subspace ofβX. Assume thaty ∈ ν(X). Sincey is a
closed subset ofβX, there exists a filterϕ on X such thaty = ϕ. Then a subsetW ⊆ Y

is a neighborhood ofy if and only if there exist a neighborhoodV of y in ν(B) and an
elementF ∈ ϕ such thatV ∪ {z ∈ X�: F ∈ z} ⊆ W . It is easy to verify thatY is a compact
Hausdorff space andX ⊆ X� is a dense subset ofY .

Now suppose thatr, q ∈ X� and [r] �= [q] where[r] ∈ ν(B), [q] ∈ ν(B) are the cor-
responding∼-equivalence classes. Then there exists a continuous functionf :Y → [0,1]
such thatf ([r]) = 0, f ([q]) = 1. Puth = f |X and note thathβ(t) = f ([t]) for every
t ∈ X�. It follows thath is slowly oscillating andhβ(r) �= hβ(q). �

If a balleanB is normal and connected we can go far in the clarification of the equ
lence∼. By [11, Lemma 4.2],r ∼ q if and only if, for anyR ∈ r , Q ∈ q there existsα ∈ P

such thatB(R,α) ∩ B(Q,α) is unbounded. Hence,r, q are non-equivalent if and only
there existR ∈ r , Q ∈ q such thatR ⊥ Q. It should be remarked that the connectedn
assumption is missing in the formulation of Lemma 4.2 of [11].

Let (X,d) be a metric space and letR,Q be unbounded subsets ofX such thatR ⊥ Q.
By [11, Example 2.3], there exists a continuous slowly oscillating functionh :X → [0,1]
such thath|R ≡ 0, h|Q ≡ 1. In view of Proposition 1, forr, q ∈ X�, we haver ∼ q if and
only if hβ(r) = hβ(q) for every continuous slowly oscillating functionh :X → [0,1].

A metric space(X,d) is called perfect if every ballBd(x, r) is compact. It is worth
mentioning that the category of metric spaces (with the appropriate morphisms)
main subject of large scale topology [2].

Now let(X,d) be a perfect metric space and letS(X) be the set of all continuous slow
oscillating functionsh :X → [0,1]. Putf = ∏

h∈S(X) h and note thatf is an embedding

of X into [0,1]S(X). Following [2, §6], we identifyX with f (X). The closure off (X) in
[0,1]S(X) is called theHigson’s compactificationof X, and the remainderf (X)\f (X) is
called theHigson’s coronaof X. Denote byXdisc the setX with the discrete topology an
put f̃ = f ◦ id, where id :Xdisc→ X is the identity mapping. Thenf (X) can be identified
with the quotientβXdisc/≈, wherer ≈ q if and only if f̃ β(r) = f̃ β(q). Clearly,f̃ β(X�) ⊆
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f (X)\f (X). Since(X,d) is perfect, we havef β(X�) = f (X), sof̃ β(X�) = f (X)\f (X).
Let r, q ∈ X�. By above remark,r ∼ q if and only if r ≈ q. Hence, the Higson’s coron
f (X)\f (X) can be identified with the coronaν(B(X,d)) of the balleanB(X,d).

Now we define a more coarse corona of a balleanB = (X,P,B) using slowly oscillating
functions taking values 0,1.

We say that the ultrafiltersr, q ∈ X� are binary equivalent(and write r ∼{0,1} q) if
hβ(r) = hβ(q) for every slowly oscillating functionh :X → {0,1}. Clearly, ∼{0,1} is a
closed equivalence onX�. The quotientX�/∼{0,1} is called thebinary coronaof B, it is
denoted byε(B) and the elements ofε(B) are called theendsof B.

A subsetA of X is calledalmost invariantif B(A,α)\A is bounded for everyα ∈ P .
We use the following observations.

• Every bounded subset is almost invariant.
• If A ⊆ X is almost invariant, thenA \ X is almost invariant.

We use the proof suggested by the referee. Letα ∈ p be given. Pickα′ ∈ P such
that, for allx ∈ X, B(x,α) ⊆ B∗(x,α′). Pick δ ∈ P andz ∈ P such thatB(A,α′)\A ⊆
B(z, δ). Pick γ ∈ P such that, for allx ∈ X, B(B(x, δ),α) ⊆ B(x, γ ). We claim that
B(X \ A,α) \ (X \ A) ⊆ B(z, γ ). To see this, lety ∈ B(X \ A,α) \ (X \ A) and note
that y ∈ A. Pick x ∈ X \ A such thaty ∈ B(x,α). Theny ∈ B∗(x,α′) so x ∈ B(y,α′).
Thereforex ∈ B(A,α′)\A, soB(x,α) ⊆ B(z, γ ) and hencey ∈ B(z, γ ).

• If a functionh :X → {0,1} is slowly oscillating thenh−1(0) is almost invariant.

PutA = h−1(0) and letα ∈ P be given. Choose a bounded subsetV of X such that, for
everyx ∈ X \ V , diamh(B(x,α)) < 1. ThenB(A\V,α) ⊆ A, B(A,α) ⊆ A ∪ B(V,α) so
B(A,α) \ A is bounded and henceA is almost invariant.

• Leth :X → {0,1} be a function such thatf −1(0) is almost invariant. Thenh is slowly
oscillating.

We putA = h−1(0) and assume thatB is connected. Letα ∈ P be given. SinceA and
X \ A are almost invariant, the subsetsV1 = B(A,α) \ A, V2 = B(X \ A,α) \ (X \ A) are
bounded. By connectedness ofB, V1∪V2 is bounded. PutU = B∗(V1∪V2, α) and note tha
U is bounded. Ifx ∈ A\U thenB(x,α)∩V1 = ∅ soB(x,α) ⊆ A and diamh(B(x,α)) = 0.
Analogously, ifx ∈ X \ A then diamh(x,α) = 0. Thereforeh is slowly oscillating.

Now let B be the disjoint union of the family{Bα = (Xα,P,Bα): λ ∈ I } of connected
balleans. Since every bounded subset ofX is contained in some subsetXλ, there exists
λ0 ∈ I such that, for everyλ ∈ I , λ �= λ0, eitherXλ ⊆ A or Xλ = X\A. By the above
paragraph,h is slowly oscillating.

Proposition 2. Let B = (X,P,B) be a ballean,r, q ∈ X�. Thenr, q are binary equivalen
if and only if, for every almost invariant subsetA ⊆ X, A ∈ r impliesA ∈ q.
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Proof. Assume thatr, q are binary equivalent,A be an almost invariant subset ofX and
A ∈ r . Take the slowly oscillating functionh :X → {0,1} defined by the ruleh|A ≡ 0,

h|X\A ≡ 1. Sincehβ(r) = hβ(q) we getA ∈ q.

Assume thatr, q are not binary equivalent and take a slowly oscillating functionh :X →
{0,1} such thathβ(r) �= hβ(q). Lethβ(r) = 0,hβ(q) = 1. Thenh−1(0) is almost invariant
h−1(0) ∈ r buth−1(0) /∈ q. �

In view of Proposition 2 we can identifyε(B) with the setE of all maximal filters in
the familyA of all unbounded almost invariant subsets ofX endowed with the topolog
defined by the family{{ϕ ∈ E: A ∈ ϕ}: A ∈ A} as a base for the open sets. In particu
this identification shows thatε(B) is zero-dimensional.

To motivate the end-terminology we consider a discrete groupG. A subsetA ⊆ G is
called almost invariant ifAg \ A is finite for everyg ∈ G. Denote byE(G) the set of all
maximal filters in the family of all infinite almost invariant subsets ofG. ThenE(G) is
the reminder of the Freudental–Hopf compactification ofG and every element ofE(G) is
called an end ofG (for this approach to definitions of ends see [7]). In the next section
define the balleanBr (G,ℵ0) with the supportG such thatε(Br (G,ℵ0)) = E(G). Thus,
the binary corona of ballean can be considered as a generalization of the space of
group.

We conclude this section with the following example, showing that the connecte
assumption cannot be omitted in Proposition 1.

Let (Xn, dn), n = 1,2, . . . , be metric spaces such thatXn = {yn, zn}, dn(yn, zn) = n

and, for n �= m, Xn ∩ Ym = ∅. Let B = (X,R
+,B) be the disjoint union of the fam

ily {B(Xn, dn): n = 1,2, . . .} of metric balleans. Ifh :X → [0,1] is a slowly oscillat-
ing function, then there existsm such thath(yn) = h(zn) for all n �= m. It follows that
hβ(r) = hβ(q) for any two ultrafiltersr, q ∈ X�.

On the other hand, letr, q ∈ X� and r‖q. Pick α ∈ R
+ such that, for everyR ∈ r ,

B(R,α) ∈ q. SinceB(R,α)\R is finite, we haveR ∈ q and r = q. Hence‖ = ∼ and
ν(B) = X�.

3. Group balleans

Let G be an infinite group with identitye, κ be an infinite cardinal such thatκ � |G|.
Denote by�(G,κ) the family{F ⊆ G: |F | < κ, e ∈ F } and, for anyg ∈ G, F ∈ �(G,κ),
put

Bl(g,F ) = gF, Br(g,F ) = Fg.

Thus, we get two balleans

Bl(G,κ) = (
G,�(G,κ),Bl

)
, Br(G,κ) = (

G,�(G,κ),Br

)
.

Note that the mappingx �→ x−1 is an isomorphism betweenBl (G,κ) andBr (G,κ).

Proposition 3. For every infinite groupG of regular cardinality, the cardinality of coron
ν(Br (G, |G|)) is 22|G|

.
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Proof. Let G = {gα: α < |G|}, g0 = e. For everyα < |G|, we putFα = {gβ : β � α}. Then
we can construct inductively the subsetX = {xα: α < |G|} of G such thatFαxα ∩Fβxβ = ∅
for all α > β. Since|G| is regular, for everyF ∈ �(G, |G|), there existsα < |G| such that
F ⊆ Fα . Hence, there exists a subsetV of cardinality< |G| such thatFx ∩Fy = ∅ for any
two distinct elementsx ∈ X\V , y ∈ X\V . It follows that any two disjoint subsets ofX of
cardinality|G| are asymptotically disjoint. Now consider the familyU of all ultrafiltersr

onG suchX ∈ r and|R| = |X| for everyR ∈ r . Clearly,|U | = 22|G|
. Take any two distinc

ultrafilters r, q ∈ U , chooseR ∈ r , Q ∈ q such thatR ∩ Q = ∅. ThenR ⊥Q. By [11,
Proposition 1.1], the balleanBr (G, |G|) is normal. Hence, there exists a slowly oscillati
functionh :G → [0,1] such thathβ(r) �= hβ(q). It follows thatr, q define distinct element
[r], [q] of ν(Br (G, |G|)). �
Proposition 4. Let G be an Abelian group and letκ be an infinite regular cardinal suc
thatκ < |G|.Then the coronaν(Br (G,κ)) is a singleton.

Proof. It suffices to show that every slowly oscillating functionh :G → [0,1] is constant
at infinity. More precisely, there existsc ∈ [0,1] such that, for everyε > 0, there exists a
subsetV of G such that|V | < κ and|h(x) − c| < ε for everyx ∈ G \ V .

We prove the following auxiliary statement. LetX be a subset ofG such that|X| = κ .
Then there exists a subgroupH of G such thatX ⊆ H , |H | = κ and the restrictionh|Hg

is constant for everyg ∈ G\H . Let X = {xα: α < κ}. Put H0 = {x0}, F0 = ∅. Suppose
that, for some ordinalβ < κ , we have chosen the subsets{Hα: α < β} and{Fα: α < β}
of cardinality< κ . If β is a limit ordinal, we putHβ = {xβ} ∪ ⋃

α<β Hα , Fβ = ⋃
α<β Fα .

Sinceκ is regular we have|Hβ | < κ , |Fβ | < κ . If β is a non-limit ordinal, we choose th
limit ordinal β0 and the natural numbern such thatβ = β0+n. PutW = {xβ}∪Hβ0+n−1 ∪
Fβ0+n−1. Clearly,|W | < κ . Denote byHβ the set of all elements ofG which can be written
as the group words of length� n in the alphabetW . Sinceh is slowly oscillating and
|Hβ | < κ , there exists a subsetFβ of G such that|Fβ | < κ , Fβ0+n−1 ⊆ F and, for every
x ∈ G\Fβ ,

diamh(Hβx) <
1

n
.

After κ steps we putH = ⋃
α<κ Hα . By the construction we conclude thatH is a subgroup

of G, |X| ⊆ H , |H | = κ andFα ⊆ H for everyα < κ . Now let y ∈ H , y′ ∈ H andg ∈
G\H . Take an arbitraryε > 0 and choose the limit ordinalβ0 < κ and the natural numbern
such that1

n
< ε andy ∈ Hβ0+n−1, y′ ∈ Hβ0+n−1. Putβ = β0 + n. Sincey ∈ Hβ , y′ ∈ Hβ

andg /∈ Fβ , we have

∣∣h(yg) − h(y′g)
∣∣ <

1

n
< ε.

It follows thath|Hg is constant.
At last, suppose thath is not constant at infinity. Then there existε > 0 and injective

κ-sequences〈yα〉α<κ and 〈zα〉α<κ such that|h(yα) − h(zα)| > ε for every α < κ . Put
X = {yα, zα: α < κ}. By the auxiliary statement, there exists a subgroupH of G such that
X ⊆ H , |H | = κ and the restrictionh|Hg is constant for everyg ∈ G \ H . Fix an arbitrary
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g0 ∈ G \ H and putY = {e, g0}. Sinceh is slowly oscillating, there exists a subsetU of G

such that|U | < κ and, for everyx ∈ G \ U ,

diamh(Yx) <
ε

2
.

Chooseα < κ such thatyα /∈ U , zα /∈ U . Then we have∣∣h(yα) − h(zα)
∣∣ �

∣∣h(yα) − h(g0yα)
∣∣ + ∣∣h(g0yα) − h(g0zα)

∣∣ + ∣∣h(zα) − h(g0zα)
∣∣.

SinceG is Abelian,g0yα = yαg0, g0zα = zαg0. Sinceyα ∈ H , zα ∈ H andg0 ∈ G \ H ,
we haveh(yαg0) = h(zαg0). Hence,|h(yα) − h(zα)| < ε and we get a contradiction to th
choice of〈yα〉α<κ , 〈zα〉α<κ . �

The above proposition remains true (with only slight modification of the proof) u
some weaker assumptions instead of commutativity ofG. In particular, it is true if either
the center{x ∈ G: xg = gx for everyg ∈ G} of G is of cardinality� κ or every subgroup
of G of cardinalityκ is contained in some invariant subgroup of cardinalityκ . On the other
hand, every free group of rank> 1 has infinitely many ends. It follows thatν(Br (F,ℵ0))

is infinite so Proposition 4 is not true forF .

4. Applications to βG

Let G be a discrete group,βG be the Stone–̌Cech compactification ofG, G∗ = βG\G.
Using the universal property of the Stone–Čech compactification, the group multiplicatio
onG can be extended toβG in such a way that, for everyr ∈ βG, the right shiftx �→ xr is
continuous, and, for everyg ∈ G, the left shiftx �→ gx is continuous. Formally, the produ
rq of the ultrafiltersr, q ∈ βG is defined by the rule: given any subsetA of G,

A ∈ rq ⇐⇒ {
g ∈ G: g−1A ∈ q

} ∈ r.

For more information about the compact right topological semigroupβG and its com-
binatorial applications see [5].

In what follows we suppose thatG is infinite andκ is an infinite cardinal such tha
κ � |G|. We putG(κ) = {r ∈ βG: |R| � κ for everyR ∈ r} and note that the subsemigro
G(κ) of βG coincides with the setG� of all unbounded ultrafilters in the balleanBr (G,κ).
If κ = ℵ0 thenG(κ) = G∗. If κ = |G| we use the notationGuni instead ofG(κ).

If r ∈ G(κ), g ∈ G then the ultrafiltersr , gr are parallel in the balleanBl(G,κ). If
κ = ℵ0 then r, q ∈ G∗ are parallel inBr (G,κ) if and only if q = gr for some elemen
g ∈ G. It follows that every element ofν(Br (G,κ)) is a closed left ideal ofβG.

A semigroupS is called right-zero ifxy = y for all x, y ∈ S. In what follows we assum
thatν(Br (G,κ)) is endowed with the structure of a right-zero semigroup.

The above observation shows that the factor-mapping ofG(κ) to ν(Br (G,κ)) is a ho-
momorphism. The next proposition states thatν(Br (G,ℵ0)) is the maximal continuou
right-zero homomorphic image ofG∗.

Proposition 5. If a compact right-zero semigroupS is a continuous homomorphic imag
of G∗, thenS is a continuous homomorphic image ofν(Br (G,ℵ0)).
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Proof. We use the following observation. If the semigroupG∗ is partitioned into closed
left ideals ofG∗ then every memberI of the partition is a left ideal ofβG. It suffices to
show thatxI ⊆ I for everyx ∈ G. Suppose the contrary and chooseg ∈ G, r ∈ I such that
gr /∈ I . Choose the elementJ of the partition such thatgr ∈ J . SinceJ is a left ideal ofG∗
we haver(gr) ∈ J and get a contradiction to(rg)r ∈ I .

Now letf be a continuous homomorphism ofG∗ ontoS. By definition ofν(Br (G,ℵ0)),
it suffices to show that, for everyr, q ∈ G∗, f (r) = f (q). SinceS is a right-zero semigroup
every element of the partition{f −1(s): s ∈ S} of G∗ is a left ideal ofG∗. Hence,f −1(s)

is a left ideal ofβG for everys ∈ S. Sincer ‖ q, there existsg ∈ G such thatq = gr , so
q, r belong to the same member of the partition andf (q) = f (r). �

The same argument shows that a functionh :G → [0,1] is slowly oscillating in the
balleanBr (G,ℵ0) if and only if the restrictionh∗ of hβ to G∗ is a homomorphism ofG∗
to the right-zero semigroup[0,1].

Proposition 6. If a compact zero-dimensional right-zero semigroupS is a continuous ho
momorphic image ofG∗, thenS is a continuous homomorphic image of the binary coro
ε(Br (G,ℵ0)).

Proof. Let f be a continuous homomorphism ofG∗ onto S. It suffices to show tha
f (r) = f (q) for any two binary equivalent ultrafiltersr, q ∈ G∗. Suppose the contrar
and choose the binary equivalent ultrafiltersr, q ∈ G∗ such thatf (r) �= f (q). SinceS is
zero-dimensional, there exists a continuous mappingf ′ :S → {0,1} such thatf ′(f (r)) �=
f ′(f (q)). We putϕ = f ′f and note thatϕ is a continuous homomorphism ofG∗ to the
right-zero semigroup{0,1}. Then we take a mappingh :G → {0,1} such that the restric
tion h∗ of hβ to G∗ coincides withϕ. Then h is slowly oscillating inBr (G,ℵ0) and
hβ(r) �= hβ(q). Thus we get a contradiction to the assumption thatr , q are binary equiva
lent. �

We conclude the paper with some illustrations of our considerations.

• By Propositions 3 and 5, for every infinite groupG of regular cardinality, there exists
compact right-zero semigroup of cardinality 22|G|

which is a continuous homomorph
image ofGuni. On the other hand, ifG is an uncountable Abelian group, by Propo
tions 4 and 5, the only continuous right-zero homomorphic image ofG∗ is a singleton.

• A groupG is calledlocally finite if every finite subset ofG is contained in some finit
subgroup.
By [11, Lemma 4.3], ifG is either uncountable or a countable locally finite gro
thenν(Br (G, |G|)) = ε(Br (G, |G|)). By [6], every uncountable locally finite groupG
has one end soε(Br (G,ℵ0)) is a singleton in this case.

• By the Freudental–Hopf theorem (see [4, Chapter 2]), every infinite groupG has one,
two or infinitely many ends. In view of Proposition 6, this theorem describes all
sible finite right-zero continuous homomorphic image ofG∗. This is a step to the
following general problem.



160 I.V. Protasov / Topology and its Applications 149 (2005) 149–160

mo-

-

of the

Mono-

nal in:

ns, de

60.
(1972)

between
Given an infinite groupG, determine all finite semigroups which are continuous ho
morphic images ofG∗.

The first step is this direction was done in [12]. A finite groupF is a continuous homo
morphic image ofG∗ if and only if F is a homomorphic image ofG.
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